JPH08303781A - Gas turbine combustor - Google Patents

Gas turbine combustor

Info

Publication number
JPH08303781A
JPH08303781A JP13878596A JP13878596A JPH08303781A JP H08303781 A JPH08303781 A JP H08303781A JP 13878596 A JP13878596 A JP 13878596A JP 13878596 A JP13878596 A JP 13878596A JP H08303781 A JPH08303781 A JP H08303781A
Authority
JP
Japan
Prior art keywords
cylinder
gas turbine
cooling
combustion
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13878596A
Other languages
Japanese (ja)
Inventor
Hajime Shiomi
肇 塩見
Yukio Shibuya
幸生 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13878596A priority Critical patent/JPH08303781A/en
Publication of JPH08303781A publication Critical patent/JPH08303781A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE: To provide a gas turbine combustor which achieves a higher cooling performance of a tail cylinder of a combustor to allow maintaining of sufficient endurance and reliability even in application for a high temperature gas turbine. CONSTITUTION: In a combustor for a gas turbine in which an air passage for combustion is formed between a liner outer cylinder and a liner inner cylinder, a combustion chamber is defined in the liner inner cylinder and a tail cylinder 20 is provided in the liner inner cylinder to guide a combustion gas, the tail cylinder 20 is built in a double cylinder structure comprising an outer cylinder 22 of the tail cylinder and an inner cylinder 21 of the tail cylinder and a circular part thereof is formed into a cooling passage 23 leading to the air passage for combustion and a plurality of cooling fins 24 are arranged radially in the cooling passage 23.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はガスタービン発電プ
ラントに用いられるガスタービン燃焼器に係り、特に燃
焼器尾筒の冷却構造の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine combustor used in a gas turbine power plant, and more particularly to improvement of a cooling structure of a combustor transition piece.

【0002】[0002]

【従来の技術】ガスタービン発電プラントはガスタービ
ンと同軸に設けられた圧縮機の駆動によって圧縮された
吐出空気をガスタービン燃焼器に燃焼用空気として案内
し、燃焼器内で燃料とともに燃焼させ、その燃焼ガスを
燃焼器内筒からガスタービンに案内してガスタービンを
駆動させ、仕事をするようになっている。
2. Description of the Related Art In a gas turbine power plant, discharge air compressed by driving a compressor provided coaxially with a gas turbine is guided to a gas turbine combustor as combustion air and burned with fuel in the combustor. The combustion gas is guided from the inner cylinder of the combustor to the gas turbine to drive the gas turbine to perform work.

【0003】従来のガスタービン燃焼器1は図3に示す
構造を有し、圧縮機2とガスタービン3との間に複数個
設けられ、圧縮機2からの吐出チャンバ4内に収容され
る。ガスタービン燃焼器1は外筒5と内筒6とを備え、
その間に燃焼用空気流路7が形成される一方、内筒6に
燃焼室8が画成され、この燃焼室8で燃料が燃焼用空気
と混合して燃焼せしめられる。
A conventional gas turbine combustor 1 has a structure shown in FIG. 3, a plurality of gas turbine combustors 1 are provided between a compressor 2 and a gas turbine 3, and are housed in a discharge chamber 4 from the compressor 2. The gas turbine combustor 1 includes an outer cylinder 5 and an inner cylinder 6,
A combustion air flow path 7 is formed therebetween, while a combustion chamber 8 is defined in the inner cylinder 6, and fuel is mixed with combustion air in the combustion chamber 8 and burned.

【0004】燃料の燃焼による燃焼ガスは燃焼器尾筒9
内を通ってガスタービン3の入口に案内され、このガス
タービン3を駆動させ、仕事をするようになっている。
Combustion gas resulting from combustion of fuel is combustor transition piece 9
The gas turbine 3 is guided through the inside to the inlet of the gas turbine 3 to drive and work.

