JP3069522B2 - Gas turbine combustor - Google Patents

Gas turbine combustor

Info

Publication number
JP3069522B2
JP3069522B2 JP8138786A JP13878696A JP3069522B2 JP 3069522 B2 JP3069522 B2 JP 3069522B2 JP 8138786 A JP8138786 A JP 8138786A JP 13878696 A JP13878696 A JP 13878696A JP 3069522 B2 JP3069522 B2 JP 3069522B2
Authority
JP
Japan
Prior art keywords
transition piece
cooling
gas turbine
inner cylinder
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8138786A
Other languages
Japanese (ja)
Other versions
JPH08327064A (en
Inventor
肇 塩見
幸生 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8138786A priority Critical patent/JP3069522B2/en
Publication of JPH08327064A publication Critical patent/JPH08327064A/en
Application granted granted Critical
Publication of JP3069522B2 publication Critical patent/JP3069522B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明はガスタービン発電プ
ラントに用いられるガスタービン燃焼器に係り、特に燃
焼器尾筒の冷却構造の改良に関する。 【0002】 【従来の技術】ガスタービン発電プラントはガスタービ
ンと同軸に設けられた圧縮機の駆動によって圧縮された
吐出空気をガスタービン燃焼器に燃焼用空気として案内
し、燃焼器内で燃料とともに燃焼させ、その燃焼ガスを
燃焼器内筒からガスタービンに案内してガスタービンを
駆動させ、仕事をするようになっている。 【0003】図3は従来のガスタービン燃焼器の一般的
な構成例を示したものである。すなわち、ガスタービン
燃焼器1は圧縮機2とガスタービン3との間に位置して
軸心周りに複数個設けられ、圧縮機2から吐出される燃
焼用空気の吐出チャンバ4内に収容されている。このガ
スタービン燃焼器1は外筒5と内筒6とを備え、その間
に環状の燃焼用空気流路7が形成される一方、内筒6の
内部に燃焼室8が画成され、この燃焼室8内で燃料が燃
焼用空気と混合して燃焼するようになっている。燃焼ガ
スは、内筒6の後端に連結された尾筒9内を通ってガス
タービン3の入口に案内され、ガスタービン3を駆動さ
せる。 【0004】上述したガスタービン燃焼器1の尾筒9
は、従来一般に一重の筒状構造とされ、その先端側が内
筒6の後端部に嵌合し板ばね等で弾性保持されている。
この尾筒9は、高温の燃焼ガスの流通によって内面側か
ら加熱されるが、圧縮機2から吐出チャンバ4に供給さ
れる燃焼用空気との接触によって対流冷却される。 【0005】ところで近年、省エネルギ等の見地から一
層の燃焼効率の向上が望まれ、それに伴ってガスタービ
ン燃焼器の燃焼温度が高温化してきている。この場合、
上述した従来の一重構造の尾筒9で対流冷却を行うもの
では必ずしも十分な冷却が行えず、例えば1300℃級
以上の高温ガスタービン燃焼器の場合、高温燃焼ガスに
晒される尾筒9の温度が尾筒材料の技術的対応温度(約
800℃)を超えてしまい、ガスタービン燃焼器の耐久
性や信頼性を低下させる虞れがあった。 【0006】このため尾筒の冷却性向上についての検討
が進められ、例えば尾筒の高温となり易い部分の外周側
に冷却用の空気流速を高めるための冷却空気ガイド用の
板を設け、空気との熱伝達を高める技術や、尾筒の外周
側に環状の蒸気流路を設け、比熱の高い蒸気によって効
果的に冷却を行う技術等がこれまで提案されている。 【0007】 【発明が解決しようとする課題】ところが、冷却空気ガ
イド用の板を設ける上記の技術においては、尾筒形状に
よっては空気の流れが不均一となったり、尾筒外周面に
沿う一定厚さの空気層が形成され、その境界層の外側の
空気は冷却のための熱伝達にあまり寄与しないため、1
300℃級以上の高温ガスタービン燃焼器の尾筒冷却に
は必ずしも十分な効果が得られず、また蒸気を冷却卯媒
体として使用するものでは蒸気供給のための特別な供給
部構造が必要となって構成が複雑化する等の問題があっ
た。 【0008】本発明は上述した事情を考慮してなされた
もので、圧縮機の吐出空気を冷却用空気として使用する
比較的簡単な構成のもとで、燃焼器尾筒の冷却性能を大
幅に向上させることができ、特に高温ガスタービンに適
用した場合に充分な耐久性と信頼性を維持することがで
き、これによって燃焼効率の一層の向上、ひいては省エ
ネルギ化への対応が有効的に図れるガスタービン燃焼器
を提供することを目的とする。 【0009】 【課題を解決するための手段】上述した目的を達成する
ために、本発明はライナー外筒とライナー内筒との間に
燃焼用空気流路を形成し、上記ライナー内筒内に燃焼室
を画成し、燃焼ガスを案内する尾筒を上記ライナー内筒
に設けたガスタービン用燃焼器において、上記尾筒は圧
縮機から吐出される燃焼用空気の吐出チャンバ内に収容
するとともに尾筒外筒と尾筒内筒とから二重筒構造に構
成して、その環状部分を上記燃焼用空気流路に通じる冷
却流路とし、この冷却流路はその断面積が入口側よりも
出口側で大きくなるように設定し、かつ上記尾筒外筒に
冷却空気孔を多数穿設して上記尾筒内筒をインピンジ冷
却可能としたものである。 【0010】 【発明の実施の形態】以下、本発明に係るガスタービン
燃焼器の一実施形態について図1および図2を参照して
説明する。 【0011】本実施形態によるガスタービン燃焼器10
は圧縮機11と発電機12を駆動させるガスタービン1
3との間に設けられ、圧縮機11からの吐出チャンバ1
4を画成する図示しないチャンバケーシング内に収容さ
れる。このチャンバケーシングは圧縮機11とガスター
ビン13の各ケーシングを一体あるいは一体的に連結す
るとともに、ガスタービン燃焼器10はチャンバケーシ
ング内の周方向に複数個、例えば10個あるいは14個
配置される。 【0012】各ガスタービン燃焼器10は燃焼器本体を
構成するライナー外筒15と内筒16とから二重筒構造
に形成され、その環状空間が燃焼用空気流路17として
画成される。ライナー内筒16内には燃焼室18が画成
され、この燃焼室18内に燃料と燃焼用空気とが供給さ
れて燃焼せしめられる。 【0013】一方、ガスタービン燃焼器10の内筒後端
部には尾筒20が装着される。尾筒20は尾筒内筒21
と尾筒外筒22とを有し、この間の環状空間が冷却流路
23として画成される。冷却流路23内には補強を兼ね
た複数枚の冷却用フィン24が放射状に配設され、冷却
流路23内の伝熱面積(熱交換面積)を増大させ、放熱
を促進させるようになっている。尾筒内筒21は燃焼器
本体のライナー内筒18の後端部に遊嵌され、板ばね等
で弾性保持される。尾筒内筒21内は燃焼室18で燃焼
せしめられた燃焼ガスをガスタービン13の入口に導く
案内路25として形成される。 【0014】尾筒20に形成される冷却流路23は尾端
側が入口23aとして形成され、その冷却流路23の前
端側の出口23bが燃焼用空気流路17に連通し、尾筒
内筒21内を通る燃焼ガスと熱交換された冷却用吐出空
気は燃焼用空気流路17に案内される。 【0015】また、尾筒外筒22には図1に示すよう
に、多数の小径な冷却空気孔27が例えば周方向に複数
列あるいはランダムに穿設され、尾筒外筒22の外周側
の冷却用空気がこの冷却空気孔27を介して冷却流路2
3内に導入され、尾筒内筒21の表面に衝突(インピン
ジメント)するようになっている。このような多数の冷
却空気孔27の形成に伴い、冷却流路23に流入する冷
却空気の量が軸方向下流側で次第に多くなるので、燃焼
器の冷却性能計算に基いて、冷却流路23の断面積が入
口23a(後端)側よりも出口23b(前端)側で大き
くなるように設定されている。 【0016】次に、ガスタービン燃焼器10の作用につ
いて説明する。 【0017】ガスタービン発電プラントの圧縮機11の
駆動により圧縮された高圧の吐出空気は吐出チャンバ1
4内に吐出され、この吐出チャンバ14から一部は冷却
流路23に、残りは燃焼用空気流路17に案内される。
燃焼用空気流路17に案内された空気は続いてライナー
内筒16内の燃焼室18に導かれ、この燃焼室18に別
途案内される燃料と混合して燃焼に供され、高温の燃焼
ガスとなる。この燃焼ガスは尾筒内筒21内に形成され
る案内路25を通ってガスタービン13に導かれる。燃
焼ガスがガスタービン13を通過する際に、膨脹して仕
事をし、発電機12を回転駆動させる。ガスタービン1
3で仕事をした燃焼ガスは排気される。 【0018】この場合、尾筒内筒21は高温の燃焼ガス
の通過によって加熱されるが、その外周側に設けられた
尾筒外筒22との間に形成される冷却流路23での高速
空気流、および尾筒外筒22に穿設された冷却空気孔2
7からの導入空気によるインピンジ冷却によって極めて
効果的に冷却される。 【0019】すなわち、吐出チャンバ14内の空気は第
1の経路として、尾筒外筒22の後端側の入口23aか
ら冷却流路23に流入し、この冷却流路23内で軸方向
に沿って流動して前端側の出口23bから燃焼用空気流
路17に案内される。この際、冷却流路23は環状の狭
い空間となっているので、冷却用空気は冷却流路23内
で加速され、流速が例えば約10m/sec から約40m/se
c に増大する。この高速空気流が尾筒内筒21の表面に
接触して対流冷却が能率よく行われる結果、尾筒内筒2
1の放熱効率が向上し、尾筒内筒21が良好な熱伝達の
もとで積極的に冷却される。 【0020】また一方、吐出チャンバ14内の空気は第
2の経路として、尾筒外筒22に広範囲に亘って放射状
に穿設された多数の冷却空気孔27から冷却流路23内
にそれぞれ径方向に沿ってスポット的に導入される。各
冷却空気孔27はそれぞれ小径であるため、そこから導
入される空気は高速噴流となり、冷却流路23内で入口
23a側から出口23b側に向う軸方向の冷却空気層を
穿って尾筒内筒21の表面に高速で衝突(インピンジメ
ント)し、これによりいわゆるインピンジ冷却が行われ
る。 【0021】このインピンジ冷却によると、尾筒20の
軸方向の全ての位置において、吐出チャンバ14内の低
温状態の空気が直接、尾筒内筒21の表面に衝突するの
で、上流側から下流側までに亘る広い領域で極めて良好
な熱伝達率で大きい放熱効果が得られる。したがって、
前記の第1の軸方向に沿う冷却経路のみにおいては、尾
筒形状によっては空気流れが不均一となって放熱効率が
低下したり、また空気が一定の層流状態となって軸方向
に流動するので下流側で熱伝達率が次第に低下する等の
可能性があるが、これらの点を十分に克服して、優れた
尾筒冷却効果が奏される。 【0022】この結果、ガスタービン燃焼器10を高温
ガスタービンに適用し、例えば燃焼温度が1300℃以
上であっても、尾筒内筒21の温度を既存の燃焼用材料
でも充分に耐え得る温度、例えば約700℃以下まで低
下することができ、これによって燃焼効率の一層の向
上、ひいては省エネルギ化への対応が有効的に図れるよ
うになる。しかも、蒸気冷却等と異なり、圧縮機の吐出
空気を冷却用空気として使用する比較的簡単な構成のも
とで、燃焼器尾筒の冷却性能を大幅に向上させることが
できるので、製作および保守の容易化および経済性等、
実用的な面でも多くの優れた利点が得られるものとな
る。 【0023】また、上述したインピンジ冷却の採用によ
って、尾筒20の冷却流路23に供給される空気量は下
流側で漸増するが、本実施形態では冷却流路23の断面
積が入口23a(後端)側よりも出口23b(前端)側
で大きくなるように設定してあるので、冷却流路23に
おける空気の流れは常時円滑に行える。 【0024】また、本実施形態では、図2に示すよう
に、冷却流路23に冷却用フィン24を設け、これによ
り尾筒20の伝熱面積を増大させたので、尾筒内筒21
の表面の放熱効率をより一層向上させることができる。 【0025】なお、以上の実施形態ではライナー外筒を
尾筒側に延長させ、このライナー外筒内に尾筒外筒を挿
入し、重ね合せ部が形成される例について説明したが、
ライナー外筒と尾筒外筒との間に軸方向の間隙を形成す
るようにしても、あるいは尾筒外筒をライナー外筒に一
体あるいは一体的に連結してもよい。 【0026】 【発明の効果】以上で詳述したように、本発明に係るガ
スタービン燃焼器によれば、尾筒外筒と尾筒内筒との間
の冷却流路内で冷却用空気を加速し、流速を増大させて
尾筒内筒の表面での対流冷却を能率よく行わせ、尾筒内
筒の放熱効率を向上させるとともに、尾筒外筒に冷却空
気孔を多数穿設して尾筒内筒をインピンジ冷却可能とし
たことにより、ガスタービン燃焼器を高温ガスタービン
に適用しても、既存の燃焼用材料でも充分に耐え得る温
度まで低下することができ、これによって充分な耐久性
と信頼性を確保することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine combustor used for a gas turbine power plant, and more particularly to an improvement in a cooling structure of a combustor transition piece. [0002] In a gas turbine power plant, discharge air compressed by the drive of a compressor provided coaxially with a gas turbine is guided to a gas turbine combustor as combustion air, and together with fuel in the combustor. The gas is burned, and the combustion gas is guided from the combustor inner cylinder to the gas turbine to drive the gas turbine to perform work. FIG. 3 shows a general configuration example of a conventional gas turbine combustor. That is, a plurality of the gas turbine combustors 1 are provided between the compressor 2 and the gas turbine 3 around the axis, and are accommodated in the discharge chamber 4 of the combustion air discharged from the compressor 2. I have. The gas turbine combustor 1 includes an outer cylinder 5 and an inner cylinder 6, and an annular combustion air flow path 7 is formed therebetween, while a combustion chamber 8 is defined inside the inner cylinder 6. The fuel is mixed with the combustion air in the chamber 8 and burns. The combustion gas is guided to the inlet of the gas turbine 3 through the transition piece 9 connected to the rear end of the inner cylinder 6, and drives the gas turbine 3. The transition piece 9 of the above-described gas turbine combustor 1
Conventionally, a single cylindrical structure is generally used, and a front end side thereof is fitted to a rear end of the inner cylinder 6 and is elastically held by a leaf spring or the like.
The transition piece 9 is heated from the inner side by the flow of the high-temperature combustion gas, but is convectively cooled by contact with the combustion air supplied from the compressor 2 to the discharge chamber 4. In recent years, further improvement in combustion efficiency has been desired from the viewpoint of energy saving and the like, and accordingly, the combustion temperature of a gas turbine combustor has been increased. in this case,
The convection cooling performed by the conventional single-piece transition piece 9 described above cannot always provide sufficient cooling. For example, in the case of a high-temperature gas turbine combustor of 1300 ° C. or higher, the temperature of the transition piece 9 exposed to high-temperature combustion gas However, the temperature exceeds the technically compatible temperature (about 800 ° C.) of the transition piece material, and there is a possibility that the durability and reliability of the gas turbine combustor may be reduced. For this reason, studies have been made on improving the cooling performance of the transition piece. For example, a plate for cooling air guide for increasing the flow rate of cooling air is provided on the outer peripheral side of a portion of the transition piece where the temperature tends to be high. And a technique of providing an annular steam flow path on the outer peripheral side of the transition piece and effectively cooling the steam with high specific heat have been proposed. [0007] However, in the above-described technique of providing a plate for cooling air guide, air flow becomes uneven depending on the shape of the transition piece, or the air flow is constant along the outer peripheral surface of the transition piece. A thick air layer is formed and the air outside its boundary layer does not contribute much to the heat transfer for cooling,
Sufficient effects cannot always be obtained for cooling the transition piece of a high-temperature gas turbine combustor of 300 ° C class or higher, and a special supply unit structure for supplying steam is required when using steam as a cooling medium. And the configuration becomes complicated. The present invention has been made in view of the above-described circumstances, and greatly reduces the cooling performance of a combustor transition piece under a relatively simple configuration in which the discharge air of a compressor is used as cooling air. In particular, when applied to a high-temperature gas turbine, sufficient durability and reliability can be maintained, thereby further improving the combustion efficiency, and effectively responding to energy saving. It is an object to provide a gas turbine combustor. In order to achieve the above-mentioned object, the present invention forms a combustion air flow path between a liner outer cylinder and a liner inner cylinder, and forms a combustion air flow passage in the liner inner cylinder. In a gas turbine combustor in which a combustion chamber is defined and a transition piece for guiding combustion gas is provided in the liner inner cylinder, the transition piece is accommodated in a discharge chamber of combustion air discharged from a compressor. The transition pipe outer cylinder and the transition pipe inner cylinder are formed into a double cylinder structure, and the annular portion is used as a cooling flow path that communicates with the combustion air flow path. It is set so as to be large on the outlet side, and a large number of cooling air holes are formed in the transition piece outer cylinder to enable impingement cooling of the transition piece inner cylinder. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a gas turbine combustor according to the present invention will be described below with reference to FIGS. [0011] The gas turbine combustor 10 according to the present embodiment.
Is a gas turbine 1 that drives a compressor 11 and a generator 12
3 and a discharge chamber 1 from the compressor 11
4 is housed in a not-shown chamber casing. The chamber casing connects the compressor 11 and the casings of the gas turbine 13 integrally or integrally, and a plurality, for example, ten or fourteen, gas turbine combustors 10 are arranged in the circumferential direction in the chamber casing. Each gas turbine combustor 10 is formed in a double cylinder structure from a liner outer cylinder 15 and an inner cylinder 16 constituting a combustor main body, and its annular space is defined as a combustion air flow path 17. A combustion chamber 18 is defined in the liner inner cylinder 16, and fuel and combustion air are supplied into the combustion chamber 18 and burned. On the other hand, a transition piece 20 is attached to the rear end of the inner cylinder of the gas turbine combustor 10. The transition piece 20 is the transition piece inner cylinder 21
And a transition piece outer cylinder 22. An annular space therebetween is defined as a cooling channel 23. A plurality of cooling fins 24 which also serve as reinforcements are radially arranged in the cooling channel 23 to increase the heat transfer area (heat exchange area) in the cooling channel 23 and promote heat radiation. ing. The transition piece inner cylinder 21 is loosely fitted to the rear end of the liner inner cylinder 18 of the combustor body, and is elastically held by a leaf spring or the like. The inside of the transition piece inner cylinder 21 is formed as a guide passage 25 for guiding the combustion gas burned in the combustion chamber 18 to the inlet of the gas turbine 13. The cooling passage 23 formed in the transition piece 20 has a rear end formed as an inlet 23a, and an outlet 23b on the front end side of the cooling passage 23 communicates with the combustion air flow path 17 to form a transition piece inner cylinder. The cooling discharge air that has undergone heat exchange with the combustion gas passing through the inside 21 is guided to the combustion air flow path 17. As shown in FIG. 1, a large number of small-diameter cooling air holes 27 are formed in the transition piece outer cylinder 22 in a plurality of rows or randomly, for example, in the circumferential direction. The cooling air flows through the cooling air holes 27 through the cooling passage 2.
3 and collides with the surface of the transition piece inner cylinder 21 (impingement). With the formation of such a large number of cooling air holes 27, the amount of cooling air flowing into the cooling flow path 23 gradually increases on the downstream side in the axial direction. Is set to be larger on the outlet 23b (front end) side than on the inlet 23a (rear end) side. Next, the operation of the gas turbine combustor 10 will be described. The high-pressure discharge air compressed by driving the compressor 11 of the gas turbine power plant is discharged from the discharge chamber 1.
4, a part of which is guided from the discharge chamber 14 to the cooling passage 23 and the other part is guided to the combustion air passage 17.
The air guided to the combustion air flow path 17 is subsequently guided to a combustion chamber 18 in the liner inner cylinder 16, mixed with fuel separately guided to the combustion chamber 18, and provided for combustion. Becomes This combustion gas is guided to the gas turbine 13 through a guide passage 25 formed in the transition piece inner cylinder 21. When the combustion gas passes through the gas turbine 13, it expands and performs work, and drives the generator 12 to rotate. Gas turbine 1
The combustion gas that worked in 3 is exhausted. In this case, the transition piece inner cylinder 21 is heated by the passage of the high-temperature combustion gas. Air flow and cooling air hole 2 drilled in transition piece outer cylinder 22
It is cooled very effectively by impingement cooling with the air introduced from 7. That is, the air in the discharge chamber 14 flows as a first path from the inlet 23a at the rear end side of the transition piece outer cylinder 22 into the cooling flow path 23, and in the cooling flow path 23 along the axial direction. And flows into the combustion air flow path 17 from the outlet 23b on the front end side. At this time, since the cooling passage 23 is an annular narrow space, the cooling air is accelerated in the cooling passage 23 and the flow velocity is, for example, from about 10 m / sec to about 40 m / se.
to c. This high-speed air flow comes into contact with the surface of the transition piece inner cylinder 21 to efficiently perform convection cooling.
1, the heat dissipation efficiency is improved, and the transition piece inner cylinder 21 is actively cooled under favorable heat transfer. On the other hand, the air in the discharge chamber 14 passes through a large number of cooling air holes 27 radially formed in the transition piece outer cylinder 22 over a wide range as a second path, and flows into the cooling flow path 23. A spot is introduced along the direction. Since each of the cooling air holes 27 has a small diameter, the air introduced therefrom becomes a high-speed jet, pierces the cooling air layer in the axial direction from the inlet 23a side to the outlet 23b side in the cooling flow path 23, and is formed in the transition piece. It collides with the surface of the cylinder 21 at a high speed (impingement), and so-called impingement cooling is performed. According to this impingement cooling, the low-temperature air in the discharge chamber 14 directly collides with the surface of the transition piece inner cylinder 21 at all positions in the axial direction of the transition piece 20. A large heat transfer coefficient can be obtained with a very good heat transfer coefficient over a wide area up to the point. Therefore,
Only in the cooling path along the first axial direction, depending on the shape of the transition piece, the air flow is not uniform and the heat radiation efficiency is reduced, or the air flows in the axial direction due to a constant laminar flow state. Therefore, there is a possibility that the heat transfer coefficient gradually decreases on the downstream side, but these points are sufficiently overcome, and an excellent transition piece cooling effect is achieved. As a result, when the gas turbine combustor 10 is applied to a high-temperature gas turbine, for example, even if the combustion temperature is 1300 ° C. or higher, the temperature of the transition piece inner cylinder 21 is set to a temperature that can sufficiently withstand the existing combustion material. For example, the temperature can be reduced to about 700 ° C. or less, whereby the combustion efficiency can be further improved, and the energy saving can be effectively achieved. Moreover, unlike steam cooling, etc., the cooling performance of the combustor transition piece can be greatly improved under a relatively simple configuration in which the discharge air of the compressor is used as cooling air, so that production and maintenance Simplicity and economy,
There are many practical advantages in practical terms. Further, by adopting the impingement cooling described above, the amount of air supplied to the cooling passage 23 of the transition piece 20 gradually increases on the downstream side. In the present embodiment, the cross-sectional area of the cooling passage 23 is increased by the inlet 23a ( Since it is set to be larger on the outlet 23b (front end) side than on the rear end) side, the air flow in the cooling flow path 23 can always be performed smoothly. In this embodiment, as shown in FIG. 2, cooling fins 24 are provided in the cooling flow path 23 to increase the heat transfer area of the transition piece 20.
The heat radiation efficiency of the surface can be further improved. In the above embodiment, an example in which the liner outer cylinder is extended toward the transition piece side, the transition piece outer cylinder is inserted into the liner outer cylinder, and the overlapping portion is formed, has been described.
An axial gap may be formed between the liner outer cylinder and the transition piece outer cylinder, or the transition piece outer cylinder may be integrally or integrally connected to the liner outer cylinder. As described in detail above, according to the gas turbine combustor of the present invention, cooling air is supplied in the cooling flow path between the transition piece outer cylinder and the transition piece inner cylinder. By accelerating, increasing the flow velocity and efficiently performing convection cooling on the surface of the transition piece inner cylinder, improving the heat dissipation efficiency of the transition cylinder inner cylinder, and drilling a number of cooling air holes in the transition cylinder outer cylinder By enabling the impingement cooling of the transition piece inner cylinder, even if the gas turbine combustor is applied to a high-temperature gas turbine, the temperature can be lowered to a level that can withstand even the existing combustion materials, thereby achieving sufficient durability And reliability can be ensured.

【図面の簡単な説明】 【図1】本発明に係るガスタービン燃焼器の一実施形態
を示す尾筒構造の部分的断面図。 【図2】図1のII−II線に沿う図。 【図3】ガスタービンに取付けられるガスタービン燃焼
器を示す図。 【符号の説明】 10 ガスタービン燃焼器 11 圧縮機 13 ガスタービン 14 吐出チャンバ 15 ライナー外筒 16 ライナー内筒 17 燃焼用空気流路 18 燃焼室 20 尾筒 21 尾筒内筒 22 尾筒外筒 23 冷却流路 23a 冷却流路の入口 23b 冷却流路の出口 24 冷却用フィン 25 燃焼ガス案内路 27 冷却空気孔
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial cross-sectional view of a transition piece structure showing an embodiment of a gas turbine combustor according to the present invention. FIG. 2 is a view taken along the line II-II in FIG. FIG. 3 is a diagram showing a gas turbine combustor attached to the gas turbine. DESCRIPTION OF THE SYMBOLS 10 Gas turbine combustor 11 Compressor 13 Gas turbine 14 Discharge chamber 15 Liner outer cylinder 16 Liner inner cylinder 17 Combustion air flow path 18 Combustion chamber 20 Tail cylinder 21 Tail cylinder inner cylinder 22 Tail cylinder outer cylinder 23 Cooling channel 23a Cooling channel inlet 23b Cooling channel outlet 24 Cooling fin 25 Combustion gas guide channel 27 Cooling air hole

フロントページの続き (56)参考文献 特開 昭59−56618(JP,A) 特開 昭55−81232(JP,A) 実開 昭59−108053(JP,U) 特公 昭54−11443(JP,B2) 米国特許4288980(US,A)Continuation of front page       (56) References JP-A-59-56618 (JP, A)                 JP-A-55-81232 (JP, A)                 Shokai 59-108053 (JP, U)                 Tokiko Sho 54-11443 (JP, B2)                 US Patent 4288980 (US, A)

Claims (1)

(57)【特許請求の範囲】 1.ライナー外筒とライナー内筒との間に燃焼用空気流
路を形成し、上記ライナー内筒内に燃焼室を画成し、燃
焼ガスを案内する尾筒を上記ライナー内筒に設けたガス
タービン用燃焼器において、上記尾筒は圧縮機から吐出
される燃焼用空気の吐出チャンバ内に収容するとともに
尾筒外筒と尾筒内筒とから二重筒構造に構成して、その
環状部分を上記燃焼用空気流路に通じる冷却流路とし、
この冷却流路はその断面積が入口側よりも出口側で大き
くなるように設定し、かつ上記尾筒外筒に冷却空気孔を
多数穿設して上記尾筒内筒をインピンジ冷却可能とした
ことを特徴とするガスタービン燃焼器。
(57) [Claims] A gas turbine in which a combustion air flow path is formed between a liner outer cylinder and a liner inner cylinder, a combustion chamber is defined in the liner inner cylinder, and a tailpipe for guiding combustion gas is provided in the liner inner cylinder. In the combustor, the transition piece is housed in a discharge chamber of combustion air discharged from the compressor, and is configured in a double cylinder structure from a transition piece outer cylinder and a transition piece inner cylinder, and an annular portion thereof is formed. A cooling flow passage leading to the combustion air flow passage,
The cooling flow path is set so that its cross-sectional area is larger on the outlet side than on the inlet side, and a number of cooling air holes are formed in the transition piece outer cylinder to enable impingement cooling of the transition piece inner cylinder. A gas turbine combustor characterized in that:
JP8138786A 1996-05-31 1996-05-31 Gas turbine combustor Expired - Lifetime JP3069522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8138786A JP3069522B2 (en) 1996-05-31 1996-05-31 Gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8138786A JP3069522B2 (en) 1996-05-31 1996-05-31 Gas turbine combustor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60243618A Division JPH0726734B2 (en) 1985-10-30 1985-10-30 Gas turbine combustor

Publications (2)

Publication Number Publication Date
JPH08327064A JPH08327064A (en) 1996-12-10
JP3069522B2 true JP3069522B2 (en) 2000-07-24

Family

ID=15230184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8138786A Expired - Lifetime JP3069522B2 (en) 1996-05-31 1996-05-31 Gas turbine combustor

Country Status (1)

Country Link
JP (1) JP3069522B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11242990B2 (en) 2019-04-10 2022-02-08 Doosan Heavy Industries & Construction Co., Ltd. Liner cooling structure with reduced pressure losses and gas turbine combustor having same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7571611B2 (en) * 2006-04-24 2009-08-11 General Electric Company Methods and system for reducing pressure losses in gas turbine engines
US8359867B2 (en) * 2010-04-08 2013-01-29 General Electric Company Combustor having a flow sleeve
US9243506B2 (en) * 2012-01-03 2016-01-26 General Electric Company Methods and systems for cooling a transition nozzle
CN107524524A (en) * 2017-10-24 2017-12-29 江苏华强新能源科技有限公司 A kind of high-efficiency gas turbine gas extraction system
CN113882978A (en) * 2021-11-08 2022-01-04 重庆宗申航空发动机制造有限公司 Aircraft engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4288980A (en) 1979-06-20 1981-09-15 Brown Boveri Turbomachinery, Inc. Combustor for use with gas turbines

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411443A (en) * 1977-06-29 1979-01-27 Hitachi Maxell Silver oxide cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4288980A (en) 1979-06-20 1981-09-15 Brown Boveri Turbomachinery, Inc. Combustor for use with gas turbines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11242990B2 (en) 2019-04-10 2022-02-08 Doosan Heavy Industries & Construction Co., Ltd. Liner cooling structure with reduced pressure losses and gas turbine combustor having same

Also Published As

Publication number Publication date
JPH08327064A (en) 1996-12-10

Similar Documents

Publication Publication Date Title
US5649806A (en) Enhanced film cooling slot for turbine blade outer air seals
US5329773A (en) Turbine combustor cooling system
JP3824324B2 (en) Gas turbine blades with cooling platform
US6155778A (en) Recessed turbine shroud
JP4486201B2 (en) Priority cooling turbine shroud
JP4731156B2 (en) Asymmetric cooling element for turbine shroud
US5197852A (en) Nozzle band overhang cooling
JP4201524B2 (en) Combustor, gas turbine engine and combustor assembly method
JP4137500B2 (en) Combustor, gas turbine engine and method of operating engine
JP2009085222A (en) Rear end liner assembly with turbulator and its cooling method
JP2000186572A (en) Gas turbine engine
JP2004060656A (en) Internal cooling of low pressure turbine case
JP2005299638A (en) Thermal shield turbine airfoil
CA2726773C (en) Windward cooled turbine nozzle
CA2429425C (en) Combustor turbine successive dual cooling
JP5002121B2 (en) Method and apparatus for cooling a combustor of a gas turbine engine
US7137241B2 (en) Transition duct apparatus having reduced pressure loss
EP2230456A2 (en) Combustion liner with mixing hole stub
JPH11270353A (en) Gas turbine and stationary blade of gas turbine
JP3069522B2 (en) Gas turbine combustor
JPH05163959A (en) Turbine stationary blade
JPH11200807A (en) Coolant recovery type gas turbine, and its stationary blade
JP3302370B2 (en) External air seal for turbine blades with thin film cooling slots
CA1183695A (en) Efficiently cooled transition duct for a large plant combustion turbine
JPH0726734B2 (en) Gas turbine combustor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term