JPH09280002A - Gas turbine moving blade - Google Patents

Gas turbine moving blade

Info

Publication number
JPH09280002A
JPH09280002A JP9220096A JP9220096A JPH09280002A JP H09280002 A JPH09280002 A JP H09280002A JP 9220096 A JP9220096 A JP 9220096A JP 9220096 A JP9220096 A JP 9220096A JP H09280002 A JPH09280002 A JP H09280002A
Authority
JP
Japan
Prior art keywords
cooling
steam
air
blade
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9220096A
Other languages
Japanese (ja)
Other versions
JP3426841B2 (en
Inventor
Kiyoshi Suenaga
潔 末永
Takakuni Kasai
剛州 笠井
Kazuo Uematsu
一雄 上松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP09220096A priority Critical patent/JP3426841B2/en
Publication of JPH09280002A publication Critical patent/JPH09280002A/en
Application granted granted Critical
Publication of JP3426841B2 publication Critical patent/JP3426841B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/80Platforms for stationary or moving blades
    • F05B2240/801Platforms for stationary or moving blades cooled platforms

Abstract

PROBLEM TO BE SOLVED: To improve thermal efficiency of a gas turbine without deteriorating cooling performance of a blade profile part and a platform part by providing a serpentine flow passage on the blade profile part so as to perform cooling by steam, and providing a convection cooling passage or film cooling holes on the platform part 7 as to perform cooling by air. SOLUTION: The interior of a blade profile part 101 is provided with a serpentine flow passage 103 of which the inside is formed along the outer face of the blade profile part 101, and a blade root part is provided with a steam supply port 104 and a steam collect port 105. The platform part 102 is provided with a convection cooling passage 107 or film cooling holes 108 through which sealing air is passed for convection cooling or film cooling of the platform part 102A. Consequently, the blade profile part 101 is cooled by steam, and the platform part 102 is cooled by air. In addition, the air after cooling the platform part 102 is released in turbine main flow gas, but the air is the sealing air, and hence it is unnecessary to release surplus cooling medium in the turbine main flow gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,ガスタービン翼の
冷却技術に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine blade cooling technique.

【0002】[0002]

【従来の技術】従来から,コンバインドプラント等に用
いる高温のガスタービンにおいては,高温ガスの熱から
翼を保護するために,翼の内部に通路を設けて比較的低
温の冷却空気を流し,翼の温度をガス温度よりも低く抑
えている。この空気による翼の冷却方式では,翼根部か
ら供給された冷却空気を,翼内部の冷却通路を通過させ
た後,翼の外縁に設けられた穴から翼外部(タービンの
主流ガス中)に放出している。
2. Description of the Related Art Conventionally, in a high temperature gas turbine used in a combined plant or the like, in order to protect the blade from the heat of the high temperature gas, a passage is provided inside the blade to allow cooling air having a relatively low temperature to flow therethrough. The temperature is kept lower than the gas temperature. In this blade cooling system using air, the cooling air supplied from the blade root passes through the cooling passage inside the blade and is then discharged to the outside of the blade (in the mainstream gas of the turbine) from the hole provided at the outer edge of the blade. are doing.

【0003】この空気冷却方式に対し,近年,蒸気によ
る翼の冷却方式が考えられている。蒸気による翼冷却方
式では,冷却に供した蒸気を放出せずに回収することと
しており,これによってガスタービンの熱効率向上が期
待できる。また,コンバインドプラントにおいては,回
収した蒸気を蒸気タービンに送ってプラント全体の効率
を改善することも可能となる。
In contrast to this air cooling method, a blade cooling method using steam has been considered in recent years. In the blade cooling method using steam, the steam used for cooling is collected without being released, and this can be expected to improve the thermal efficiency of the gas turbine. In a combined plant, it is also possible to send the recovered steam to a steam turbine to improve the efficiency of the entire plant.

【0004】[0004]

【発明が解決しようとする課題】ガスタービンの動翼に
おいて,高温ガスの影響を直接受けるのは翼形部とプラ
ットホーム部であり,これらの部分には全体にわたって
均一に冷却を施す必要がある。通常,このような冷却を
施すには,内側面を翼形部またはプラットホーム部の外
面に沿わせた形状の蛇行通路(いわゆる,サーペンタイ
ン流路)を冷却通路として内部に設けることが考えられ
る。
In the moving blade of the gas turbine, the hot gas is directly affected by the airfoil portion and the platform portion, and these portions need to be uniformly cooled throughout. Usually, in order to perform such cooling, it is conceivable to provide a meandering passage (so-called serpentine passage) having a shape in which the inner surface is along the outer surface of the airfoil portion or the platform portion as a cooling passage inside.

【0005】この場合,翼形部はある程度の厚みを有し
ているため,精密鋳造で作成した場合であっても比較的
容易に上記のような蛇行通路を内部に設けることが可能
である。これに対して,プラットホーム部は薄く広い構
造となっているため,精密鋳造で内部全体に上記のよう
な蛇行通路を設けることは困難であり,不経済でもあ
る。
In this case, since the airfoil portion has a certain thickness, it is possible to relatively easily provide the meandering passage as described above inside even when it is produced by precision casting. On the other hand, since the platform part has a thin and wide structure, it is difficult and uneconomical to provide the above serpentine passages in the entire interior by precision casting.

【0006】また,コンバインドプラント全体の効率を
上げるためには,ガスタービン翼の冷却過程で生じる圧
力損失を抑えて,できるだけ高い圧力を保ったまま回収
蒸気を蒸気タービンへ供給する必要があるが,プラット
ホーム部の内部全体に設けた蛇行通路に冷却蒸気を通す
と,圧力損失が非常に大きくなってしまい,さほどの効
率向上は見込めなくなってしまう。
Further, in order to increase the efficiency of the entire combined plant, it is necessary to suppress the pressure loss caused in the cooling process of the gas turbine blades and supply the recovered steam to the steam turbine while keeping the pressure as high as possible. If cooling steam is passed through the meandering passage provided in the entire inside of the platform, the pressure loss will become extremely large, and it will not be possible to expect much improvement in efficiency.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
め,本発明は,ガスタービン動翼において,翼根部に蒸
気供給口及び蒸気回収口を設け,該蒸気供給口及び蒸気
回収口と連通した蛇行通路を翼形部の内部に備え,かつ
シール空気を通してプラットホーム部を対流冷却する対
流冷却通路またはフィルム冷却するフィルム冷却孔を該
プラットホーム部に備えたことを特徴とする。
In order to solve the above problems, the present invention provides a gas turbine rotor blade with a steam supply port and a steam recovery port at the blade root portion, and communicates with the steam supply port and the steam recovery port. And a convection cooling passage for convectively cooling the platform or a film cooling hole for film cooling through the seal air.

【0008】このような構成を採用したことにより,翼
形部は蒸気で冷却され,プラットホーム部は空気で冷却
されるようになる。プラットホーム部を冷却した空気は
タービン主流ガス中に放出されるが,該空気は元々ター
ビン主流ガス中に放出されるシール空気であるため,同
タービン主流ガス中に余分な冷却媒体を放出する必要は
ない。
By adopting such a structure, the airfoil portion is cooled by steam and the platform portion is cooled by air. The air that has cooled the platform is released into the turbine mainstream gas, but since the air is originally seal air that is released into the turbine mainstream gas, it is not necessary to release an extra cooling medium into the turbine mainstream gas. Absent.

【0009】[0009]

【発明の実施の形態】図1は,本発明にかかるガスター
ビン動翼の一実施形態を示した縦断面図である。同図に
おいて,翼形部101の内部には,内側面を翼形部の外
面に沿わせた形状の蛇行通路(サーペンタイン流路)1
03が設けてあり,翼根部には蒸気供給口104及び蒸
気回収口105が設けられている。サーペンタイン流路
103は,翼前縁側に位置する流路と翼後縁側に位置す
る流路に分割されている。
1 is a longitudinal sectional view showing an embodiment of a gas turbine rotor blade according to the present invention. In the figure, inside the airfoil portion 101, a meandering passage (serpentine flow passage) 1 having a shape in which the inner surface is along the outer surface of the airfoil portion 1
03 is provided, and the blade root portion is provided with a steam supply port 104 and a steam recovery port 105. The serpentine channel 103 is divided into a channel located on the blade leading edge side and a channel located on the blade trailing edge side.

【0010】蒸気供給口104から供給された冷却蒸気
は,翼根部内に設けられた二股通路によって2方向に分
割され,一方は翼前縁側のサーペンタイン流路103に
供給され,他方は翼後縁側のサーペンタイン流路103
に供給される。図1の矢印で示したように,どちらの流
路においても,蒸気供給口104から供給された冷却蒸
気は,翼の縁側から翼中央部に向かって蛇行して進むよ
うになっている。そして,翼中央部に送られた蒸気は翼
根部内の通路を通って前記蒸気回収口105へ進み,回
収される。
The cooling steam supplied from the steam supply port 104 is divided into two directions by a bifurcated passage provided in the blade root portion, one is supplied to the serpentine flow passage 103 on the blade leading edge side, and the other is supplied to the blade trailing edge side. Serpentine channel 103
Is supplied to. As shown by the arrows in FIG. 1, in both flow paths, the cooling steam supplied from the steam supply port 104 meanders from the blade edge side toward the blade central portion. Then, the steam sent to the central portion of the blade advances to the steam recovery port 105 through the passage in the root portion of the blade and is recovered.

【0011】図2は,図1のA−A断面図である。同図
において,プラットホーム部102上には,複数のフィ
ルム冷却孔108が開口しており,同フィルム冷却孔1
08から吹き出す冷却空気によってプラットホーム部1
02をフィルム冷却する。フィルム冷却孔108に向か
って延びている破線は,同フィルム冷却孔108へ冷却
空気を供給する冷却空気通路である。
FIG. 2 is a sectional view taken along line AA of FIG. In the figure, a plurality of film cooling holes 108 are opened on the platform section 102.
Platform part 1 by cooling air blown from 08
Film cool 02. A broken line extending toward the film cooling hole 108 is a cooling air passage for supplying cooling air to the film cooling hole 108.

【0012】図3は,図2のB−B断面図である。同図
において,プラットホーム部102には,冷却空気を流
すことによって対流冷却を行う対流冷却通路107が設
けられている。図4は,図2のC−C断面図を表してい
る。
FIG. 3 is a sectional view taken along line BB of FIG. In the figure, the platform section 102 is provided with a convection cooling passage 107 for performing convection cooling by flowing cooling air. FIG. 4 shows a sectional view taken along the line CC of FIG.

【0013】図5は,本発明の一実施形態にかかる冷却
蒸気及び冷却空気の供給,回収経路を示している。同図
において,冷却蒸気106は,タービンロータ110を
通って,第1段動翼に供給される。第1段動翼を冷却し
た蒸気は,タービンロータ110内を通過し,第2段動
翼を冷却した後に同タービンロータ110を通って回収
される。
FIG. 5 shows the supply and recovery paths of cooling steam and cooling air according to an embodiment of the present invention. In the figure, the cooling steam 106 is supplied to the first stage moving blades through the turbine rotor 110. The steam that has cooled the first-stage rotor blades passes through the turbine rotor 110, cools the second-stage rotor blades, and then is recovered through the turbine rotor 110.

【0014】また,プラットホーム部102の冷却に
は,圧縮器から抽気されたシール空気を用いている。シ
ール側とタービン主流側との間には圧力差が存在するの
で,同空気はプラットホーム部102に設けた対流冷却
通路107及びフィルム冷却孔108を介してタービン
主流ガス中に流出する。その際,プラットホーム部10
2の冷却に寄与することとなる。
Further, for cooling the platform section 102, seal air extracted from the compressor is used. Since there is a pressure difference between the seal side and the turbine mainstream side, the air flows into the turbine mainstream gas through the convection cooling passage 107 and the film cooling hole 108 provided in the platform 102. At that time, the platform section 10
2 will contribute to cooling.

【0015】[0015]

【発明の効果】本発明によれば,翼形部及びプラットホ
ーム部の冷却性能を低下させることなく,ガスタービン
の熱効率を向上し,また翼の製造コストを抑えることが
できるようになる。また,本発明をコンバインドプラン
トにおけるガスタービンに適用すれば,プラント全体の
効率アップにつながることとなる。
According to the present invention, the thermal efficiency of the gas turbine can be improved and the manufacturing cost of the blade can be suppressed without lowering the cooling performance of the airfoil portion and the platform portion. Further, if the present invention is applied to a gas turbine in a combined plant, the efficiency of the entire plant will be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態にかかるガスタービン動翼
の縦断面図。
FIG. 1 is a vertical cross-sectional view of a gas turbine rotor blade according to an embodiment of the present invention.

【図2】図1におけるA−A断面図。FIG. 2 is a sectional view taken along line AA in FIG.

【図3】図2におけるB−B断面図。FIG. 3 is a sectional view taken along line BB in FIG. 2;

【図4】図2におけるC−C断面図。FIG. 4 is a sectional view taken along line CC of FIG.

【図5】本発明の一実施形態にかかる冷却蒸気及び冷却
空気の供給,回収経路を示したガスタービン内部断面
図。
FIG. 5 is an internal cross-sectional view of a gas turbine showing supply and recovery paths of cooling steam and cooling air according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

101 翼形部 102 プラットホーム部 103 サーペンタイン流路 104 蒸気導入口 105 蒸気回収口 106 冷却蒸気 107 対流冷却通路 108 フィルム冷却孔 109 冷却空気 110 タービンロータ Reference Signs List 101 Airfoil 102 Platform 103 Serpentine flow path 104 Steam inlet 105 Steam recovery port 106 Cooling steam 107 Convection cooling passage 108 Film cooling hole 109 Cooling air 110 Turbine rotor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービン動翼において,翼根部に蒸
気供給口及び蒸気回収口を設け,該蒸気供給口及び蒸気
回収口と連通した蛇行通路を翼形部の内部に備え,かつ
シール空気を通してプラットホーム部を対流冷却する対
流冷却通路またはフィルム冷却するフィルム冷却孔を該
プラットホーム部に備えたことを特徴とするガスタービ
ン動翼。
1. In a gas turbine rotor blade, a steam supply port and a steam recovery port are provided at a blade root portion, a meandering passage communicating with the steam supply port and the steam recovery port is provided inside the airfoil portion, and seal air is passed through. A gas turbine moving blade, comprising: a convection cooling passage for convectively cooling a platform portion or a film cooling hole for film cooling provided on the platform portion.
JP09220096A 1996-04-15 1996-04-15 Gas turbine blade Expired - Fee Related JP3426841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09220096A JP3426841B2 (en) 1996-04-15 1996-04-15 Gas turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09220096A JP3426841B2 (en) 1996-04-15 1996-04-15 Gas turbine blade

Publications (2)

Publication Number Publication Date
JPH09280002A true JPH09280002A (en) 1997-10-28
JP3426841B2 JP3426841B2 (en) 2003-07-14

Family

ID=14047811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09220096A Expired - Fee Related JP3426841B2 (en) 1996-04-15 1996-04-15 Gas turbine blade

Country Status (1)

Country Link
JP (1) JP3426841B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0937863A3 (en) * 1998-02-23 2000-04-19 Mitsubishi Heavy Industries, Ltd. Gas turbine rotor blade platform
JP2001090501A (en) * 1999-09-24 2001-04-03 General Electric Co <Ge> Gas turbine bucket having impingement cooled platform
EP1122405A2 (en) 2000-02-02 2001-08-08 General Electric Company Gas turbine bucket cooling circuit
US6315518B1 (en) 1998-01-20 2001-11-13 Mitsubishi Heavy Industries, Ltd. Stationary blade of gas turbine
EP1116861A3 (en) * 2000-01-13 2003-12-03 General Electric Company A cooling circuit for and method of cooling a gas turbine bucket
EP1577497A1 (en) * 2004-03-01 2005-09-21 ALSTOM Technology Ltd Internally cooled turbomachine blade
JP2012145116A (en) * 2006-11-10 2012-08-02 General Electric Co <Ge> Interstage cooled turbine engine
WO2012140806A1 (en) * 2011-04-14 2012-10-18 三菱重工業株式会社 Gas turbine rotor blade and gas turbine
WO2016039714A1 (en) * 2014-09-08 2016-03-17 Siemens Energy, Inc. A cooled turbine vane platform comprising forward, midchord and aft cooling chambers in the platform

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6315518B1 (en) 1998-01-20 2001-11-13 Mitsubishi Heavy Industries, Ltd. Stationary blade of gas turbine
DE19880989C2 (en) * 1998-01-20 2002-01-24 Mitsubishi Heavy Ind Ltd Stationary blade of a gas turbine
US6196799B1 (en) 1998-02-23 2001-03-06 Mitsubishi Heavy Industries, Ltd. Gas turbine moving blade platform
EP0937863A3 (en) * 1998-02-23 2000-04-19 Mitsubishi Heavy Industries, Ltd. Gas turbine rotor blade platform
JP2001090501A (en) * 1999-09-24 2001-04-03 General Electric Co <Ge> Gas turbine bucket having impingement cooled platform
JP4571277B2 (en) * 1999-09-24 2010-10-27 ゼネラル・エレクトリック・カンパニイ Gas turbine blade with impingement cooling platform
EP1116861A3 (en) * 2000-01-13 2003-12-03 General Electric Company A cooling circuit for and method of cooling a gas turbine bucket
EP1122405A3 (en) * 2000-02-02 2004-01-07 General Electric Company Gas turbine bucket cooling circuit
JP2001214703A (en) * 2000-02-02 2001-08-10 General Electric Co <Ge> Gas turbine bucket cooling circuit and its cooling method
EP1122405A2 (en) 2000-02-02 2001-08-08 General Electric Company Gas turbine bucket cooling circuit
EP1577497A1 (en) * 2004-03-01 2005-09-21 ALSTOM Technology Ltd Internally cooled turbomachine blade
JP2012145116A (en) * 2006-11-10 2012-08-02 General Electric Co <Ge> Interstage cooled turbine engine
WO2012140806A1 (en) * 2011-04-14 2012-10-18 三菱重工業株式会社 Gas turbine rotor blade and gas turbine
KR101277388B1 (en) * 2011-04-14 2013-06-20 미츠비시 쥬고교 가부시키가이샤 Gas turbine rotor blade and gas turbine
JP5291837B2 (en) * 2011-04-14 2013-09-18 三菱重工業株式会社 Gas turbine blade and gas turbine
US9085987B2 (en) 2011-04-14 2015-07-21 Mitsubishi Heavy Industries, Ltd. Turbine blade and gas turbine
WO2016039714A1 (en) * 2014-09-08 2016-03-17 Siemens Energy, Inc. A cooled turbine vane platform comprising forward, midchord and aft cooling chambers in the platform
CN106661946A (en) * 2014-09-08 2017-05-10 西门子能源公司 A cooled turbine vane platform comprising forward, midchord and aft cooling chambers in the platform
US9874102B2 (en) 2014-09-08 2018-01-23 Siemens Energy, Inc. Cooled turbine vane platform comprising forward, midchord and aft cooling chambers in the platform

Also Published As

Publication number Publication date
JP3426841B2 (en) 2003-07-14

Similar Documents

Publication Publication Date Title
EP0929734B1 (en) Gas turbine airfoil cooling
JP4513002B2 (en) Cooling system for platform edge of nozzle segment
US9127560B2 (en) Cooled turbine blade and method for cooling a turbine blade
US8366394B1 (en) Turbine blade with tip rail cooling channel
EP0955449B1 (en) Gas turbine blade
JP4801513B2 (en) Cooling circuit for moving wing of turbomachine
US6506013B1 (en) Film cooling for a closed loop cooled airfoil
US5387086A (en) Gas turbine blade with improved cooling
JP3486191B2 (en) Turbine vane with platform cavity for dual supply of cooling fluid
US7147439B2 (en) Apparatus and methods for cooling turbine bucket platforms
US7976277B2 (en) Air-cooled component
JP4663479B2 (en) Gas turbine rotor blade
JPH10252410A (en) Blade cooling air supply system for gas turbine
US6468031B1 (en) Nozzle cavity impingement/area reduction insert
KR20070006875A (en) Blade for a gas turbine
JP2000186503A (en) Blade used in gas turbine engine
JP2001065301A (en) Internal cooling aerofoil parts and cooling method therefor
US6065931A (en) Gas turbine moving blade
JP2001003704A (en) Internal intercooling turbine blade shaped section
US11035235B2 (en) Turbomachine blade with optimised cooling
US6514037B1 (en) Method for reducing cooled turbine element stress and element made thereby
US8366393B2 (en) Rotor blade
US6419447B1 (en) Gas turbine equipment and turbine blade
JP3426841B2 (en) Gas turbine blade
EP1106280A1 (en) Core to control turbine bucket wall thickness and method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees