JPH0726734B2 - Gas turbine combustor - Google Patents

Gas turbine combustor

Info

Publication number
JPH0726734B2
JPH0726734B2 JP60243618A JP24361885A JPH0726734B2 JP H0726734 B2 JPH0726734 B2 JP H0726734B2 JP 60243618 A JP60243618 A JP 60243618A JP 24361885 A JP24361885 A JP 24361885A JP H0726734 B2 JPH0726734 B2 JP H0726734B2
Authority
JP
Japan
Prior art keywords
cylinder
cooling
gas turbine
combustion
tail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60243618A
Other languages
Japanese (ja)
Other versions
JPS62102029A (en
Inventor
肇 塩見
幸生 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP60243618A priority Critical patent/JPH0726734B2/en
Publication of JPS62102029A publication Critical patent/JPS62102029A/en
Publication of JPH0726734B2 publication Critical patent/JPH0726734B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はガスタービン発電プラントに用いられるガスタ
ービン燃焼器に係り、特に燃焼器尾筒の冷却構造の改良
に関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a gas turbine combustor used in a gas turbine power plant, and more particularly to improvement of a cooling structure of a combustor transition piece.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

ガスタービン発電プラントはガスタービンと同軸に設け
られた圧縮器の駆動によって圧縮された吐出空気をガス
タービン燃焼器に燃焼用空気として案内し、燃焼器内で
燃料とともに燃焼させ、その燃焼ガスを燃焼器内筒から
ガスタービンに案内してガスタービンを駆動させ、仕事
をするようになっている。
A gas turbine power plant guides discharge air compressed by driving a compressor provided coaxially with a gas turbine to a gas turbine combustor as combustion air, burns it with fuel in the combustor, and burns the combustion gas. The internal cylinder guides the gas turbine to drive the gas turbine for work.

図3は従来のガスタービン燃焼器の一般的な構成例を示
したものである。すなわち、ガスタービン燃焼器1は圧
縮機2とガスタービン3との間に位置して軸心周りに複
数個設けられ、圧縮器2から吐出される燃焼用空気の吐
出チャンバ4内に収容されている。このガスタービン燃
焼器1は外筒5と内筒6とを備え、その間に環状の燃焼
用空気流路7が形成される一方、内筒6の内部に燃焼室
8が画成され、この燃焼室8内で燃料が燃焼用空気と混
合して燃焼するようになっている。燃焼ガスは、内筒6
の後端に連結された尾筒9内を通ってガスタービン3の
入口に案内され、ガスタービン3を駆動させる。
FIG. 3 shows a general configuration example of a conventional gas turbine combustor. That is, a plurality of gas turbine combustors 1 are provided between the compressor 2 and the gas turbine 3 and are provided around the axis, and are housed in the discharge chamber 4 for the combustion air discharged from the compressor 2. There is. The gas turbine combustor 1 includes an outer cylinder 5 and an inner cylinder 6, and an annular combustion air flow path 7 is formed between the outer cylinder 5 and the inner cylinder 6, while a combustion chamber 8 is defined inside the inner cylinder 6 and the combustion is performed. The fuel is mixed with the combustion air in the chamber 8 and burned. Combustion gas is the inner cylinder 6
The gas turbine 3 is driven by being guided to the inlet of the gas turbine 3 through the inside of the transition piece 9 connected to the rear end of the gas turbine 3.

上述したガスタービン燃焼器1の尾筒9は、従来一般に
一重の筒状構造とされ、その先端側が内筒6の後端部に
嵌合し板ばね等で弾性保持されている。この尾筒9は、
高温の燃焼ガスの流通によって内面側から加熱される
が、圧縮機2から吐出チャンバ4に供給される燃焼用空
気との接触によって対流冷却される。
The transition piece 9 of the gas turbine combustor 1 described above has a generally single-layered structure in the past, and its tip end is fitted to the rear end of the inner cylinder 6 and elastically held by a leaf spring or the like. This tail cylinder 9
It is heated from the inside by the flow of high-temperature combustion gas, but is convectively cooled by the contact with the combustion air supplied from the compressor 2 to the discharge chamber 4.

