JPH05163959A - Turbine stationary blade - Google Patents

Turbine stationary blade

Info

Publication number
JPH05163959A
JPH05163959A JP33223991A JP33223991A JPH05163959A JP H05163959 A JPH05163959 A JP H05163959A JP 33223991 A JP33223991 A JP 33223991A JP 33223991 A JP33223991 A JP 33223991A JP H05163959 A JPH05163959 A JP H05163959A
Authority
JP
Japan
Prior art keywords
cooling
end wall
side end
diameter side
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33223991A
Other languages
Japanese (ja)
Other versions
JP2953842B2 (en
Inventor
Hiroyuki Matsuzaki
裕之 松崎
Yukio Shibuya
幸生 渋谷
Akinori Koga
昭紀 古閑
Katsuyasu Ito
勝康 伊藤
Asako Matsuura
麻子 松浦
Fumio Otomo
文雄 大友
Yoshitaka Fukuyama
佳孝 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tohoku Electric Power Co Inc
Original Assignee
Toshiba Corp
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tohoku Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP3332239A priority Critical patent/JP2953842B2/en
Publication of JPH05163959A publication Critical patent/JPH05163959A/en
Application granted granted Critical
Publication of JP2953842B2 publication Critical patent/JP2953842B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/80Platforms for stationary or moving blades
    • F05B2240/801Platforms for stationary or moving blades cooled platforms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To improve heat efficiency, and to reduce thermal stress generated on a blade part by providing cooling channels on the feeding side as well as the recovery side of an end wall on the outer diametral side, by providing a cooling/connecting channel on an end wall on the inner diametral side, and by forming cooling holes on the feeding side as well as the returning side of a blade effective part. CONSTITUTION:In a turbine stationary blade 10 provided with an end wall 11 on the outer diametral side and an end wall 12 on the inner diametral side in an integrated form on a blade effective part 13, a feeding side cooling channel 19 connecting to a cooling steam feeding port 17, and a recovery side cooling channel 20 connecting to a cooling steam recovery port 18 are provided on the end wall 11 on the outer diametral side, while a cooling/connecting channel 30 of cooling steam is provided on the end wall 12 on the inner diametral side. A plurality of feeding side cooling holes 28 for communicating the feeding side cooling channel 19 of the end wall 11 on the outer diametral side to the cooling/connecting channel 30 of the end wall 11 on the outer diametral side, and a plurality of returning side cooling holes 29 for communicating the connecting channel 30 to the recovery side cooling channel 20 of the end wall 11 on the outer diametral side, are provided on the blade effective part 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温タービンの冷却翼
に冷却媒体として少なくとも蒸気を用いたタービン静翼
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine vane using at least steam as a cooling medium for a cooling blade of a high temperature turbine.

【0002】[0002]

【従来の技術】発電プラントに利用するガスタービン
は、一般に図8に示すように構成されており、ガスター
ビン1と同軸に設けられた圧縮機2の駆動によって圧縮
された圧縮空気を燃焼器3に供給し、燃焼器3のライナ
部分3aで燃料を燃焼させ、その燃焼による高温の燃焼
ガスをトランジションピース4からガスタービン1の静
翼5を経て動翼6に案内し、この動翼6を回転駆動させ
てガスタービン1の仕事をさせるように構成している。
2. Description of the Related Art A gas turbine used in a power plant is generally constructed as shown in FIG. 8 and combustor 3 compresses compressed air compressed by driving a compressor 2 provided coaxially with gas turbine 1. To burn the fuel in the liner portion 3a of the combustor 3, and guide the high temperature combustion gas from the combustion to the moving blade 6 from the transition piece 4 through the stationary blade 5 of the gas turbine 1, The gas turbine 1 is rotated to drive the gas turbine 1.

【0003】ガスタービンの熱効率を向上させるために
は、タービン入口温度を高温にするとよいことは周知の
事実であり、実際熱効率を向上させるために、タービン
入口温度の上昇が図られている。タービン入口温度の上
昇に伴い、ガスタービン1の燃焼器3や静翼5、動翼6
にも高温に耐え得る材料を使用する必要性が高まり耐熱
性超合金材料がガスタービン部品として用いられるよう
になっている。
It is a well-known fact that the turbine inlet temperature should be set high in order to improve the thermal efficiency of the gas turbine, and the turbine inlet temperature is actually increased in order to improve the thermal efficiency. As the turbine inlet temperature rises, the combustor 3 of the gas turbine 1, the stationary blades 5, and the moving blades 6
In particular, the need to use materials that can withstand high temperatures has increased, and heat-resistant superalloy materials have come to be used as gas turbine parts.

【0004】ところが、現在タービンの高温部材として
使用している耐熱性超合金材料の限界温度は、800〜
900℃である。一方、タービン入口温度は約1300
℃程度に達し耐熱性超合金材料の限界温度を遥かに超え
ている。したがって、タービン翼を耐熱性超合金材料の
限界温度まで冷却しガスタービンの信頼性を維持するた
めに、冷却構造を採用した冷却翼の使用が必須となって
いる。
However, the critical temperature of the heat resistant superalloy material currently used as the high temperature member of the turbine is 800 to
It is 900 ° C. On the other hand, the turbine inlet temperature is about 1300
The temperature reaches about ℃, which is far over the limit temperature of the heat resistant superalloy material. Therefore, in order to cool the turbine blade to the limit temperature of the heat-resistant superalloy material and maintain the reliability of the gas turbine, it is essential to use a cooling blade having a cooling structure.