【0005】[0005]

【発明が解決しようとする課題】ところで、ガスタービ
ン燃焼器1の尾筒9は内筒の後端部に嵌合して板ばね等
で弾性保持され、圧縮機2で圧縮された吐出空気により
冷却される構造となっている。しかしながら、この尾筒
冷却構造では、尾筒9外表面を圧縮機吐出空気の対流に
より冷却させる対流冷却が主流であり、この冷却構造の
尾筒9を例えば1300℃級以上の高温ガスタービン燃
焼器に備えた場合、高温燃焼ガスに晒される尾筒9の温
度は尾筒材料の技術的対応温度(約800℃)を超えて
しまい、ガスタービン燃焼器の耐久性や信頼性を低下さ
せる恐れがあった。
The tail pipe 9 of the gas turbine combustor 1 is fitted to the rear end of the inner pipe and elastically held by a leaf spring or the like, and is discharged by the compressed air by the compressor 2. The structure is cooled. However, in this transition piece cooling structure, the convective cooling in which the outer surface of the transition piece 9 is cooled by the convection of the air discharged from the compressor is the mainstream. In this case, the temperature of the transition piece 9 exposed to the high-temperature combustion gas exceeds the technically compatible temperature (about 800 ° C.) of the transition piece material, which may reduce the durability and reliability of the gas turbine combustor. there were.

【0006】本発明は上述した事情を考慮してなされた
もので、燃焼器尾筒の冷却性能を向上させ、高温ガスタ
ービンに適用しても、充分な耐久性と信頼性を維持する
ことができるガスタービン燃焼器を提供することを目的
とする。
The present invention has been made in consideration of the above circumstances, and it is possible to improve the cooling performance of the combustor transition piece and maintain sufficient durability and reliability even when applied to a high temperature gas turbine. An object of the present invention is to provide a gas turbine combustor that can be used.

【0007】[0007]

【課題を解決するための手段】上述した目的を達成する
ために、本発明はライナー外筒とライナー内筒との間に
燃焼用空気流路を形成し、上記ライナー内筒内に燃焼室
を画成し、燃焼ガスを案内する尾筒を上記ライナー内筒
に設けたガスタービン用燃焼器において、上記尾筒は尾
筒外筒と尾筒内筒とから二重筒構造に構成し、その環状
部分を、前記燃焼用空気流路に通じる冷却流路に形成
し、この冷却流路に複数枚の冷却用フィンを放射状に配
設したことを特徴とするものである。
In order to achieve the above-mentioned object, the present invention forms a combustion air passage between an outer cylinder of a liner and an inner cylinder of a liner, and forms a combustion chamber in the inner cylinder of the liner. A gas turbine combustor that defines a transition piece that guides combustion gas in the liner inner cylinder, wherein the transition piece has a double tube structure composed of an outer transition piece and an inner transition piece, The annular portion is formed in a cooling flow passage communicating with the combustion air flow passage, and a plurality of cooling fins are radially arranged in the cooling flow passage.

【0008】[0008]

【発明の実施の形態】以下、本発明に係るガスタービン
燃焼器の一実施形態について図1および図2を参照して
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a gas turbine combustor according to the present invention will be described below with reference to FIGS. 1 and 2.

【0009】本発明に係るガスタービン燃焼器10は圧
縮機11と発電機12を駆動させるガスタービン13と
の間に設けられ、圧縮機11からの吐出チャンバを画成
する図示しないチャンバケーシング内に収容される。こ
のチャンバケーシングは圧縮機11とガスタービン13
の各ケーシングを一体あるいは一体的に連結するととも
に、ガスタービン燃焼器10はチャンバケーシング内の
周方向に複数個、例えば10個あるいは14個配置され
る。
The gas turbine combustor 10 according to the present invention is provided between a compressor 11 and a gas turbine 13 that drives a generator 12, and is provided in a chamber casing (not shown) that defines a discharge chamber from the compressor 11. Be accommodated. The chamber casing includes a compressor 11 and a gas turbine 13.
The casings are integrally or integrally connected, and a plurality of gas turbine combustors 10, for example, 10 or 14 are arranged in the chamber casing in the circumferential direction.

【0010】各ガスタービン燃焼器10は燃焼器本体を
構成するライナー外筒15と内筒16とから二重筒構造
に形成され、その環状空間が燃焼用空気流路17として
画成される。ライナー内筒16内には燃焼室18が画成
され、この燃焼室18内に燃料と燃焼用空気とが供給さ
れて燃焼せしめられる。
Each gas turbine combustor 10 is formed in a double-cylinder structure from a liner outer cylinder 15 and an inner cylinder 16 constituting a combustor body, and its annular space is defined as a combustion air flow passage 17. A combustion chamber 18 is defined in the liner inner cylinder 16, and fuel and combustion air are supplied into the combustion chamber 18 for combustion.

【0011】一方、ガスタービン燃焼器10の内筒後端
部には尾筒20が装着される。尾筒20は尾筒内筒21
と尾筒外筒22とを有し、この間の環状空間が冷却流路
23として画成される。冷却流路23内には補強を兼ね
た複数枚の冷却用フィン24が放射状に配設され、冷却
流路23内の伝熱面積(熱交換面積)を増大させ、放熱
を促進させるようになっている。尾筒内筒21は燃焼器
本体のライナー内筒18の後端部に遊嵌され、板ばね等
で弾性保持される。尾筒内筒21内は燃焼室18で燃焼
せしめられた燃焼ガスをガスタービン13の入口に導く
案内路25として形成される。
On the other hand, a transition piece 20 is attached to the rear end of the inner cylinder of the gas turbine combustor 10. The tail cylinder 20 is the inner cylinder 21 of the tail cylinder.
And a transition piece outer cylinder 22, and an annular space therebetween is defined as a cooling flow path 23. A plurality of cooling fins 24 also serving as a reinforcement are radially arranged in the cooling flow path 23 to increase a heat transfer area (heat exchange area) in the cooling flow path 23 and accelerate heat dissipation. ing. The tail cylinder inner cylinder 21 is loosely fitted to the rear end of the liner inner cylinder 18 of the combustor body, and elastically held by a leaf spring or the like. The inside of the tail cylinder inner cylinder 21 is formed as a guide path 25 for guiding the combustion gas burned in the combustion chamber 18 to the inlet of the gas turbine 13.

【0012】尾筒20に形成される冷却流路23は尾端
側が流入口23aとして形成され、その流出側は燃焼用
空気流路17に開口し、尾筒内筒21内を通る燃焼ガス
と熱交換された冷却用吐出空気を燃焼用空気流路17に
案内している。
The cooling passage 23 formed in the transition piece 20 has a tail end side formed as an inflow port 23a, and its outflow side is opened to the combustion air passage 17 and the combustion gas passing through the inside of the transition piece inner tube 21. The heat-exchanged cooling discharge air is guided to the combustion air flow path 17.

【0013】次に、ガスタービン燃焼器10の作用につ
いて説明する。
Next, the operation of the gas turbine combustor 10 will be described.

【0014】ガスタービン発電プラントの圧縮機11の
駆動により圧縮された高圧の吐出空気は吐出チャンバ内
に吐出され、この吐出チャンバから一部は冷却流路23
に、残りは燃焼用空気流路17に案内される。燃焼用空
気流路17に案内された空気は続いてライナー内筒16
内の燃焼室18に導かれ、この燃焼室18に別途案内さ
れる燃料と混合して燃焼に供され、高温の燃焼ガスとな
る。この燃焼ガスは尾筒内筒21内に形成される案内路
25を通ってガスタービン13に導かれる。燃焼ガスが
ガスタービン13を通過する際に、膨脹して仕事をし、
発電機12を回転駆動させる。ガスタービン13で仕事
をした燃焼ガスは排気される。
The high-pressure discharge air compressed by driving the compressor 11 of the gas turbine power plant is discharged into the discharge chamber, and a part of the discharge chamber is cooled by the cooling passage 23.
Then, the rest is guided to the combustion air flow path 17. The air guided to the combustion air flow path 17 continues to flow into the liner inner cylinder 16
It is introduced into the internal combustion chamber 18 and mixed with the fuel that is separately guided into the combustion chamber 18 to be burned to form high-temperature combustion gas. This combustion gas is guided to the gas turbine 13 through a guide passage 25 formed in the inner cylinder 21 of the transition piece. As the combustion gas passes through the gas turbine 13, it expands and does work,
The generator 12 is driven to rotate. The combustion gas that has worked in the gas turbine 13 is exhausted.

【0015】一方、尾筒内筒21内は高温の燃焼ガスが
案内されるため、高温となるが、尾筒20は尾筒外筒2
2と内筒21とから二重筒構造に形成され、内部に冷却
流路23が形成されており、冷却用空気は吐出チャンバ
から冷却流路23内に案内される際に加速され、流速が
例えば約10m/sec から約40m/sec に増大する。その
結果、尾筒内筒表面の放熱効率が向上し、尾筒内筒表面
の熱伝達率が良好となり、尾筒内筒21は積極的に冷却
される。このため、冷却流路23による冷却用空気の圧
力損失は増大するが、尾筒20の金属温度を許容温度以
下に下げることができる。
On the other hand, since the high temperature combustion gas is guided inside the tail cylinder inner cylinder 21, the temperature becomes high, but the tail cylinder 20 becomes the tail cylinder outer cylinder 2
2 and the inner cylinder 21 are formed in a double cylinder structure, and a cooling flow path 23 is formed inside. The cooling air is accelerated when being guided from the discharge chamber into the cooling flow path 23, and the flow velocity is For example, it increases from about 10 m / sec to about 40 m / sec. As a result, the heat dissipation efficiency of the surface of the inner cylinder of the transition piece is improved, the heat transfer coefficient of the surface of the inner tube of the transition piece becomes good, and the inner tube 21 of the transition piece is positively cooled. Therefore, although the pressure loss of the cooling air through the cooling flow path 23 increases, the metal temperature of the transition piece 20 can be lowered to the allowable temperature or lower.

【0016】そして、伝熱面積を増大させるために、冷
却流路23に冷却用フィン24を設けたことにより、尾
筒内筒表面の放熱効率をより一層向上させることがで
き、このガスタービン燃焼器10を高温ガスタービンに
適用しても、尾筒内筒21の温度を既存の燃焼用材料で
も充分に耐え得る温度以下、例えば約700℃まで下げ
ることができる。
By providing the cooling fins 24 in the cooling passage 23 in order to increase the heat transfer area, it is possible to further improve the heat radiation efficiency on the surface of the inner cylinder of the transition piece. Even if the vessel 10 is applied to a high temperature gas turbine, the temperature of the transition piece inner cylinder 21 can be lowered to a temperature that can be sufficiently withstood by existing combustion materials, for example, to about 700 ° C.

【0017】また、尾筒外筒22には図1に示すように
多数の冷却空気孔27を例えば周方向に複数列あるいは
ランダムに必要に応じて穿設してもよい。多数の冷却空
気孔を形成した場合には、燃焼器の冷却性能計算に基い
て、尾筒の冷却流路23内の軸方向の流路断面積が適宜
定められる。
Further, as shown in FIG. 1, a large number of cooling air holes 27 may be formed in the transition piece outer cylinder 22, for example, in a plurality of rows in the circumferential direction or randomly as needed. When a large number of cooling air holes are formed, the axial flow passage cross-sectional area in the cooling pipe 23 of the transition piece is appropriately determined based on the cooling performance calculation of the combustor.

【0018】なお、本発明の一実施形態ではライナー外
筒を尾筒側に延長させ、このライナー外筒内に尾筒外筒
を挿入し、重ね合せ部が形成される例について説明した
が、ライナー外筒と尾筒外筒との間に軸方向の間隙を形
成するようにしても、あるいは尾筒外筒をライナー外筒
に一体あるいは一体的に連結してもよい。
In the embodiment of the present invention, the liner outer cylinder is extended to the tail cylinder side, and the tail cylinder outer cylinder is inserted into the liner outer cylinder to form the overlapping portion. An axial gap may be formed between the liner outer cylinder and the tail cylinder outer cylinder, or the tail cylinder outer cylinder may be integrally or integrally connected to the liner outer cylinder.

