JPS6179803A - Static blade for gas turbine - Google Patents

Static blade for gas turbine

Info

Publication number
JPS6179803A
JPS6179803A JP59201509A JP20150984A JPS6179803A JP S6179803 A JPS6179803 A JP S6179803A JP 59201509 A JP59201509 A JP 59201509A JP 20150984 A JP20150984 A JP 20150984A JP S6179803 A JPS6179803 A JP S6179803A
Authority
JP
Japan
Prior art keywords
blade
cooling fluid
cooling
gas turbine
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59201509A
Other languages
Japanese (ja)
Inventor
Yoshitaka Fukuyama
佳孝 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59201509A priority Critical patent/JPS6179803A/en
Publication of JPS6179803A publication Critical patent/JPS6179803A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/80Platforms for stationary or moving blades
    • F05D2240/81Cooled platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/205Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To perform uniform and efficient cooling through a simple structure, by a method wherein the one cooling fluid flow passage is installed within a blade in the vicinity of a blade surface, and the other cooling fluid flow passage is installed to the interior of the blade, and heat exchange between cooling fluids passing through the two flow passages is utilized. CONSTITUTION:A static blade 1 has a blade top part 2a, a blade plate 2b, and a blade root part 2c, and a blade surface material 3 is mounted to the peripheral surface of a structural base material 2 through a pin structure 4. Plenum chambers 5 and 6 for feeding and recovering second cooling fluid are formed in the top part 2a, and are communicated with intermediate plenum chambers on the feed side 7 and the recovery side 8, formed in the root part 2c, through a passage 9. Feed and recovery plenum chambers 11 and 12 for feeding and recovering first cooling fluid, formed in the top part 2a, are communicated with intermediate plenum chambers 13 and 14, formed in the blade root part 2c, through a passage 15. Further, feed ports 17 and 19 and recovery holes 18 and 20 for first and second cooling fluids are formed in the blade top part 2a.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はガスタービン、特に発電等に使用するガスター
ビンの静翼に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gas turbine, and particularly to a stationary blade of a gas turbine used for power generation or the like.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

周知のように、ガスタービンと蒸気タービンとの複合サ
イクルで構成される発電プラントの熱効率を向上させる
には、ガスタービンの入口のガス温度を増加する事が効
果的である。ところが現用されている耐熱合金製のガス
タービン翼では、ガスタービン入口ガス温度を900℃
以上にすると、前記耐熱合金が使用限界温度に達するお
それがあり、したがって、ガスタービンの信頼性が大き
く低下する。このため、様々な流体冷却構造を持つガス
タービン翼が検討されてきた。
As is well known, increasing the gas temperature at the inlet of the gas turbine is effective in improving the thermal efficiency of a power plant configured with a combined cycle of a gas turbine and a steam turbine. However, with the gas turbine blades currently in use made of heat-resistant alloys, the gas turbine inlet gas temperature is limited to 900°C.
If the temperature is higher than that, there is a risk that the heat-resistant alloy will reach its service limit temperature, and the reliability of the gas turbine will therefore be greatly reduced. For this reason, gas turbine blades with various fluid cooling structures have been studied.

従来検討されている流体冷却構造を持つガスタービン翼
は、空気冷却翼と液体(主に水)冷却翼とに大別され、
いずれも翼内部に複数の冷媒通路を備えた構造を採用し
ている。
Gas turbine blades with a fluid-cooled structure that have been considered in the past are broadly divided into air-cooled blades and liquid (mainly water)-cooled blades.
Both have a structure with multiple coolant passages inside the blade.

しかしながら、空気冷却翼では、冷媒通路内における冷
却用空気の熱伝達率が低いので、ガスタービン入口のガ
ス温度が1100’Cを越えると、必要な冷却用空気量
が著しく増大し、しかも翼内部の冷却だけでは十分な冷
却性能が得られないから、翼に形成した小孔やスリット
から翼外に冷却空気を吹き出す、膜冷却方式に依存せざ
るを得ない。
However, in air-cooled blades, the heat transfer coefficient of the cooling air in the refrigerant passage is low, so when the gas temperature at the gas turbine inlet exceeds 1100'C, the amount of cooling air required increases significantly. Since sufficient cooling performance cannot be obtained by cooling the airfoils alone, it is necessary to rely on film cooling, which blows cooling air out of the blades through small holes or slits formed in the blades.

その結果生じる冷却用空気量の増大、高温ガス中への低
温空気の吹き出しは、いずれもガスタービンの出力低下
、熱効率の減少につながるという間瞑がある。
The resulting increase in the amount of cooling air and the blowing of low-temperature air into the high-temperature gas both lead to a decrease in the output of the gas turbine and a decrease in thermal efficiency.

ま念、液体冷却翼では、冷媒通路内における熱伝達率が
高いので、ガス側の温度および熱伝達率分布、ならびに
翼内部構造によって決まる冷媒通路までの翼の熱抵抗に
基づいて、翼表面温度が決定される度合が高くなる。し
たがって、翼内部の冷却構造は、翼外部の熱的条件に大
きく影響されるから、確実な翼内部の冷却構造を決定す
ることが非常に困難となり、シかも、その構造は翼外部
の熱的条件の変化に対する汎用性を著しく欠くものとな
る。さらに、密度の高い液体を冷媒として使用すること
は1回転中の翼内部の冷媒通路内部が高い遠心力によっ
て非常な高圧力となることを意味し、それに対処する翼
内部構造が要求される。
In liquid-cooled blades, the heat transfer coefficient in the coolant passage is high, so the blade surface temperature is determined based on the temperature and heat transfer coefficient distribution on the gas side and the thermal resistance of the blade up to the coolant passage, which is determined by the internal structure of the blade. is determined more often. Therefore, the cooling structure inside the blade is greatly affected by the thermal conditions outside the blade, making it extremely difficult to determine a reliable cooling structure inside the blade. This results in a significant lack of versatility in response to changes in conditions. Furthermore, using a high-density liquid as a refrigerant means that the inside of the refrigerant passage inside the blade during one rotation becomes extremely high pressure due to high centrifugal force, and a blade internal structure is required to cope with this.

一般には前記の高圧力に対処するために冷媒通路は断面
小円形とし、翼内部に所定間隔で配置する構成とするが
、その場合、冷媒通路が非常に高い効率のヒートシンク
となるなめ、そのまわジに強い三次元性温度場が形成さ
れ、したがって、翼表面が均質に冷却されず、翼内部に
も強い熱応力が生じる等の問題がある。
Generally, in order to deal with the high pressure mentioned above, the refrigerant passages are configured to have a small circular cross section and are arranged at predetermined intervals inside the blade. A strong three-dimensional temperature field is formed in the air, which causes problems such as the blade surface not being cooled uniformly and strong thermal stress occurring inside the blade.

〔発明の目的〕[Purpose of the invention]

本発明は上記の事情に基づきなされたもので、冷却が良
好且つ均一になされ、熱応力の発生を最小限とし、さら
に少量の冷却流体しか消費しない構造の簡便なガスター
ビンの靜Rt得る事を目的としている。
The present invention has been made based on the above-mentioned circumstances, and it is possible to obtain a simple structure of a gas turbine that achieves good and uniform cooling, minimizes the occurrence of thermal stress, and consumes only a small amount of cooling fluid. The purpose is

〔発明の概要〕[Summary of the invention]

本発明においては翼表面近傍のH内に冷却流体を通す第
一の冷却流体通路金、また翼内部に第二の冷却流体通路
をそれぞれ設け、両者を通過する冷却流体間の熱交換を
利用し、特に第一の冷却流体の温度上昇を抑え均−且つ
良好の冷却?行う翼において、複数の翼間で冷却流体を
授受する方法で、上記の目的を達成している。
In the present invention, a first cooling fluid passageway for passing cooling fluid through H near the blade surface and a second cooling fluid passageway are provided inside the blade, and heat exchange between the cooling fluid passing through both is provided. In particular, is it possible to suppress the temperature rise of the first cooling fluid and achieve even and good cooling? The above objective is achieved by a method of transferring cooling fluid between a plurality of blades.