【0005】そして、現状では図9および図10に示す
ように冷却媒体として冷却空気を用いた空冷翼がタービ
ン入口温度1300℃級のガスタービンに採用されてい
る。空冷翼の構造は、タービン静翼である中空翼5にイ
ンピンジメント冷却用のインサート7を収容して冷却空
気8a,8bにより対流・インピンジメント冷却をする
とともに、翼有効部の翼表面に多数の小孔9を開け、相
当量のフィルム冷却用空気8cを吹き出してタービン静
翼5の材料温度を限界温度以下に下げるべく冷却を行な
っている。この冷却により、タービン静翼5の翼部に発
生する熱応力の低減も図っている。
At present, as shown in FIGS. 9 and 10, an air cooling blade using cooling air as a cooling medium is adopted in a gas turbine with a turbine inlet temperature of 1300 ° C. class. The structure of the air cooling blade is such that the hollow blade 5 that is a turbine stationary blade accommodates the insert 7 for impingement cooling and performs convection and impingement cooling by the cooling air 8a and 8b, and at the same time, a large number of blade surfaces are provided on the blade effective portion. The small holes 9 are opened, and a considerable amount of film cooling air 8c is blown to cool the material of the turbine vane 5 to below the limit temperature. By this cooling, the thermal stress generated in the blade portion of the turbine stationary blade 5 is also reduced.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、空気冷
却翼では空気の冷却特性が低いため、ガスタービン入口
温度が1300℃を超えると必要な冷却空気量が著しく
増大し、しかも翼内部の対流冷却だけでは充分な冷却に
対応できなくなり、翼有効部の翼表面に形成した小孔9
から翼外に冷却空気を吹き出すフィルム冷却方式に頼ら
ざるを得ない。その結果生じる冷却空気量の増大、高温
ガス中への低温空気の吹出は、いずれもガスタービンの
熱効率を低減させ、さらに、ガスタービンを用いた発電
プラントの熱効率の低下をも招く。
However, since the air cooling blade has a low air cooling characteristic, the required cooling air amount significantly increases when the gas turbine inlet temperature exceeds 1300 ° C., and only the convection cooling inside the blade is required. Will not be able to support sufficient cooling, and the small holes 9 formed on the blade surface of the blade effective portion
There is no choice but to rely on a film cooling system that blows cooling air out of the blades. The resulting increase in the amount of cooling air and the blowing out of low temperature air into the high temperature gas both reduce the thermal efficiency of the gas turbine, and also cause the thermal efficiency of the power plant using the gas turbine to decrease.

【0007】また、不純物が混在するような粗悪燃料に
対しては、翼表面に形成した小孔9に目詰りが生じるお
それがあり、適用できない。
Further, it is not applicable to poor fuel containing impurities mixed therein because the small holes 9 formed on the blade surface may be clogged.

【0008】本発明は、上述した事情を考慮してなされ
たもので、ガスタービン冷却翼の冷却効率を増大せし
め、高いガス温度においても良好な冷却を行ない、熱効
率の向上を図る一方、粗悪燃料に対しても適用可能なタ
ービン静翼を提供することを目的とする。
The present invention has been made in consideration of the above-mentioned circumstances, and increases the cooling efficiency of the gas turbine cooling blades, performs favorable cooling even at a high gas temperature, and improves the thermal efficiency, while at the same time, inferior fuel efficiency. It is an object of the present invention to provide a turbine vane applicable also to.

【0009】本発明の他の目的は、ガスタービン冷却翼
の冷却空気量を減少させても良好な冷却を行ない、熱効
率を向上させるとともに、翼部に発生する熱応力を低減
可能なタービン静翼を提供することを目的とする。
Another object of the present invention is to provide a turbine vane capable of performing good cooling even if the amount of cooling air in the gas turbine cooling blade is reduced, improving thermal efficiency, and reducing thermal stress generated in the blade portion. The purpose is to provide.

【0010】[0010]

【課題を解決するための手段】本発明に係るタービン静
翼は、上述した課題を解決するために、請求項1に記載
したように、外径側エンドウォールと内径側エンドウォ
ールとを翼有効部に一体に備えたタービン静翼におい
て、前記外径側エンドウォールに冷却蒸気供給口に連通
する供給側冷却流路と冷却蒸気回収口に通じる回収側冷
却通路とを設ける一方、前記内径側エンドウォールに冷
却蒸気の冷却・連絡流路を設け、前記翼有効部には、外
径側エンドウォールの供給側冷却流路を内径側エンドウ
ォールの冷却・連絡流路に連通させる複数の供給側冷却
孔と上記連絡流路を外径側エンドウォールの回収側冷却
通路に連通させる複数の戻り側冷却孔とをそれぞれ形成
したものである。
In order to solve the above-mentioned problems, the turbine vane according to the present invention has an outer diameter side end wall and an inner diameter side end wall, which are blade effective as described in claim 1. In the turbine vane integrally provided in the portion, a supply side cooling flow path communicating with the cooling steam supply port and a recovery side cooling passage communicating with the cooling steam recovery port are provided in the outer diameter side end wall, while the inner diameter side end is provided. A cooling / cooling channel for cooling steam is provided in the wall, and a plurality of supply-side cooling channels are provided in the effective blade section so that the cooling channel / cooling channel of the outer diameter side end wall communicates with the cooling / fluidity channel of the inner diameter side end wall. A hole and a plurality of return-side cooling holes that communicate the communication passage with the recovery-side cooling passage of the outer diameter side end wall are formed.

【0011】また、上述した課題を解決するために、本
発明に係るタービン静翼は、請求項2に記載したよう
に、外径側エンドウォールと内径側エンドウォールとを
翼有効部に一体に備えたタービン静翼において、前記外
径側エンドウォールに冷却蒸気供給口に連通する供給側
冷却流路と冷却蒸気回収口に通じる回収側冷却通路とを
設ける一方、前記内径側エンドウォールに冷却蒸気の冷
却・連絡流路を設け、前記翼有効部には、外径側エンド
ウォールの供給側冷却流路を内径側エンドウォールの冷
却・連絡流路に連通させる複数の供給側冷却孔と上記連
絡流路を外径側エンドウォールの回収側冷却通路に連通
させる複数の戻り側冷却孔とをそれぞれ形成するととも
に翼有効部には冷却空気が案内される中央キャビティを
備え、この中央キャビティから翼有効部表面に開口する
フィルム冷却孔を形成したものである。
In order to solve the above-mentioned problems, in a turbine vane according to the present invention, as described in claim 2, the outer diameter side end wall and the inner diameter side end wall are integrated with the blade effective portion. In a turbine vane provided, a supply side cooling flow path communicating with a cooling steam supply port and a recovery side cooling passage communicating with a cooling steam recovery port are provided in the outer diameter side end wall, while cooling steam is provided in the inner diameter side end wall. Cooling / communication passages are provided, and the blade effective portion is provided with a plurality of supply-side cooling holes for communicating the supply-side cooling passages of the outer diameter side end wall with the cooling / communication passages of the inner diameter side end wall. A plurality of return side cooling holes that communicate the flow path with the recovery side cooling passage of the outer diameter side end wall are respectively formed, and the blade effective portion is provided with a central cavity through which cooling air is guided. It is obtained by forming a film cooling holes opening to the airfoil section surface from tee.

【0012】[0012]

【作用】このタービン静翼は、請求項1および2に記載
したように構成したから、冷却媒体を従来用いられてい
る空気から比熱が約2倍で冷却特性の優れた蒸気に変え
ることにより、空気より少ない量の冷却蒸気で、翼有効
部のみならず内外径側エンドウォールを同時に冷却でき
る。タービン静翼の冷却に供された冷却蒸気は高温ガス
中に吹き出されることなく全量回収することが可能とな
る。したがって、高温ガスの冷却媒体の混入による温度
低下が防止でき、さらに回収した蒸気は、発電プラント
の蒸気タービンにて再利用可能となる。
Since this turbine vane is constructed as described in claims 1 and 2, by changing the cooling medium from conventionally used air to steam having a specific heat of about twice and excellent cooling characteristics, It is possible to cool not only the blade effective portion but also the inner and outer diameter side end walls at the same time with a smaller amount of cooling steam than air. The cooling steam used for cooling the turbine vanes can be recovered in its entirety without being blown into the high temperature gas. Therefore, it is possible to prevent the temperature from being lowered due to the mixing of the cooling medium of the high temperature gas, and the recovered steam can be reused in the steam turbine of the power generation plant.

【0013】また、直接高温ガスに晒される翼表面に
は、請求項2に記載したように、冷却空気によるフィル
ム冷却を利用することで、タービン静翼の翼表面温度が
低減でき、翼部に発生する熱応力を緩和できる。
Further, by using film cooling with cooling air on the blade surface directly exposed to the high temperature gas, the blade surface temperature of the turbine stationary blade can be reduced, and the blade portion can be reduced. The generated thermal stress can be relaxed.

【0014】こうすることで、タービン入口温度が13
00℃以上の高温においても充分な冷却性能が得られ、
結果的にガスタービンを用いた発電プラントの熱効率を
向上させることができる。
As a result, the turbine inlet temperature is 13
Sufficient cooling performance can be obtained even at high temperatures of 00 ° C or higher
As a result, the thermal efficiency of the power plant using the gas turbine can be improved.

【0015】[0015]

【実施例】以下、本発明に係るタービン静翼の一実施例
について添付図面を参照して説明する。
An embodiment of a turbine vane according to the present invention will be described below with reference to the accompanying drawings.

【0016】図1は、コンバインドサイクル発電プラン
トや火力発電プラントのガスタービンに備えられる本発
明のタービン静翼10の一例を示す全体斜視図であり、
図2は上記タービン静翼10の縦断面を示すものであ
る。
FIG. 1 is an overall perspective view showing an example of a turbine vane 10 of the present invention provided in a gas turbine of a combined cycle power plant or a thermal power plant.
FIG. 2 shows a vertical cross section of the turbine vane 10.

【0017】タービン静翼10は外径側エンドウォール
11と内径側エンドウォール12と翼有効部13とを一
体に備え、外径側エンドウォール11に冷却蒸気供給管
14および回収管15がそれぞれ接続される。
The turbine vane 10 integrally includes an outer diameter side end wall 11, an inner diameter side end wall 12, and a blade effective portion 13, and a cooling steam supply pipe 14 and a recovery pipe 15 are connected to the outer diameter side end wall 11, respectively. To be done.

【0018】外径側エンドウォール11には図2および
図3に示すように冷却蒸気供給管14が接続される冷却
蒸気供給口17および回収管15が接続される冷却蒸気
回収口18がそれぞれ形成され、冷却蒸気供給口17は
供給側冷却流路である分配キャビティ19に連通され
る。冷却蒸気回収口18は回収側冷却流路20に連通し
ている。回収側冷却流路20は第1および第2の収集キ
ャビティ21,22からエンドウォール冷却孔23を経
てあるいは直接冷却ダクト24に通じるようになってお
り、この冷却ダクト24が冷却蒸気回収口18に連通し
ている。供給側冷却流路19と回収側冷却流路20とは
相互しに独立して形成される。
As shown in FIGS. 2 and 3, the outer diameter side end wall 11 is formed with a cooling steam supply port 17 to which the cooling steam supply pipe 14 is connected and a cooling steam recovery port 18 to which the recovery pipe 15 is connected. The cooling steam supply port 17 is communicated with the distribution cavity 19 which is the supply side cooling flow path. The cooling steam recovery port 18 communicates with the recovery side cooling flow path 20. The recovery side cooling flow passage 20 is adapted to communicate with the cooling duct 24 from the first and second collection cavities 21 and 22 through the end wall cooling holes 23 or directly. The cooling duct 24 is connected to the cooling vapor recovery port 18. It is in communication. The supply-side cooling flow passage 19 and the recovery-side cooling flow passage 20 are formed independently of each other.

【0019】一方、タービン静翼10の翼有効部12に
は、中央に中央キャビティ26が翼の軸方向に形成され
る一方、中央キャビティ26を囲む翼周辺部に多数の冷
却孔28,29が供給側および戻り側に分かれて形成さ
れる。このうち、翼有効部13の前縁から背側にかけて
形成される複数の冷却孔28は、外径側エンドウォール
11の分配キャビティ19から内径側エンドウォール1
2に向って延びる供給側冷却孔である。
On the other hand, in the blade effective portion 12 of the turbine vane 10, a central cavity 26 is formed in the center in the axial direction of the blade, while a large number of cooling holes 28, 29 are provided in the peripheral portion of the blade surrounding the central cavity 26. It is divided into a supply side and a return side. Among these, the plurality of cooling holes 28 formed from the front edge of the blade effective portion 13 to the back side are formed from the distribution cavity 19 of the outer diameter side end wall 11 to the inner diameter side end wall 1.
2 is a supply-side cooling hole extending toward 2.

【0020】翼有効部13の前縁、腹側および後縁側に
形成される冷却孔29は、内径側エンドウォール12か
ら外径側エンドウォール11の第1収集キャビティ21
および第2収集キャビティ22にそれぞれ連通される複
数の戻り側冷却孔である。外径側エンドウォール11の
前縁、腹側に形成される第1収集キャビティ21と後縁
側の第2収集キャビティ22は、図3に示すように相互
に独立していることが好ましいが、互いに連通する構造
であってもよい。
The cooling holes 29 formed on the leading edge, ventral side and trailing edge side of the blade effective portion 13 have the first collection cavity 21 from the inner diameter side end wall 12 to the outer diameter side end wall 11.
And a plurality of return-side cooling holes that are respectively communicated with the second collection cavity 22. The first collection cavity 21 and the second collection cavity 22 on the trailing edge formed on the front edge and the ventral side of the outer diameter side end wall 11 are preferably independent from each other as shown in FIG. It may have a structure that communicates.

【0021】また、内径側エンドウォール12には、図
2および図4に示すように、冷却・連絡流路30が形成
され、この流路30は翼有効部13に形成された供給側
冷却孔28を戻り側冷却孔29に連通させている。冷却
・連絡流路30は複数の供給側冷却孔28に連通される
中間収集キャビティ31と、この収集キャビティ31か
ら内径側エンドウォール12の周辺に沿って延びる冷却
ダクト32と、この冷却ダクト32から分岐された複数
のエンドウォール冷却孔33と、このエンドウォール冷
却孔33に連通される腹側の第1リターンキャビティ3
4と、冷却ダクト32に連通される後縁側の第2リター
ンキャビティ35とを有し、各リターンキャビティ3
4,35は戻り側冷却孔29にそれぞれ通じている。
As shown in FIGS. 2 and 4, the inner diameter side end wall 12 is provided with a cooling / communication flow path 30. The flow path 30 is provided at the supply side cooling hole formed in the blade effective portion 13. 28 is connected to the return side cooling hole 29. The cooling / communication flow path 30 includes an intermediate collection cavity 31 communicating with the plurality of supply-side cooling holes 28, a cooling duct 32 extending from the collection cavity 31 along the periphery of the inner diameter side end wall 12, and from the cooling duct 32. The plurality of branched end wall cooling holes 33 and the ventral first return cavity 3 communicating with the end wall cooling holes 33
4 and a second return cavity 35 on the trailing edge side that communicates with the cooling duct 32.
Reference numerals 4 and 35 communicate with the return side cooling holes 29, respectively.

【0022】次に、このタービン静翼10の冷却作用に
ついて説明する。
Next, the cooling action of the turbine vane 10 will be described.

【0023】冷却蒸気供給管14よりタービン静翼10
の外径側エンドウォール11の冷却蒸気供給口17に供
給された冷却蒸気は、供給側冷却流路の分配キャビティ
19に導かれ、翼有効部13の腹側に形成された複数の
供給側冷却孔28に供給され、各供給側冷却孔28を内
径側エンドウォール12に向って案内される。冷却蒸気
が供給側冷却孔28を流れる間に、高温になり易い翼有
効部13の前縁および背側を積極的に冷却し、この冷却
後に内径側エンドウォール12の中間収集キャビティ3
1に集められる。
From the cooling steam supply pipe 14 to the turbine vane 10
The cooling steam supplied to the cooling steam supply port 17 of the outer diameter side end wall 11 is guided to the distribution cavity 19 of the supply side cooling flow path, and a plurality of supply side cooling formed on the ventral side of the blade effective portion 13 The cooling holes 28 are supplied to the holes 28 and guided through the supply-side cooling holes 28 toward the inner diameter side end wall 12. While the cooling steam flows through the supply-side cooling holes 28, the leading edge and the back side of the blade effective portion 13 that easily become hot are positively cooled, and after this cooling, the intermediate collection cavity 3 of the inner diameter side end wall 12 is cooled.
Collected in 1.

【0024】内径側エンドウォール12の中間収集キャ
ビティ31に集められた冷却蒸気は、冷却・連絡流路3
0である冷却ダクト32およびエンドウォール冷却孔3
3を流れて内径側エンドウォール12を冷却し、2カ所
のリターンキャビティ34,35に導かれ、戻り冷却蒸
気となる。
The cooling vapor collected in the intermediate collection cavity 31 of the inner diameter side end wall 12 is cooled and connected by the flow path 3
0 cooling duct 32 and end wall cooling hole 3
3, the inner diameter side end wall 12 is cooled, guided to the two return cavities 34 and 35, and becomes return cooling steam.

【0025】戻り冷却蒸気は、翼有効部13の前縁、腹
側および後縁の各戻り側冷却孔29を外径側エンドウォ
ール11に向って流れ、外径側エンドウォール11の第
1および第2の収集キャビティ21,22に案内され
る。その間に翼有効部13の前縁、腹側および後縁部を
冷却する。
The return cooling steam flows through the return side cooling holes 29 at the leading edge, the ventral side and the trailing edge of the blade effective portion 13 toward the outer diameter side end wall 11, and the first and second outer diameter side end walls 11 respectively. It is guided to the second collecting cavities 21,22. Meanwhile, the leading edge, ventral side and trailing edge of the blade effective portion 13 are cooled.