【0019】[0019]

【発明の効果】以上に述べたように本発明に係るガスタ
ービン燃焼器は、ライナー内筒に設けられる尾筒は尾筒
外筒と尾筒内筒とから二重筒構造に形成され、その環状
部分を、燃焼用空気流路に通じる冷却通路に形成したか
ら、吐出チャンバ内に吐出された圧縮空気は冷却通路内
を通るとき、加速されて熱伝達効率を向上させ、尾筒内
筒表面を積極的かつ有効的に冷却する。尾筒内筒表面を
冷却した圧縮空気は燃焼用空気流路内に案内されるの
で、尾筒内筒表面は常時新しい冷却用圧縮空気により冷
却され、燃焼器尾筒の冷却性能を向上させることがで
き、このガスタービン燃焼器を高温ガスタービンに適用
しても、充分な耐久性と信頼性を確保することができ
る。しかも、冷却流路に冷却用フィンを設けることによ
り、伝熱面積を増大させることができ、これにより尾筒
内筒表面の放熱効率をより一層向上させることができ、
このガスタービン燃焼器を高温ガスタービンに適用して
も、尾筒内筒の温度を既存の燃焼用材料でも充分に耐え
得る温度以下まで下げることができる。
As described above, in the gas turbine combustor according to the present invention, the tail cylinder provided in the liner inner cylinder has a double cylinder structure composed of the tail cylinder outer cylinder and the tail cylinder inner cylinder. Since the annular portion is formed in the cooling passage communicating with the combustion air flow passage, the compressed air discharged into the discharge chamber is accelerated when passing through the cooling passage to improve the heat transfer efficiency, and the surface of the inner cylinder of the transition piece. To actively and effectively cool. Compressed air that has cooled the inner surface of the tail cylinder is guided into the combustion air flow path, so the surface of the inner cylinder of the tail cylinder is always cooled by new compressed air for cooling, and the cooling performance of the combustor tail cylinder is improved. Even if this gas turbine combustor is applied to a high temperature gas turbine, sufficient durability and reliability can be ensured. Moreover, by providing the cooling fins in the cooling flow passage, the heat transfer area can be increased, and thereby the heat dissipation efficiency of the surface of the inner cylinder of the transition piece can be further improved.
Even if this gas turbine combustor is applied to a high temperature gas turbine, the temperature of the inner cylinder of the transition piece can be lowered to a temperature not higher than the temperature at which the existing combustion material can sufficiently withstand.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るガスタービン燃焼器の一実施形態
を示す尾筒構造の部分的断面図。
FIG. 1 is a partial sectional view of a transition piece structure showing an embodiment of a gas turbine combustor according to the present invention.

【図2】図1のII−II線に沿う図。FIG. 2 is a view taken along line II-II in FIG.

【図3】ガスタービンに取付けられるガスタービン燃焼
器を示す図。
FIG. 3 is a diagram showing a gas turbine combustor attached to a gas turbine.

【符号の説明】[Explanation of symbols]

10 ガスタービン燃焼器 11 圧縮機 13 ガスタービン 15 ライナー外筒 16 ライナー内筒 17 燃焼用空気流路 18 燃焼室 20 尾筒 21 尾筒内筒 22 尾筒外筒 23 冷却流路 24 冷却用フィン 25 燃焼ガス案内路 27 冷却空気孔 10 Gas Turbine Combustor 11 Compressor 13 Gas Turbine 15 Liner Outer Cylinder 16 Liner Inner Cylinder 17 Combustion Air Flow Path 18 Combustion Chamber 20 Tail Cylinder 21 Tail Cylinder Inner Cylinder 22 Tail Cylinder Outer Cylinder 23 Cooling Channel 24 Cooling Fin 25 Combustion gas guide way 27 Cooling air hole

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ライナー外筒とライナー内筒との間に燃
焼用空気流路を形成し、上記ライナー内筒内に燃焼室を
画成し、燃焼ガスを案内する尾筒を上記ライナー内筒に
設けたガスタービン用燃焼器において、上記尾筒は尾筒
外筒と尾筒内筒とから二重筒構造に構成し、その環状部
分を、前記燃焼用空気流路に通じる冷却流路に形成し、
この冷却流路に複数枚の冷却用フィンを放射状に配設し
たことを特徴とするガスタービン燃焼器。
1. A liner outer cylinder and a liner inner cylinder are formed with a combustion air flow path to define a combustion chamber in the liner inner cylinder, and a tail cylinder for guiding combustion gas is formed in the liner inner cylinder. In the gas turbine combustor provided in, the transition piece is constituted by a transition piece outer cylinder and a transition piece inner cylinder in a double-cylinder structure, and the annular portion thereof serves as a cooling flow path leading to the combustion air flow path. Formed,
A gas turbine combustor, wherein a plurality of cooling fins are radially arranged in the cooling flow path.
【請求項2】 尾筒外筒には冷却空気孔が多数穿設さ
れ、尾筒内筒をインピンジ冷却可能に構成した請求項1
記載のガスタービン燃焼器。
2. The tail cylinder outer cylinder is provided with a large number of cooling air holes, and the tail cylinder inner cylinder is configured to be capable of impingement cooling.
A gas turbine combustor as described.
JP13878596A 1996-05-31 1996-05-31 Gas turbine combustor Pending JPH08303781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13878596A JPH08303781A (en) 1996-05-31 1996-05-31 Gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13878596A JPH08303781A (en) 1996-05-31 1996-05-31 Gas turbine combustor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60243618A Division JPH0726734B2 (en) 1985-10-30 1985-10-30 Gas turbine combustor

Publications (1)

Publication Number Publication Date
JPH08303781A true JPH08303781A (en) 1996-11-22

Family

ID=15230159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13878596A Pending JPH08303781A (en) 1996-05-31 1996-05-31 Gas turbine combustor

Country Status (1)

Country Link
JP (1) JPH08303781A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292451A (en) * 2006-04-24 2007-11-08 General Electric Co <Ge> System for reducing pressure loss in gas turbine engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135907A (en) * 1976-05-08 1977-11-14 Kawasaki Heavy Ind Ltd Combustion unit in gas turbine
JPS5411443A (en) * 1977-06-29 1979-01-27 Hitachi Maxell Silver oxide cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135907A (en) * 1976-05-08 1977-11-14 Kawasaki Heavy Ind Ltd Combustion unit in gas turbine
JPS5411443A (en) * 1977-06-29 1979-01-27 Hitachi Maxell Silver oxide cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292451A (en) * 2006-04-24 2007-11-08 General Electric Co <Ge> System for reducing pressure loss in gas turbine engine

Similar Documents

Publication Publication Date Title
US11143106B2 (en) Combustion section heat transfer system for a propulsion system
US7377743B2 (en) Countercooled turbine nozzle
US6217279B1 (en) Device for sealing gas turbine stator blades
JP3824324B2 (en) Gas turbine blades with cooling platform
JP4124585B2 (en) Combustor liner with selectively inclined cooling holes.
US5649806A (en) Enhanced film cooling slot for turbine blade outer air seals
JP4641916B2 (en) Turbine nozzle with corners cooled
US8177492B2 (en) Passage obstruction for improved inlet coolant filling
US20060123796A1 (en) Secondary flow, high pressure turbine module cooling air system for recuperated gas turbine engines
JP2000186572A (en) Gas turbine engine
JP2004060656A (en) Internal cooling of low pressure turbine case
JP2009085222A (en) Rear end liner assembly with turbulator and its cooling method
US8414255B2 (en) Impingement cooling arrangement for a gas turbine engine
GB2290833A (en) Turbine blade cooling
JP2007192213A (en) Turbine airfoil and method for cooling turbine airfoil assembly
JPH06102963B2 (en) Gas turbine air cooling blade
CA2429425C (en) Combustor turbine successive dual cooling
RU2405940C1 (en) Turbine blade
JP2007032569A (en) Cooling type shroud assembly and cooling method for shroud
KR20220053803A (en) Array impingement jet cooling structure with wavy channel
KR20040045359A (en) Gas turbine transition piece with dimpled surface and related method
EP3461995A1 (en) Gas turbine blade
US6357752B1 (en) Brush seal
JP2008309059A (en) Cooling structure of turbine casing
JP3069522B2 (en) Gas turbine combustor