〔発明の効果〕〔Effect of the invention〕

(1)翼面全食孔かつ均一に冷却する二流体冷却方式の
ガスタービン静翼において冷却流体を複数の輯間で授受
する事により、全体として冷却流体の使用量全減少でき
る。
(1) By transmitting and receiving cooling fluid between a plurality of curves in a two-fluid cooling type gas turbine stationary blade that has full corrosion holes on the blade surface and uniformly cools the blade, the amount of cooling fluid used as a whole can be reduced.

(2)冷却流体の供給、排出口の数が減少でき、構造的
に単純となり、製作コストの低下につながる。
(2) The number of cooling fluid supply and discharge ports can be reduced, resulting in a simpler structure and lower manufacturing costs.

〔発明の実施例〕[Embodiments of the invention]

第1図、第2図は本発明の一実施例を示す。 FIGS. 1 and 2 show an embodiment of the present invention.

静翼1は翼頂部2a、翼板2b、翼根部2cを有し、ひ
とつの翼のX−X線断面がほぼI字形を呈する構造母材
2の周面に翼表面材3t?例えば、翼母材20表面く形
成した多数のピン構造4t−介して貼付けて構成され、
これを複数個つないだブロックとして成形される。
The stationary blade 1 has a blade top portion 2a, a blade plate 2b, and a blade root portion 2c, and a blade surface material 3t? For example, it is configured by pasting through a large number of pin structures 4t formed on the surface of the blade base material 20,
It is formed into a block by connecting multiple pieces.

第2図は翼二枚を一体成形した場合の本発明の適用の一
例のX−X断面図である。翼頂部2a内には第二の冷却
流体の供給、回収用プレナム室、それぞれ5.6が翼間
にわたって形成され、翼根部2Cに形成される供給側7
1回収側8の中間ブレナム室迄多数の第二の冷却流体通
路9により連結されている。翼根部2cでは中間プレナ
ム7゜80間はジャンパーライン1oにより連続される
が、このジャンパーラインは翼根部中く形成してもさし
つかえない。
FIG. 2 is a cross-sectional view taken along line XX of an example of application of the present invention when two blades are integrally molded. Inside the blade top part 2a, a second cooling fluid supply and recovery plenum chamber 5.6 is formed between the blades, and a supply side 7 is formed in the blade root part 2C.
The first recovery side 8 is connected to the middle brenum chamber by a number of second cooling fluid passages 9. In the blade root portion 2c, the intermediate plenum 7°80 is continuous by a jumper line 1o, but this jumper line may be formed in the blade root portion.

翼面直下を流れる第一の冷却流体用に翼頂部2aに供給
プレナム111回収プレナム12が形成され、翼根部2
Cに形成される中間プレナム13.14゜迄翼表面材3
と翼母材20間に形成される第一の冷却流体通路15を
通して流れ冷却する。翼根部2CKは第二の冷却流体用
ジャンパーライン16が設けられるが、これも翼根内向
に製作しても何らさしつかえない、翼頂部には第一の冷
却流体供給口17.回収孔18.第二の冷却流体用供給
口19、回収孔20を設ける。円周方向に形成する供給
1回収及び各中間プレナム内には流れの方向を定めるし
き9板21?設けても良い。この構成により、二板の静
翼をまとめてしかも供給回収ループが%に減少する簡便
な冷却システムが実現される。
A supply plenum 111 and a recovery plenum 12 are formed at the blade top 2a for the first cooling fluid flowing directly below the blade surface, and the blade root 2
Wing surface material 3 up to 13.14° of the intermediate plenum formed at C
The cooling fluid flows through the first cooling fluid passage 15 formed between the blade base material 20 and the blade base material 20 for cooling. The blade root 2CK is provided with a second cooling fluid jumper line 16, but there is no problem even if this jumper line is made inwardly at the blade root.A first cooling fluid supply port 17 is provided at the blade top. Recovery hole 18. A second cooling fluid supply port 19 and a recovery hole 20 are provided. In each intermediate plenum, there are 9 plates 21 that define the direction of flow. It may be provided. With this configuration, a simple cooling system is realized in which two stator blades are combined and the supply/recovery loop is reduced to 50%.