【0026】第1および第2収集キャビティ21,22
に集められた戻り冷却蒸気は回収側冷却流路20である
エンドウォール冷却孔23および冷却ダクト24に導か
れて外径側エンドウォール11を冷却した後、冷却蒸気
回収口18で合流し、回収管15により全量回収され
る。
First and second collection cavities 21, 22
The return cooling steam collected in (1) is guided to the end wall cooling hole 23 and the cooling duct 24 that are the recovery side cooling flow paths 20 to cool the outer diameter side end wall 11, and then merges at the cooling steam recovery port 18 to recover. The whole amount is recovered by the pipe 15.

【0027】したがって、タービン静翼10を冷却する
冷却蒸気は、回収され、高温燃焼ガス中に混入すること
がないので、燃焼ガス(作動ガス)の温度低下を防止で
きる。また、回収した蒸気は、発電プラントの蒸気ター
ビンにて再利用可能となる。タービン静翼10の冷却媒
体を空気から比熱が約2倍で冷却特性の優れた蒸気に換
えることにより、空気量より少ない蒸気量で翼有効部1
3のみならず、内外径エンドウォール11,12を同時
に有効的に冷却することができる。
Therefore, the cooling steam for cooling the turbine vanes 10 is not recovered and is not mixed in the high temperature combustion gas, so that the temperature decrease of the combustion gas (working gas) can be prevented. The recovered steam can be reused in the steam turbine of the power plant. By changing the cooling medium of the turbine vane 10 from air to steam having a specific heat of about 2 times and excellent cooling characteristics, the blade effective portion 1 can be operated with a steam amount smaller than the air amount.
In addition to 3, the inner and outer diameter end walls 11 and 12 can be effectively cooled at the same time.

【0028】タービン静翼10の冷却構造に、冷却媒体
としては蒸気を用いることにより、タービン入口温度が
1300℃以上の高温においても、充分な冷却性能が得
られ、このタービン静翼10を組み込んだガスタービン
を用いたコンバインドサイクル発電プラントにおいて
は、図5に示すようにプラント熱効率を向上させること
ができる。
By using steam as a cooling medium in the cooling structure of the turbine vane 10, sufficient cooling performance can be obtained even at a turbine inlet temperature of 1300 ° C. or higher, and the turbine vane 10 was incorporated. In a combined cycle power plant using a gas turbine, the plant thermal efficiency can be improved as shown in FIG.

【0029】また、このタービン静翼10においては、
翼面のメタル温度を均一にかつ効率良く冷却するために
は、冷却蒸気の流量配分が重要となり本実施例において
は、翼有効部13の冷却蒸気を供給側(往)1系統、戻
り側(復)2系統に分けて冷却蒸気の流量配分を好適に
している。冷却蒸気は往復2回翼有効部を冷却するため
同一冷却孔を1回で通過する場合に比べると流速が約2
倍となって冷却効果が増加する。
Further, in this turbine vane 10,
In order to uniformly and efficiently cool the metal temperature of the blade surface, the distribution of the cooling steam flow rate is important, and in this embodiment, the cooling steam of the blade effective portion 13 is provided on one side of the supply side (forward) and on the return side ( 2) The flow distribution of the cooling steam is optimized by dividing it into two systems. Since the cooling steam cools the blade effective portion twice reciprocally, the flow velocity is about 2 as compared with the case where it passes through the same cooling hole once.
Double the cooling effect.

【0030】主流燃焼ガスに晒される面に耐熱性を有す
る断熱性セラミックス(ZrO2 )を溶射することがよ
り冷却効果を高めることができる。
Thermal spraying of heat-resistant adiabatic ceramics (ZrO 2 ) on the surface exposed to the mainstream combustion gas can further enhance the cooling effect.

【0031】図6および図7は本発明に係るタービン静
翼の他の実施例を示すものである。この実施例に示され
たタービン静翼10Aは、翼有効部13の中央キャビテ
ィ26を形成するとともに、この中央キャビティ26を
外径側エンドウォール11に形成された冷却空気供給口
39を介して冷却空気供給側に連通させるとともに、中
央キャビティ26から翼有効部13の翼表面まで延びて
開口する複数のフィルム冷却孔40を形成したものであ
る。
6 and 7 show another embodiment of the turbine vane according to the present invention. The turbine vane 10A shown in this embodiment forms the central cavity 26 of the blade effective portion 13, and cools the central cavity 26 via the cooling air supply port 39 formed in the outer diameter side end wall 11. A plurality of film cooling holes 40 are formed which are communicated with the air supply side and extend from the central cavity 26 to the blade surface of the blade effective portion 13 and open.

【0032】フィルム冷却孔40は大きな熱を受け易い
翼有効部13の前縁および背側に例えば複数列ずつ多数
形成し、腹側には例えば1列のフィルム冷却孔40を穿
設する。フィルム冷却孔40は小孔であっても、スリッ
ト孔であってもよい。
A large number of film cooling holes 40 are formed, for example, in a plurality of rows at the front edge and the back side of the blade effective portion 13 that is susceptible to a large amount of heat, and one row of film cooling holes 40 is formed at the abdominal side. The film cooling hole 40 may be a small hole or a slit hole.

【0033】このタービン静翼10Aの蒸気冷却構造は
図1〜図4に示す実施例と異ならないので同一符号を用
いて説明を省略する。外径側エンドウォール11や内径
側エンドウォール12の構造も図3および図4に示すも
のと異ならないので説明を省略する。
Since the steam cooling structure of the turbine vane 10A is not different from that of the embodiment shown in FIGS. 1 to 4, the same reference numerals are used and the description thereof is omitted. The structures of the outer diameter side end wall 11 and the inner diameter side end wall 12 are not different from those shown in FIGS.