ところで近年、省エネルギ等の見地から一層の燃焼効率
の向上が望まれ、それに伴なってガスタービン燃焼器の
燃焼温度が高温化してきている。この場合、上述した従
来の一重構造の尾筒9で対流冷却を行うものでは必ずし
も十分な冷却が行えず、例えば1300℃級以上の高温ガス
タービン燃焼器の場合、高温燃焼ガスに晒される尾筒9
の温度が尾筒材料の技術的対応温度(約800℃)を超え
てしまい、ガスタービン燃焼器の耐久性や信頼性を低下
させる虞れがあった。
By the way, in recent years, further improvement in combustion efficiency has been desired from the viewpoint of energy saving, and accordingly, the combustion temperature of the gas turbine combustor has become higher. In this case, the conventional single-structured transition piece 9 for convection cooling does not always provide sufficient cooling. For example, in the case of a high temperature gas turbine combustor of 1300 ° C. or higher, the transition piece exposed to high temperature combustion gas is used. 9
There is a risk that the temperature will exceed the technically compatible temperature of the transition piece material (about 800 ° C), which will reduce the durability and reliability of the gas turbine combustor.

このため尾筒の冷却性向上についての検討が進められ、
例えば尾筒の高温となり易い部分の外周側に冷却用の空
気流速を高めるための冷却空気ガイド用の板を設け、空
気との熱伝達を高める技術や、尾筒の外周側に環状の蒸
気流路を設け、比熱の高い蒸気によって効果的に冷却を
行う技術等がこれまで提案されている。
For this reason, studies are underway to improve the cooling performance of the transition piece,
For example, a technology to enhance heat transfer with air by providing a cooling air guide plate on the outer peripheral side of the portion of the transition piece where the temperature tends to be high, and an annular steam flow on the outer peripheral side of the transition piece. Techniques and the like have been proposed so far in which passages are provided and effective cooling is performed with steam having a high specific heat.

ところが、冷却空気ガイド用の板を設ける上記の技術に
おいては、尾筒形状によっては空気の流れが不均一とな
ったり、尾筒外周面に沿う一定厚さの空気層が形成さ
れ、その境界層の外側の空気は冷却のための熱伝達にあ
まり寄与しないため、1300℃級以上の高温ガスタービン
燃焼器の尾筒冷却には必ずしも十分な効果が得られず、
また蒸気を冷却卯媒体として使用するものでは蒸気供給
のための特別な供給部構造が必要となって構成が複雑化
する等の問題があった。
However, in the above technique of providing a plate for the cooling air guide, the flow of air becomes uneven depending on the shape of the transition piece, or an air layer of a constant thickness is formed along the outer peripheral surface of the transition piece, and the boundary layer Since the air outside of does not contribute much to the heat transfer for cooling, it is not always possible to obtain a sufficient effect on the transition piece cooling of the high temperature gas turbine combustor of 1300 ° C or higher,
Further, in the case where steam is used as the cooling medium, there is a problem that a special supply structure for supplying steam is required and the structure becomes complicated.

〔発明の目的〕[Object of the Invention]

本発明は上述した事情を考慮してなされたもので、圧縮
機の吐出空気を冷却用空気として使用する比較的簡単な
構成のもとで、燃焼器尾筒の冷却性能を大幅に向上させ
ることができ、特に高温ガスタービンに適用した場合に
充分な耐久性と信頼性を維持することができ、これによ
って燃焼効率の一層の向上、ひいては省エネルギ化への
対応が有効的に図れるガスタービン燃焼器を提供するこ
とを目的とする。
The present invention has been made in consideration of the above-mentioned circumstances, and greatly improves the cooling performance of the combustor transition piece under a relatively simple configuration in which the discharge air of the compressor is used as cooling air. In particular, it can maintain sufficient durability and reliability when applied to high-temperature gas turbines, which can further improve combustion efficiency and, in turn, effectively reduce energy consumption. The purpose is to provide a container.

〔発明の概要〕[Outline of Invention]

上述した目的を達成するために、本発明はライナー外筒
とライナー内筒との間に燃焼用空気流路を形成し、上記
ライナー内筒内に燃焼室を画成し、燃焼ガスを案内する
尾筒を上記ライナー内筒に設けたガスタービン用燃焼器
において、上記尾筒は圧縮器から吐出される燃焼用空気
の吐出チャンバ内に収容するとともに尾筒外筒と尾筒内
筒とから二重構造に構成して、その環状部分を上記燃焼
用空気流路に通じる冷却流路とし、上記尾筒外筒に冷却
空気孔を多数穿設して上記尾筒内筒をインピンジ冷却可
能としたものである。
In order to achieve the above-mentioned object, the present invention forms a combustion air flow path between an outer cylinder of a liner and an inner cylinder of a liner, defines a combustion chamber in the inner cylinder of the liner, and guides combustion gas. In a gas turbine combustor in which a transition piece is provided in the liner inner tube, the transition piece is housed in a discharge chamber of combustion air discharged from a compressor, and the transition piece is formed of an outer piece of the tail piece and an inner piece of the tail piece. With a heavy structure, the annular portion is used as a cooling flow path communicating with the combustion air flow path, and a large number of cooling air holes are formed in the transition piece outer cylinder to enable impingement cooling of the transition piece inner cylinder. It is a thing.

〔発明の実施例〕Example of Invention

以下、本発明に係るガスタービン燃焼器の一実施例につ
いて第1図および第2図を参照して説明する。
An embodiment of the gas turbine combustor according to the present invention will be described below with reference to FIGS. 1 and 2.

本実施例によるガスタービン燃焼器10は圧縮機11と発電
機12を駆動させるガスタービン13との間に設けられ、圧
縮機11から吐出チャンバ14を画成する図示しないチャン
バケーシング内に収容される。このチャンバケーシング
は圧縮機11とガスタービン13の各ケーシングを一体的に
連結するとともに、ガスタービン燃焼器10はチャンバケ
ーシング内の周方向に複数個、例えば10個あるいは14個
配置される。
The gas turbine combustor 10 according to this embodiment is provided between a compressor 11 and a gas turbine 13 that drives a generator 12, and is housed in a chamber casing (not shown) that defines a discharge chamber 14 from the compressor 11. . The chamber casing integrally connects the compressor 11 and the casings of the gas turbine 13, and a plurality of gas turbine combustors 10, for example, 10 or 14 are arranged in the chamber casing in the circumferential direction.

各ガスタービン燃焼器10は燃焼器本体を構成するライナ
ー外筒15と内筒16とから二重筒構造に形成され、その環
状空間が燃焼用空気流路17として画成される。ライナー
内筒16内には燃焼室18が画成され、この燃焼室18内に燃
料と燃焼用空気とが供給されて燃焼せしめられる。
Each gas turbine combustor 10 is formed in a double cylinder structure from a liner outer cylinder 15 and an inner cylinder 16 that form a combustor body, and its annular space is defined as a combustion air flow path 17. A combustion chamber 18 is defined in the liner inner cylinder 16, and fuel and combustion air are supplied into the combustion chamber 18 for combustion.

一方、ガスタービン燃焼器10の内筒後端部には尾筒20が
装着される。尾筒20は尾筒内筒21と尾筒外筒22とを有
し、この間の環状空間が冷却流路23として画成される。
冷却流路23内には補強を兼ねた複数枚の冷却用フィン24
が放射状に配設され、冷却流路23内の伝熱面積(熱交換
面積)を増大させ、放熱を促進させるようになってい
る。尾筒内筒21は燃焼器本体のライナー内筒18の後端部
に遊嵌され、板ばね等で弾性保持される。尾筒内筒21内
は燃焼室18で燃焼せしめられた燃焼ガスをガスタービン
13の入口に導く案内路25として形成される。
On the other hand, a transition piece 20 is attached to the rear end portion of the inner cylinder of the gas turbine combustor 10. The tail cylinder 20 has a tail cylinder inner cylinder 21 and a tail cylinder outer cylinder 22, and an annular space therebetween is defined as a cooling flow path 23.
A plurality of cooling fins 24 also functioning as reinforcement in the cooling flow path 23.
Are arranged in a radial pattern to increase the heat transfer area (heat exchange area) in the cooling flow path 23 and promote heat dissipation. The tail cylinder inner cylinder 21 is loosely fitted to the rear end of the liner inner cylinder 18 of the combustor body, and elastically held by a leaf spring or the like. The inside of the transition piece 21 is a gas turbine for the combustion gas burned in the combustion chamber 18.
It is formed as a guideway 25 leading to the entrance of 13.

尾筒20に形成される冷却流路23は尾端側が入口23aとし
て形成され、その冷却流路23の前端側の出口23bが燃焼
用空気流路17に連通し、尾筒内筒21内を通る燃焼ガスと
熱交換された冷却用吐出空気は燃料用空気流路17に案内
される。
The tail end side of the cooling passage 23 formed in the transition piece 20 is formed as an inlet 23a, the outlet 23b on the front end side of the cooling passage 23 communicates with the combustion air passage 17, and the inside of the transition piece inner tube 21 The cooling discharge air that has undergone heat exchange with the passing combustion gas is guided to the fuel air flow path 17.

また、尾筒外筒22には第1図に示すように、多数の小径
な冷却空気孔27が例えば周方向に複数列あるいはランダ
ムに穿設され、尾筒外筒22の外周側の冷却用空気がこの
冷却空気孔27を介して冷却流路23内に導入され、尾筒内
筒21の表面に衝突(インピンジメント)するようになっ
ている。このような多数の冷却空気孔27の形成に伴い、
冷却流路23に流入する冷却空気の量が軸方向下流側で次
第に多くなるので、燃焼器の冷却性能計算に基いて、冷
却流路23の断面積が入口23a(後端)側よりも出口23b
(前端)側で大きくなるように設定されている。
Further, as shown in FIG. 1, a large number of small-diameter cooling air holes 27 are formed in the transition piece outer cylinder 22 in a plurality of rows or randomly in the circumferential direction, for cooling the outer periphery of the transition piece outer tube 22. Air is introduced into the cooling flow path 23 through the cooling air holes 27 and collides (impingement) on the surface of the tail cylinder inner cylinder 21. With the formation of such a large number of cooling air holes 27,
Since the amount of cooling air flowing into the cooling flow path 23 gradually increases on the downstream side in the axial direction, the cross-sectional area of the cooling flow path 23 is based on the calculation of the cooling performance of the combustor and is smaller than that on the inlet 23a (rear end) side. 23b
It is set to be larger on the (front end) side.

次に、ガスタービン燃焼器10の作用について説明する。Next, the operation of the gas turbine combustor 10 will be described.

ガスタービン発電プラントの圧縮機11の駆動により圧縮
された高圧の吐出空気は吐出チャンバ14内に吐出され、
この吐出チャンバ14から一部は冷却流路23に、残りは燃
焼用空気流路17に案内され。燃焼用空気流路17に案内さ
れた空気は続いてライナー内筒16内の燃焼室18に導か
れ、この燃焼室18に別途案内される燃料と混合して燃焼
に供され、高温の燃焼ガスとなる。この燃焼ガスは尾筒
内筒21内に形成される案内路25を通ってガスタービン13
に導かれる。燃焼ガスがガスタービン13を通過する際
に、膨脹して仕事をし、発電機12を回転駆動させる。ガ
スタービン13で仕事をした燃焼ガスは排気される。
High-pressure discharge air compressed by driving the compressor 11 of the gas turbine power plant is discharged into the discharge chamber 14,
A part of the discharge chamber 14 is guided to the cooling flow path 23, and the rest is guided to the combustion air flow path 17. The air guided to the combustion air flow path 17 is then guided to the combustion chamber 18 in the liner inner cylinder 16, mixed with the fuel separately guided to the combustion chamber 18 and used for combustion, and the high temperature combustion gas Becomes The combustion gas passes through the guide passage 25 formed in the inner cylinder 21 of the transition piece and the gas turbine 13
Be led to. As the combustion gas passes through the gas turbine 13, it expands and does work, driving the generator 12 to rotate. The combustion gas that has worked in the gas turbine 13 is exhausted.

この場合、尾筒内筒21は高温の燃焼ガスの通過によって
加熱されるが、その外周側に設けられた尾筒外筒22との
間に形成される冷却流路23での高速空気流、および尾筒
外筒22に穿設された冷却空気孔27からの導入空気による
インピンジ冷却によって極めて効果的に冷却される。
In this case, the inner cylinder 21 of the transition piece is heated by the passage of high-temperature combustion gas, but the high-speed air flow in the cooling flow path 23 formed between the outer tube 22 and the transition piece outer tube 22 provided on the outer peripheral side thereof, Further, the impingement cooling by the introduced air from the cooling air holes 27 formed in the transition piece outer cylinder 22 provides extremely effective cooling.

すなわち、吐出チャンバ14内の空気は第1の経路とし
て、尾筒外筒22の後端側の入口23aから冷却流路23に流
入し、この冷却流路23内で軸方向に沿って流動して前端
側の出口23bから燃焼用空気流路17に案内される。この
際、冷却流路23は環状の狭い空間となっているので、冷
却用空気は冷却流路23内で加速され、流速が例えば約10
m/secから約40m/secに増大する。この高速空気流が尾筒
内筒21の表面に接触して対立流冷却が能率よく行われる
結果、尾筒内筒21の放熱効率が向上し、尾筒内筒21が良
好な熱伝達のもとで積極的に冷却される。
That is, the air in the discharge chamber 14 flows into the cooling flow passage 23 from the inlet 23a on the rear end side of the transition piece outer cylinder 22 as the first path, and flows in the cooling flow passage 23 along the axial direction. And is guided to the combustion air flow path 17 from the outlet 23b on the front end side. At this time, since the cooling flow passage 23 is a narrow annular space, the cooling air is accelerated in the cooling flow passage 23, and the flow velocity is, for example, about 10
It increases from m / sec to about 40 m / sec. As a result of this high-speed airflow contacting the surface of the tail cylinder inner cylinder 21 and efficient counter-current cooling, the heat dissipation efficiency of the tail cylinder inner cylinder 21 is improved, and the heat transfer of the tail cylinder inner cylinder 21 is also improved. And actively cooled.

また一方、吐出チャンバ14内の空気は第2の経路とし
て、尾筒外筒22に広範囲に亘って放射状に穿設された多
数の冷却空気孔27から冷却流路23内にそれぞれ径径方向
に沿ってスポット的に導入される。各冷却空気孔27はそ
れぞれ小径であるため、そこから導入される空気は高速
噴流となり、冷却流路23内で入口23a側から出口23b側に
向う軸方向の冷却空気層を穿って尾筒内筒21の表面に高
速で衝突(インピンジメント)し、これによりいわゆる
インピンジ冷却が行われる。
On the other hand, the air in the discharge chamber 14 serves as a second path from a large number of cooling air holes 27 radially formed in the tail cylinder outer cylinder 22 over a wide range into the cooling flow path 23 in the radial direction. It is introduced in a spotwise manner. Since each cooling air hole 27 has a small diameter, the air introduced from the cooling air hole 27 becomes a high-speed jet, and a cooling air layer in the axial direction from the inlet 23a side to the outlet 23b side is bored in the cooling flow path 23 to form a tail tube inside. It impinges on the surface of the cylinder 21 at a high speed (impingement), whereby so-called impingement cooling is performed.

このインピンジ冷却によると、尾筒20の軸方向の全ての
位置において、吐出チャンバ14内の低温状態の空気が直
接、尾筒内筒21の表面に衝突するので、上流側から下流
側までに亘る広い領域で極めて良好な熱伝達率で大きい
放熱効果が得られる。したがって、前記第1の軸方向に
沿う冷却経路のみにおいては、尾筒形状によっては空気
流れが不均一となって放熱効率が下したり、また空気が
一定の層流状態となって軸方向に流動するので下流側で
熱伝達率が次第に低下する等の可能性があるが、これら
の点を十分に克服して、優れた尾筒冷却効果が奏され
る。
According to this impingement cooling, the air in the low temperature state inside the discharge chamber 14 directly collides with the surface of the tail cylinder inner cylinder 21 at all positions in the axial direction of the tail cylinder 20, so that it extends from the upstream side to the downstream side. A large heat dissipation effect can be obtained with a very good heat transfer coefficient in a wide area. Therefore, only in the cooling path along the first axial direction, depending on the shape of the transition piece, the air flow becomes non-uniform and the heat dissipation efficiency is lowered, or the air becomes a constant laminar flow state in the axial direction. Since it flows, there is a possibility that the heat transfer coefficient will gradually decrease on the downstream side. However, these points are sufficiently overcome, and an excellent transition cylinder cooling effect is achieved.

この結果、ガスタービン燃焼器10を高温ガスタービンに
適用し、例えば燃焼温度が1300℃以上であっても、尾筒
内筒21の温度を既存の燃焼用材料でも充分に耐え得る温
度、例えば約700℃以下まで低下すことができ、これに
よって燃焼効率の一層の向上、ひいては省エネルギ化へ
の対応が有効的に図れるようになる。しかも、蒸気冷却
等と異なり、圧縮機の吐出空気を冷却用空気として使用
する比較的簡単な構成のもとで、燃焼器尾筒の冷却性能
を大幅に向上させることができるので、製作および保守
の容易化および経済性等、実用的な面でも多くの優れた
利点が得られるものとなる。
As a result, the gas turbine combustor 10 is applied to a high temperature gas turbine, for example, even if the combustion temperature is 1300 ° C. or higher, the temperature of the tail cylinder inner cylinder 21 can sufficiently withstand the existing combustion material, for example, about The temperature can be lowered to 700 ° C or lower, which makes it possible to effectively improve the combustion efficiency and to effectively save energy. Moreover, unlike steam cooling, etc., the cooling performance of the combustor transition piece can be significantly improved under the relatively simple structure in which the discharge air of the compressor is used as cooling air. In addition, many excellent advantages can be obtained in terms of practical use such as simplification and economic efficiency.

なお、上したインピンジ冷却の採用によって、尾筒20の
冷却流路23に供給される空気量は下流側で漸増するが、
本実施例では冷却流路23の断面積が入口23a(後端)側
よりも出口23b(前端)側で大きくなるように設定して
あるので、冷却流路23における空気の流れは常時円滑に
行える。
By the use of the above impingement cooling, the amount of air supplied to the cooling passage 23 of the transition piece 20 gradually increases on the downstream side,
In this embodiment, since the cross-sectional area of the cooling flow passage 23 is set to be larger on the outlet 23b (front end) side than on the inlet 23a (rear end) side, the air flow in the cooling flow passage 23 is always smooth. You can do it.

また、本実施例では、第2図に示すように、冷却流路23
に冷却用フィン24を設け、これにより尾筒20の伝熱面積
を増大させたので、尾筒内筒21の表面の放熱効率をより
一層向上させることができる。
Further, in this embodiment, as shown in FIG.
Since the cooling fins 24 are provided in the rear fin 20 to increase the heat transfer area of the transition piece 20, the heat radiation efficiency of the surface of the transition piece inner cylinder 21 can be further improved.

なお、以上の実施例ではライナー外筒を尾筒側に延長さ
せ、このライナー外筒内に尾筒外筒を挿入し、重ね合せ
部が形成される例について説明したが、ライナー外筒と
尾筒外筒との間に軸方向の間隙を形成するようにして
も、あるいは尾筒外筒をライナー外筒に一体あるいは一
体的に連結してもよい。
In the above examples, the liner outer cylinder is extended to the tail cylinder side, the tail cylinder outer cylinder is inserted into the liner outer cylinder, and the overlapping portion is formed. An axial gap may be formed between the outer cylinder and the outer cylinder, or the tail cylinder outer cylinder may be integrally or integrally connected to the liner outer cylinder.

〔発明の効果〕〔The invention's effect〕

以上で詳述したように、本発明に係るガスタービン燃焼
器によれば、尾筒を尾筒外筒と尾筒内筒とから二重構造
に成し、その環状部分を燃焼用空気流路に通じる冷却流
路とすることで、冷却用空気を冷却流路内で加速し流速
を増大させて尾筒内筒の表面での対流冷却を能率よく行
わせ、尾筒内筒の放熱効率を向上させ良好な熱伝達のも
とで効果的が冷却が行える。また、尾筒外筒に冷却空気
孔を多数穿設して尾筒内筒をインピンジ冷却可能とした
ことにより、尾筒の軸方向の全ての位置において、吐出
チャンバ内の低温状態の空気を直接、尾筒内筒の表面に
衝突させ、上流側から下流側までに亘る広い領域で極め
て良好な熱伝達率で大きい放熱効果を得ることができ、
これによって上記の二重構造における下流側での熱伝達
の低下を十分に補足することができる。
As described above in detail, according to the gas turbine combustor of the present invention, the transition piece has a double structure including the transition piece outer cylinder and the transition piece inner cylinder, and the annular portion of the transition piece has a combustion air passage. By using a cooling flow path that communicates with the cooling air flow path, the cooling air is accelerated in the cooling flow path to increase the flow velocity to efficiently perform convective cooling on the surface of the tail cylinder inner cylinder, and improve the heat dissipation efficiency of the tail cylinder inner cylinder. Improved and effective cooling with good heat transfer. In addition, by providing a large number of cooling air holes in the outer cylinder of the transition piece to allow impingement cooling of the inner tube of the transition piece, the cold air in the discharge chamber can be directly fed at all axial positions of the transition piece. By colliding with the surface of the inner cylinder of the transition piece, it is possible to obtain a large heat dissipation effect with an extremely good heat transfer coefficient in a wide region from the upstream side to the downstream side.
This makes it possible to sufficiently supplement the decrease in heat transfer on the downstream side in the above-mentioned double structure.

したがって、本発明によれば、ガスタービン燃焼器を高
温ガスタービンに適用しても、尾筒内筒の温度を既存の
燃焼用材料でも充分に耐え得る温度まで低下することが
でき、これによって充分な耐久性と信頼性を確保するこ
とができ、燃焼効率の一層の向上、ひいては省エネルギ
化への対応が有効的に図れる。しかも、蒸気冷却等と異
なり、圧縮機の吐出空気を冷却用空気として使用する比
較的簡単な構成のもとで、燃焼器尾筒の冷却性能を大幅
に向上させることができるので、製作および保守の容易
化および経済性等、実用的な面でも多くの優れた利点が
得られる。
Therefore, according to the present invention, even if the gas turbine combustor is applied to a high-temperature gas turbine, the temperature of the inner cylinder of the transition piece can be lowered to a temperature that can sufficiently withstand the existing combustion material. It is possible to ensure high durability and reliability, further improve combustion efficiency, and effectively achieve energy saving. Moreover, unlike steam cooling, etc., the cooling performance of the combustor transition piece can be significantly improved under the relatively simple structure in which the discharge air of the compressor is used as cooling air. There are many practical advantages such as simplification and economic efficiency.

なお、冷却流路に冷却用フィンを設けた場合には、これ
により尾筒の伝熱面積を増大させ、尾筒内筒の表面の放
熱効率をより一層向上させることができる。
When the cooling fins are provided in the cooling passage, the heat transfer area of the transition piece can be increased, and the heat radiation efficiency of the surface of the transition piece inner cylinder can be further improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係るガスタービン燃焼器の一実施例を
示す尾筒構造の部分的断面図、第2図は第1図のII−II
線に沿う図、第3図はガスタービンに取付けられるガス
タービン燃焼器を示す図である。 10……ガスタービン燃焼器、11……圧縮機、13……ガス
タービン、15……ライナー外筒、16……ライナー内筒、
17……燃焼用空気流路、18……燃焼室、20……尾筒、21
……尾筒内筒、22……尾筒外筒、23……冷却流路、23a
……冷却流路の入口、23b……冷却流路の出口、24……
冷却用フィン、25……燃焼ガス案内路、27……冷却空気
孔。
FIG. 1 is a partial sectional view of a transition piece structure showing an embodiment of a gas turbine combustor according to the present invention, and FIG. 2 is II-II of FIG.
FIG. 3 is a diagram along a line, and FIG. 3 is a diagram showing a gas turbine combustor attached to a gas turbine. 10 …… Gas turbine combustor, 11 …… Compressor, 13 …… Gas turbine, 15 …… Liner outer cylinder, 16 …… Liner inner cylinder,
17: Combustion air flow path, 18: Combustion chamber, 20: Tail tube, 21
...... Tail tube inner tube, 22 ...... Tail tube outer tube, 23 ...... Cooling channel, 23a
...... Cooling channel inlet, 23b …… Cooling channel outlet, 24 ……
Cooling fins, 25 ... Combustion gas guideways, 27 ... Cooling air holes.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ライナー外筒とライナー内筒との間に燃焼
用空気流路を形成し、上記ライナー内筒内に燃焼室を画
成し、燃焼ガスを案内する尾筒を上記ライナー内筒に設
けたガスタービン用燃焼器において、上記尾筒は圧縮器
から吐出される燃焼用空気の吐出チャンバ内に収容する
とともに尾筒外筒と尾筒内筒とから二重構造に構成し
て、その環状部分を上記燃焼用空気流路に通じる冷却流
路とし、上記尾筒外筒に冷却空気孔を多数穿設して上記
尾筒内筒をインピンジ冷却可能としたことを特徴とする
ガスタービン燃焼器。
1. A liner outer cylinder and a liner inner cylinder are formed to form a combustion air flow path, a combustion chamber is defined in the inner liner cylinder, and a tail cylinder for guiding combustion gas is formed in the liner inner cylinder. In the gas turbine combustor provided in, the tail cylinder is housed in the discharge chamber of the combustion air discharged from the compressor, and the tail cylinder outer cylinder and the tail cylinder inner cylinder constitute a double structure, A gas turbine characterized in that the annular portion is used as a cooling passage communicating with the combustion air passage, and a large number of cooling air holes are formed in the outer cylinder of the tail cylinder to allow impingement cooling of the inner cylinder of the tail cylinder. Combustor.
【請求項2】尾筒外筒と尾筒内筒とにより形成される冷
却流路に複数枚の冷却用フィンが放射状に配設した特許
請求の範囲第1項に記載のガスタービン燃焼器。
2. The gas turbine combustor according to claim 1, wherein a plurality of cooling fins are radially arranged in a cooling passage formed by an outer cylinder of the tail cylinder and an inner cylinder of the tail cylinder.
JP60243618A 1985-10-30 1985-10-30 Gas turbine combustor Expired - Lifetime JPH0726734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60243618A JPH0726734B2 (en) 1985-10-30 1985-10-30 Gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60243618A JPH0726734B2 (en) 1985-10-30 1985-10-30 Gas turbine combustor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP8138786A Division JP3069522B2 (en) 1996-05-31 1996-05-31 Gas turbine combustor
JP13878596A Division JPH08303781A (en) 1996-05-31 1996-05-31 Gas turbine combustor

Publications (2)

Publication Number Publication Date
JPS62102029A JPS62102029A (en) 1987-05-12
JPH0726734B2 true JPH0726734B2 (en) 1995-03-29

Family

ID=17106498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60243618A Expired - Lifetime JPH0726734B2 (en) 1985-10-30 1985-10-30 Gas turbine combustor

Country Status (1)

Country Link
JP (1) JPH0726734B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663648B2 (en) * 1986-12-05 1994-08-22 株式会社日立製作所 Gas turbine combustor
JP2512256B2 (en) * 1992-01-20 1996-07-03 株式会社日立製作所 Gas turbine combustor
US8549861B2 (en) * 2009-01-07 2013-10-08 General Electric Company Method and apparatus to enhance transition duct cooling in a gas turbine engine
CN112832929B (en) * 2021-03-05 2022-05-24 中国科学院力学研究所 Method for designing cooling structure for equal inner wall surface temperature of rocket engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135907A (en) * 1976-05-08 1977-11-14 Kawasaki Heavy Ind Ltd Combustion unit in gas turbine
JPS5411443A (en) * 1977-06-29 1979-01-27 Hitachi Maxell Silver oxide cell
JPS5581232A (en) * 1978-12-15 1980-06-19 Hitachi Ltd Method of cooling combustor for gas turbine
US4288980A (en) * 1979-06-20 1981-09-15 Brown Boveri Turbomachinery, Inc. Combustor for use with gas turbines
JPS5956618A (en) * 1982-09-27 1984-04-02 Toshiba Corp Transition piece for gas turbine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59115826U (en) * 1983-01-26 1984-08-04 株式会社日立製作所 Gas turbine combustor cooling system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135907A (en) * 1976-05-08 1977-11-14 Kawasaki Heavy Ind Ltd Combustion unit in gas turbine
JPS5411443A (en) * 1977-06-29 1979-01-27 Hitachi Maxell Silver oxide cell
JPS5581232A (en) * 1978-12-15 1980-06-19 Hitachi Ltd Method of cooling combustor for gas turbine
US4288980A (en) * 1979-06-20 1981-09-15 Brown Boveri Turbomachinery, Inc. Combustor for use with gas turbines
JPS5956618A (en) * 1982-09-27 1984-04-02 Toshiba Corp Transition piece for gas turbine

Also Published As

Publication number Publication date
JPS62102029A (en) 1987-05-12

Similar Documents

Publication Publication Date Title
JP4509263B2 (en) Backflow serpentine airfoil cooling circuit with sidewall impingement cooling chamber
US5649806A (en) Enhanced film cooling slot for turbine blade outer air seals
JP4659206B2 (en) Turbine nozzle with graded film cooling
CA2065679C (en) Shroud cooling assembly for gas turbine engine
US5329773A (en) Turbine combustor cooling system
US7147432B2 (en) Turbine shroud asymmetrical cooling elements
US5197852A (en) Nozzle band overhang cooling
JP4546760B2 (en) Turbine blade with integrated bridge
JP4486201B2 (en) Priority cooling turbine shroud
EP1426688B1 (en) Combustor inlet diffuser with boundary layer blowing
CN107044348A (en) Classification fuel and air injection in the combustion system of combustion gas turbine
CN106948944A (en) Classification fuel and air injection in the combustion system of combustion gas turbine
JP4137507B2 (en) Apparatus and method for airfoil film cooling
JP2003074303A (en) Improvement of cooling circuit of gas turbine blade
CN106979081A (en) Classification fuel and air injection in the combustion system of combustion gas turbine
US8206101B2 (en) Windward cooled turbine nozzle
CN107035532A (en) Classification fuel and air injection in the combustion system of combustion gas turbine
CN106979080A (en) Classification fuel and air injection in the combustion system of combustion gas turbine
US8414255B2 (en) Impingement cooling arrangement for a gas turbine engine
JP3494879B2 (en) Gas turbine and gas turbine vane
US4302148A (en) Gas turbine engine having a cooled turbine
JP2005037122A (en) Method and device for cooling combustor for gas turbine engine
JP2017078409A (en) Turbine nozzle with cooling channel and coolant distribution plenum
JP3069522B2 (en) Gas turbine combustor
JPH05163959A (en) Turbine stationary blade

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term