第3図は本発明の他の実施例を示している。との構成で
は冷却の困難な静翼のエンドウオールに関して、第一の
冷却流体t−フィルム状にふき出すふき出し孔22金持
ち、翼頂部2a、翼根部2Cともプレナム11.23に
集めた流体を主流中にふき出す事で冷却効率を高めてい
る。本購成によれば翼根部の第一の冷却流体用ジャンパ
ーラインは不必要となる。又供給プレナム11は吹き出
し用ブレナムと内部で分割する構成としても良い。
FIG. 3 shows another embodiment of the invention. With regard to the stator blade end wall, which is difficult to cool with this configuration, the first cooling fluid is collected in the plenum 11.23 in both the blowout hole 22, the blade top 2a, and the blade root 2C, which blows out in the form of a film. Cooling efficiency is increased by blowing out into the mainstream. According to this purchase, the first jumper line for cooling fluid at the blade root becomes unnecessary. Further, the supply plenum 11 may be configured to be internally divided from the blowing plenum.

第4図は本発明の他の実施例を示す、同図では第二の冷
却流体により翼頂部エンドウオールの冷却24を行う構
成としている。
FIG. 4 shows another embodiment of the present invention, in which the blade top end wall is cooled 24 by a second cooling fluid.

第5図は本発明の他の実施例を示す、第一の冷却流体は
翼根部2Cでジャンパーライン16を通して二枚の翼間
で授受され、第二の冷却流体はそれぞれの翼内で供給回
収される。
FIG. 5 shows another embodiment of the present invention, in which the first cooling fluid is exchanged between two blades through the jumper line 16 at the blade root 2C, and the second cooling fluid is supplied and recovered within each blade. be done.

第6図、第7図は第1図に示す静翼のY−Y断面である
。第6図は翼体で第一の冷却流体の吹き出しを行わない
例であり。
6 and 7 are YY cross sections of the stationary blade shown in FIG. 1. FIG. 6 is an example in which the first cooling fluid is not blown out from the wing body.

第7図は翼後縁部25に吹き出し孔26を設は冷却剤の
吹惠出しを行う場合を示す、翼内部に冷却流体の速度を
高くする分割壁27t−設ける事もできる。
FIG. 7 shows a case where a blowout hole 26 is provided in the trailing edge portion 25 of the blade to blow out the coolant.A dividing wall 27t may also be provided inside the blade to increase the velocity of the cooling fluid.

〔発明の効果〕〔Effect of the invention〕

以上から明らかなように、本発明のガスタービンの静翼
においては、翼面をその直下から冷却する第一の冷却流
体の温度上昇を第二の冷却流体により少くする事ができ
、より均一で効率の良い冷却を行える。又複数の翼間で
第一と第二又は第一か第二の冷却流体を授受する為に冷
却流体の使用−38:’を少くでき冷却構造も非常に簡
便となり、発電プラントの効率向上と冷却翼のコスト低
下につながる。
As is clear from the above, in the stator vane of the gas turbine of the present invention, the temperature rise of the first cooling fluid that cools the blade surface from directly below can be reduced by using the second cooling fluid, and the blade surface can be more uniform. Provides efficient cooling. In addition, since the first and second or first or second cooling fluid is exchanged between multiple blades, the amount of cooling fluid used can be reduced, and the cooling structure becomes very simple, which improves the efficiency of the power plant. This leads to a reduction in the cost of cooling blades.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の斜視図、第2図は第1図に
おけるX−X断面図、第3図乃至第5図は本発明の他の
実施例、第6図、第7図は、本発明の実施例の第1図に
おけるY−X断面図である。 トタービン静翼、2 ・構造母材、3・・・翼表面材、
4 ・ピン、5〜8・・第二の冷却流体用プレナム室、
9・・第二の冷却流体通路、  10・・・第二の冷却
流体の翼根ジャンパーライン、11〜14・・・第一の
冷却流体用プレナム、15  ・第一の冷却流体通路、
16・・第一の冷却流体の翼根ジャンパーライン、17
・・第一の冷却流体供給口、18・・第一の冷却流体排
出口、19・・第二の冷却流体供給口、20・・・第二
の冷却流体排出口、21・・・プレナム内しきり板、2
2・・・第一の冷却流体吹き出し孔、23・・・吹き出
し用ブレナム、24・・第二の冷却流体用エンドウオー
ル冷却孔。 代理人 弁理士 則近憲佑(ほか1名)第1図 第2図 第3図 第5図 第6図 第7図
FIG. 1 is a perspective view of one embodiment of the present invention, FIG. 2 is a sectional view taken along line XX in FIG. 1, and FIGS. 3 to 5 are other embodiments of the present invention, The figure is a YX sectional view in FIG. 1 of the embodiment of the present invention. Turbine stationary blade, 2. Structural base material, 3... Blade surface material,
4 Pins, 5 to 8 Second cooling fluid plenum chamber;
9... Second cooling fluid passage, 10... Second cooling fluid blade root jumper line, 11-14... First cooling fluid plenum, 15 - First cooling fluid passage,
16. First cooling fluid blade root jumper line, 17
...first cooling fluid supply port, 18..first cooling fluid outlet, 19..second cooling fluid supply port, 20..second cooling fluid discharge port, 21..inside the plenum. Shikiri board, 2
2...First cooling fluid blowout hole, 23...Blenheim for blowing out, 24...Second cooling fluid end wall cooling hole. Agent Patent attorney Kensuke Norichika (and 1 other person) Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Figure 7

Claims (5)

【特許請求の範囲】[Claims] (1)翼頂部、翼板、翼根部をそなえた構成母材と、こ
の構成母材の翼板周面を覆って設けられ、前記周面との
間に第一の冷却流体の流路空間を構成る表面部材と、前
記空間に第一の冷却流体を供給し、排出する手段と、前
記構成母材の翼板周辺近傍に設けた多数の冷却管と、こ
れらの冷却管に第二の冷却流体を供給し排出する手段と
を有するガスタービンの静翼を複数個まとめた静翼ブロ
ックにおいて、第一及び第二の冷却流路をそれぞれ翼列
にわたって結合し、第一及び第二の冷却流体を対向して
流す事を特徴とするガスタービンの静翼。
(1) A base material comprising a blade top, a blade plate, and a blade root, and a first cooling fluid flow path space provided between the base material and the peripheral surface of the blade, which is provided to cover the peripheral surface of the blade of the base material. a surface member constituting the space, a means for supplying and discharging a first cooling fluid into the space, a large number of cooling pipes provided near the periphery of the vane of the base material, and a second cooling fluid connected to these cooling pipes. In a stator blade block which is a collection of a plurality of stator blades of a gas turbine having means for supplying and discharging cooling fluid, the first and second cooling channels are respectively connected across the blade rows, and the first and second cooling channels are connected together over the blade rows. A gas turbine stationary blade that allows fluid to flow in opposite directions.
(2)静翼ブロックにおいて、第一の冷却流体を複数の
翼間で授受せず、翼頂部、翼根部或いは翼面の一部から
主流ガス中に吹き出す事を特徴とする特許請求の範囲第
1項記載のガスタービンの静翼。
(2) In the stationary blade block, the first cooling fluid is not transferred between the plurality of blades, but is blown out into the mainstream gas from the blade top, blade root, or part of the blade surface. The stationary blade of the gas turbine according to item 1.
(3)静翼ブロックにおいて、第二の冷却流体を複数の
翼間で授受せず、各翼から供給、排出する特許請求の範
囲第1項記載のガスタービンの静翼。
(3) A stator blade for a gas turbine according to claim 1, wherein the second cooling fluid is not transferred between a plurality of blades in the stator blade block, but is supplied and discharged from each blade.
(4)第一の冷却流路内部に、流体の流れと対向したリ
ブ構造、流体の流れに平行なフィン構造、を有すること
を特徴とする特許請求の範囲第1項乃至第3項記載のガ
スタービンの翼。
(4) The first cooling channel has a rib structure facing the fluid flow and a fin structure parallel to the fluid flow. gas turbine blades.
(5)翼頂部或いは翼根部の内側に存在する中空のプレ
ナム室の一部を仕切り、流れを一方向に制限する事を特
徴とする特許請求の範囲第1項乃至第4項記載のガスタ
ービンの翼。
(5) The gas turbine according to claims 1 to 4, characterized in that a hollow plenum chamber existing inside the blade top or blade root is partially partitioned to restrict the flow in one direction. wings.
JP59201509A 1984-09-28 1984-09-28 Static blade for gas turbine Pending JPS6179803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59201509A JPS6179803A (en) 1984-09-28 1984-09-28 Static blade for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59201509A JPS6179803A (en) 1984-09-28 1984-09-28 Static blade for gas turbine

Publications (1)

Publication Number Publication Date
JPS6179803A true JPS6179803A (en) 1986-04-23

Family

ID=16442225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59201509A Pending JPS6179803A (en) 1984-09-28 1984-09-28 Static blade for gas turbine

Country Status (1)

Country Link
JP (1) JPS6179803A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119303U (en) * 1991-04-09 1992-10-26 三菱重工業株式会社 nozzle
JPH05163959A (en) * 1991-12-16 1993-06-29 Tohoku Electric Power Co Inc Turbine stationary blade
EP0866214A2 (en) * 1997-03-17 1998-09-23 Mitsubishi Heavy Industries, Ltd. Cooled platform for a gas turbine rotor blade
CN107605540A (en) * 2017-09-18 2018-01-19 东方电气集团东方汽轮机有限公司 Double split flow turbine enters vapour flow-guiding structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000005882A (en) * 1998-04-20 2000-01-11 Nissan Motor Co Ltd Method and device for controlling spot welding
JP2002316270A (en) * 2001-04-20 2002-10-29 Nissan Motor Co Ltd Method for deciding weld condition and device for the same
JP2013121616A (en) * 2011-12-12 2013-06-20 Dengensha Mfg Co Ltd Resistance welding machine and resistance welding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000005882A (en) * 1998-04-20 2000-01-11 Nissan Motor Co Ltd Method and device for controlling spot welding
JP2002316270A (en) * 2001-04-20 2002-10-29 Nissan Motor Co Ltd Method for deciding weld condition and device for the same
JP2013121616A (en) * 2011-12-12 2013-06-20 Dengensha Mfg Co Ltd Resistance welding machine and resistance welding method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119303U (en) * 1991-04-09 1992-10-26 三菱重工業株式会社 nozzle
JPH05163959A (en) * 1991-12-16 1993-06-29 Tohoku Electric Power Co Inc Turbine stationary blade
EP0866214A2 (en) * 1997-03-17 1998-09-23 Mitsubishi Heavy Industries, Ltd. Cooled platform for a gas turbine rotor blade
EP0866214A3 (en) * 1997-03-17 1999-03-03 Mitsubishi Heavy Industries, Ltd. Cooled platform for a gas turbine rotor blade
CN107605540A (en) * 2017-09-18 2018-01-19 东方电气集团东方汽轮机有限公司 Double split flow turbine enters vapour flow-guiding structure

Similar Documents

Publication Publication Date Title
US6036436A (en) Gas turbine cooling stationary vane
US6079946A (en) Gas turbine blade
US5873695A (en) Steam cooled blade
US5915923A (en) Gas turbine moving blade
US5813836A (en) Turbine blade
EP0866214B1 (en) Cooled platform for a gas turbine rotor blade
JP3316415B2 (en) Gas turbine cooling vane
US7568887B1 (en) Turbine blade with near wall spiral flow serpentine cooling circuit
US6264426B1 (en) Gas turbine stationary blade
JP2668207B2 (en) Aerof oil section of gas turbine engine turbine
JPH02233802A (en) Cooling type turbine blade
JP2000038901A (en) Hollow aerofoil
GB2267737A (en) Cooling turbo-machine stator vanes
US6092991A (en) Gas turbine blade
US3164367A (en) Gas turbine blade
EP0927814B1 (en) Tip shroud for cooled blade of gas turbine
US6065931A (en) Gas turbine moving blade
JP2953842B2 (en) Turbine vane
JPS6179803A (en) Static blade for gas turbine
JPH10266805A (en) Gas turbine stationary blade
JPS62153504A (en) Shrouding segment
JPH09280002A (en) Gas turbine moving blade
JPH0463901A (en) Gas turbine cooling blade
JPH0565802A (en) Gas turbine
JPH06137102A (en) Hollow moving blade of gas turbine