【0034】しかして、このタービン静翼10Aにおい
ては、蒸気冷却構造により、一実施例に示すものと同様
の冷却効果が得られる。
In this turbine vane 10A, however, the cooling effect similar to that shown in the embodiment is obtained by the steam cooling structure.

【0035】さらに、冷却空気供給口39から供給され
たフィルム冷却用の空気は、中央キャビティ26に導か
れ、翼有効部13のフィルム冷却孔40から吹き出さ
れ、その後翼表面をフィルム冷却し、高温燃焼ガスと混
合する。
Further, the air for film cooling supplied from the cooling air supply port 39 is guided to the central cavity 26 and blown out from the film cooling hole 40 of the blade effective portion 13, after which the blade surface is film-cooled to a high temperature. Mix with combustion gases.

【0036】このタービン静翼10Aでは一実施例で示
すものと同様、翼面のメタル温度を均一かつ効率良く冷
却するためには、冷却蒸気の流量配分およびフィルム冷
却用空気の吹出位置が重要となる。本実施例において
は、翼有効部13の冷却蒸気を供給側(往)1系統、戻
り側(復)2系統に分けて冷却蒸気の流量配分を好適に
している。また、フィルム冷却孔は、翼表面の熱伝達率
が大きく、温度が高くなる位置に有効的に分散配置する
ことで熱応力を約1/2に低減している。
In this turbine vane 10A, like the one shown in the embodiment, in order to uniformly and efficiently cool the metal temperature on the blade surface, the flow distribution of the cooling steam and the blowing position of the film cooling air are important. Become. In the present embodiment, the cooling steam of the blade effective portion 13 is divided into one system on the supply side (forward) and two systems on the return side (return) to optimize the flow distribution of the cooling steam. Further, the film cooling holes have a large heat transfer coefficient on the blade surface, and are effectively dispersed and arranged at positions where the temperature becomes high, thereby reducing the thermal stress to about 1/2.

【0037】この場合にも、主流燃焼ガスに晒される面
に断熱性セラミックス(ZrO2 )を溶射することが冷
却効果を一層高めることができる。
Also in this case, spraying the heat insulating ceramics (ZrO 2 ) on the surface exposed to the mainstream combustion gas can further enhance the cooling effect.

【0038】[0038]

【発明の効果】以上に述べたように、本発明に係るター
ビン静翼においては、冷却蒸気を用いた翼冷却構造を採
用することにより、タービン入口温度か高いガス温度に
おいても、翼を充分冷却することができ、高温で作動す
る高効率のガスタービンの製造が可能になる。また、こ
のガスタービンを用いた発電プラントの熱効率も向上す
る。さらには、翼表面に冷却媒体を吹き出す小孔が無い
ため、不純物が混在する粗悪燃料に対しても使用可能と
なる。
As described above, in the turbine stationary blade according to the present invention, by adopting the blade cooling structure using the cooling steam, the blade is sufficiently cooled even at the turbine inlet temperature or high gas temperature. And enables the production of highly efficient gas turbines that operate at high temperatures. Also, the thermal efficiency of the power plant using this gas turbine is improved. Furthermore, since there is no small hole for blowing out the cooling medium on the blade surface, it can be used even for poor fuel in which impurities are mixed.

【0039】また、冷却蒸気を用いた翼冷却構造に加え
て、翼表面を空気によりフィルム冷却を併用することに
より、翼有効部に発生する熱応力が低減し、翼の長寿命
化が可能となる。
Further, in addition to the blade cooling structure using the cooling steam, the film surface is also used to cool the blade surface with air, so that the thermal stress generated in the effective portion of the blade is reduced and the blade life can be extended. Become.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るタービン静翼の一実施例を示す斜
視図。
FIG. 1 is a perspective view showing an embodiment of a turbine vane according to the present invention.

【図2】上記タービン静翼の縦断面図。FIG. 2 is a vertical cross-sectional view of the turbine vane.

【図3】図2のA−A線に沿う断面図。3 is a sectional view taken along the line AA of FIG.

【図4】図2のB−B線に沿う断面図。4 is a sectional view taken along the line BB of FIG.

【図5】本発明を適用したコンバインドサイクルのター
ビン入口温度とコンバインドサイクル発電プラントのプ
ラント効率との関係を、従来の空気冷却と比較して示す
図。
FIG. 5 is a diagram showing a relationship between turbine inlet temperature of a combined cycle and a plant efficiency of a combined cycle power generation plant to which the present invention is applied, in comparison with conventional air cooling.

【図6】本発明に係るタービン静翼の他の実施例を示す
斜視図。
FIG. 6 is a perspective view showing another embodiment of the turbine vane according to the present invention.

【図7】図6に示すタービン静翼の縦断面図。7 is a vertical cross-sectional view of the turbine vane shown in FIG.

【図8】一般的なガスタービンの概略構成図。FIG. 8 is a schematic configuration diagram of a general gas turbine.

【図9】従来のタービン静翼を示す断面図。FIG. 9 is a cross-sectional view showing a conventional turbine stationary blade.

【図10】図9のC−C線に沿う断面図。10 is a cross-sectional view taken along the line CC of FIG.

【符号の説明】[Explanation of symbols]

10 タービン静翼 11 外径側エンドウォール 12 内径側エンドウォール 13 翼有効部 14 冷却蒸気供給管 15 回収管 17 冷却蒸気供給口 18 冷却蒸気回収口 19 分配キャビティ(供給側冷却流路) 20 回収側冷却流路 21,22 収集キャビティ 23 エンドウォール冷却孔 24 冷却ダクト 26 中央キャビティ 28 供給側冷却孔 29 戻り側冷却孔 30 冷却・連絡流路 31 中間収集キャビティ 32 冷却ダクト 33 エンドウォール冷却孔 34,35 リターンキャビティ 40 フィルム冷却孔 Reference Signs List 10 turbine vane 11 outer diameter side end wall 12 inner diameter side end wall 13 blade effective part 14 cooling steam supply pipe 15 recovery pipe 17 cooling steam supply port 18 cooling steam recovery port 19 distribution cavity (supply side cooling flow path) 20 recovery side Cooling flow paths 21, 22 Collection cavities 23 End wall cooling holes 24 Cooling ducts 26 Central cavities 28 Supply side cooling holes 29 Return side cooling holes 30 Cooling / connecting flow paths 31 Intermediate collecting cavities 32 Cooling ducts 33 End wall cooling holes 34, 35 Return cavity 40 Film cooling hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古閑 昭紀 神奈川県横浜市鶴見区末広町2の4 株式 会社東芝京浜事業所内 (72)発明者 伊藤 勝康 神奈川県横浜市鶴見区末広町2の4 株式 会社東芝京浜事業所内 (72)発明者 松浦 麻子 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内 (72)発明者 大友 文雄 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内 (72)発明者 福山 佳孝 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akiki Koga, 4 shares 2-4, Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Toshiba Keihin Plant (72) Inventor Katsuyasu Ito 4 4 shares, Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Company Toshiba Keihin Plant (72) Inventor Asako Matsuura 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki City, Kanagawa Stock Company Toshiba Research Institute (72) Inventor Fumio Otomo Komu-Toshiba 1-cho, Kawasaki-shi, Kanagawa Prefecture Incorporated company Toshiba Research Institute (72) Inventor Yoshitaka Fukuyama 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Incorporated Toshiba Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 外径側エンドウォールと内径側エンドウ
ォールとを翼有効部に一体に備えたタービン静翼におい
て、前記外径側エンドウォールに冷却蒸気供給口に連通
する供給側冷却流路と冷却蒸気回収口に通じる回収側冷
却通路とを設ける一方、前記内径側エンドウォールに冷
却蒸気の冷却・連絡流路を設け、前記翼有効部には、外
径側エンドウォールの供給側冷却流路を内径側エンドウ
ォールの冷却・連絡流路に連通させる複数の供給側冷却
孔と上記連絡流路を外径側エンドウォールの回収側冷却
通路に連通させる複数の戻り側冷却孔とをそれぞれ形成
したことを特徴とするタービン静翼。
1. In a turbine vane integrally provided with an outer diameter side end wall and an inner diameter side end wall in a blade effective portion, a supply side cooling flow path communicating with the cooling steam supply port is provided on the outer diameter side end wall. A recovery side cooling passage communicating with the cooling steam recovery port is provided, while a cooling steam cooling / communication flow path is provided in the inner diameter side end wall, and a supply side cooling flow path of the outer diameter side end wall is provided in the blade effective portion. A plurality of supply side cooling holes for communicating with the cooling / communication channel of the inner diameter side end wall and a plurality of return side cooling holes for communicating the communication channel with the recovery side cooling passage of the outer diameter side end wall. Turbine vanes characterized by this.
【請求項2】 外径側エンドウォールと内径側エンドウ
ォールとを翼有効部に一体に備えたタービン静翼におい
て、前記外径側エンドウォールに冷却蒸気供給口に連通
する供給側冷却流路と冷却蒸気回収口に通じる回収側冷
却通路とを設ける一方、前記内径側エンドウォールに冷
却蒸気の冷却・連絡流路を設け、前記翼有効部には、外
径側エンドウォールの供給側冷却流路を内径側エンドウ
ォールの冷却・連絡流路に連通させる複数の供給側冷却
孔と上記連絡流路を外径側エンドウォールの回収側冷却
通路に連通させる複数の戻り側冷却孔とをそれぞれ形成
するとともに翼有効部には冷却空気が案内される中央キ
ャビティを備え、この中央キャビティから翼有効部表面
に開口するフィルム冷却孔を形成したことを特徴とする
タービン静翼。
2. A turbine vane integrally provided with an outer diameter side end wall and an inner diameter side end wall in a blade effective portion, wherein a supply side cooling flow path communicating with the cooling steam supply port is provided in the outer diameter side end wall. A recovery side cooling passage communicating with the cooling steam recovery port is provided, while a cooling steam cooling / communication flow path is provided in the inner diameter side end wall, and a supply side cooling flow path of the outer diameter side end wall is provided in the blade effective portion. To form a plurality of supply-side cooling holes for communicating with the cooling / communication channel of the inner diameter side end wall and a plurality of return-side cooling holes for communicating the communication channel with the recovery-side cooling passage of the outer diameter side end wall. At the same time, the turbine vane is characterized in that the blade effective portion is provided with a central cavity through which cooling air is guided, and film cooling holes are formed from this central cavity to the blade effective portion surface.
JP3332239A 1991-12-16 1991-12-16 Turbine vane Expired - Fee Related JP2953842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3332239A JP2953842B2 (en) 1991-12-16 1991-12-16 Turbine vane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3332239A JP2953842B2 (en) 1991-12-16 1991-12-16 Turbine vane

Publications (2)

Publication Number Publication Date
JPH05163959A true JPH05163959A (en) 1993-06-29
JP2953842B2 JP2953842B2 (en) 1999-09-27

Family

ID=18252736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3332239A Expired - Fee Related JP2953842B2 (en) 1991-12-16 1991-12-16 Turbine vane

Country Status (1)

Country Link
JP (1) JP2953842B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306706A (en) * 1997-05-01 1998-11-17 Mitsubishi Heavy Ind Ltd Cooling stationary blade for gas turbine
WO1998055735A1 (en) * 1997-06-06 1998-12-10 Mitsubishi Heavy Industries, Ltd. Gas turbine blade
EP0911486A2 (en) * 1997-10-28 1999-04-28 Mitsubishi Heavy Industries, Ltd. Gas turbine stationary blade cooling
JP2001295604A (en) * 2000-04-11 2001-10-26 General Electric Co <Ge> Method of connecting stationary blade hollow insert to nozzle segment of gas turbine
JP2008248826A (en) * 2007-03-30 2008-10-16 Mitsubishi Heavy Ind Ltd Stationary blade for gas turbine and gas turbine provided with the same
EP1788192A3 (en) * 2005-11-21 2008-11-12 General Electric Company Gas turbine bucket with cooled platform edge and method of cooling platform leading edge
JP2009144724A (en) * 2007-12-17 2009-07-02 General Electric Co <Ge> Divergent turbine nozzle
JP2009221995A (en) * 2008-03-18 2009-10-01 Ihi Corp Inner surface cooling structure for high-temperature part
JP2009243429A (en) * 2008-03-31 2009-10-22 Mitsubishi Heavy Ind Ltd Gas turbine blade and gas turbine equipped with the same
JP4634528B1 (en) * 2010-01-26 2011-02-23 三菱重工業株式会社 Split ring cooling structure and gas turbine
JP2013064411A (en) * 2013-01-11 2013-04-11 Mitsubishi Heavy Ind Ltd Gas turbine blade and gas turbine equipped with the same
WO2024048211A1 (en) * 2022-09-01 2024-03-07 三菱重工業株式会社 Gas turbine stationary blade and gas turbine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179803A (en) * 1984-09-28 1986-04-23 Toshiba Corp Static blade for gas turbine
JPH02241902A (en) * 1989-03-13 1990-09-26 Toshiba Corp Cooling blade of turbine and combined generating plant utilizing gas turbine equipped with this blade
JPH03264706A (en) * 1990-03-14 1991-11-26 Toshiba Corp Turbine stationary blade

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179803A (en) * 1984-09-28 1986-04-23 Toshiba Corp Static blade for gas turbine
JPH02241902A (en) * 1989-03-13 1990-09-26 Toshiba Corp Cooling blade of turbine and combined generating plant utilizing gas turbine equipped with this blade
JPH03264706A (en) * 1990-03-14 1991-11-26 Toshiba Corp Turbine stationary blade

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306706A (en) * 1997-05-01 1998-11-17 Mitsubishi Heavy Ind Ltd Cooling stationary blade for gas turbine
WO1998055735A1 (en) * 1997-06-06 1998-12-10 Mitsubishi Heavy Industries, Ltd. Gas turbine blade
US6257830B1 (en) 1997-06-06 2001-07-10 Mitsubishi Heavy Industries, Ltd. Gas turbine blade
EP0911486A2 (en) * 1997-10-28 1999-04-28 Mitsubishi Heavy Industries, Ltd. Gas turbine stationary blade cooling
EP0911486A3 (en) * 1997-10-28 2000-01-05 Mitsubishi Heavy Industries, Ltd. Gas turbine stationary blade cooling
US6089822A (en) * 1997-10-28 2000-07-18 Mitsubishi Heavy Industries, Ltd. Gas turbine stationary blade
JP2001295604A (en) * 2000-04-11 2001-10-26 General Electric Co <Ge> Method of connecting stationary blade hollow insert to nozzle segment of gas turbine
EP1788192A3 (en) * 2005-11-21 2008-11-12 General Electric Company Gas turbine bucket with cooled platform edge and method of cooling platform leading edge
JP2008248826A (en) * 2007-03-30 2008-10-16 Mitsubishi Heavy Ind Ltd Stationary blade for gas turbine and gas turbine provided with the same
JP2009144724A (en) * 2007-12-17 2009-07-02 General Electric Co <Ge> Divergent turbine nozzle
JP2009221995A (en) * 2008-03-18 2009-10-01 Ihi Corp Inner surface cooling structure for high-temperature part
JP2009243429A (en) * 2008-03-31 2009-10-22 Mitsubishi Heavy Ind Ltd Gas turbine blade and gas turbine equipped with the same
JP4634528B1 (en) * 2010-01-26 2011-02-23 三菱重工業株式会社 Split ring cooling structure and gas turbine
JP2011153540A (en) * 2010-01-26 2011-08-11 Mitsubishi Heavy Ind Ltd Split ring cooling structure and gas turbine
JP2013064411A (en) * 2013-01-11 2013-04-11 Mitsubishi Heavy Ind Ltd Gas turbine blade and gas turbine equipped with the same
WO2024048211A1 (en) * 2022-09-01 2024-03-07 三菱重工業株式会社 Gas turbine stationary blade and gas turbine

Also Published As

Publication number Publication date
JP2953842B2 (en) 1999-09-27

Similar Documents

Publication Publication Date Title
JP3192854B2 (en) Turbine cooling blade
JP2668207B2 (en) Aerof oil section of gas turbine engine turbine
RU2179245C2 (en) Gas-turbine engine with turbine blade air cooling system and method of cooling hollow profile part blades
US6099252A (en) Axial serpentine cooled airfoil
JP4801513B2 (en) Cooling circuit for moving wing of turbomachine
US7661930B2 (en) Central cooling circuit for a moving blade of a turbomachine
JP4627840B2 (en) Pressure compensated turbine nozzle
US5352091A (en) Gas turbine airfoil
JP2001073704A (en) Cooling tip of rotor blade
JPH05163959A (en) Turbine stationary blade
CA2513045A1 (en) Internally cooled gas turbine airfoil and method
EP1094200A1 (en) Gas turbine cooled moving blade
JPH04358701A (en) Gas turbine cooling blade
JP3234793B2 (en) Gas turbine vane
JP2938506B2 (en) Turbine vane
JPH1122404A (en) Gas turbine and its rotor blade
JPH0565802A (en) Gas turbine
JPH10231703A (en) Vane for gas turbine
JP3781832B2 (en) gas turbine
JP3069522B2 (en) Gas turbine combustor
JPH04311604A (en) Turbine stationary blade
JPH10280908A (en) Stator blade of gas turbine
JP3031997B2 (en) Gas turbine cooling blade
JPS61118502A (en) Turbine cooled blade
JP2001193408A (en) Turbine cooling blade

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees