JPS6199278A - Metal-hydrogen alkaline storage battery - Google Patents

Metal-hydrogen alkaline storage battery

Info

Publication number
JPS6199278A
JPS6199278A JP59219937A JP21993784A JPS6199278A JP S6199278 A JPS6199278 A JP S6199278A JP 59219937 A JP59219937 A JP 59219937A JP 21993784 A JP21993784 A JP 21993784A JP S6199278 A JPS6199278 A JP S6199278A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode
battery
hydrogen
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59219937A
Other languages
Japanese (ja)
Other versions
JP2598891B2 (en
Inventor
Masaru Yamano
山野 大
Takashi Sakai
貴史 酒井
Sanehiro Furukawa
古川 修弘
Shuzo Murakami
修三 村上
Takanao Matsumoto
松本 孝直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP21993784A priority Critical patent/JP2598891B2/en
Priority to FR848418698A priority patent/FR2569059B1/en
Priority to DE19843444998 priority patent/DE3444998A1/en
Priority to GB08431142A priority patent/GB2162994B/en
Priority to US06/841,058 priority patent/US4636445A/en
Publication of JPS6199278A publication Critical patent/JPS6199278A/en
Application granted granted Critical
Publication of JP2598891B2 publication Critical patent/JP2598891B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6553Terminals or leads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To suppress capacity drop at a negative electrode by brining a negative electrode, equipped with hydrogen occluding alloy, into contact with the inner face of an armored cell can either directly or through heat conductive material of grease. CONSTITUTION:A negative electrode 2, situated at the outer face of an electrode body and equipped with hydrogen occluding alloy, is brought into contact with the inner face of an armored cell can 4 either directly or through conductive material of grease. Then heat generating at the negative electrode during charge is conducted from the negative electrode, which is situated at the outer face of the electrode body, to the metal armored cell can 4, and the heat is quickly released from the surface of the can 4, being the negative electrode cooled. Contact of the negative electrode 2 and the can 4 through heat conductive material of grease increases cooling effect since heat generating at the negative electrode becomes particularly easy to conduct to the can 4. Therefore capacity deterioration at the negative electrode can be suppressed.

Description

【発明の詳細な説明】 (−r)産業上の利用分野 本発明は水素を吸蔵・放出する能力を有する水素吸蔵合
金を備えた電極を負極とし、金属酸化物を備えた電極を
正極とするニッケルー水素電池のような金属−水素アル
カリ蓄電池の構造に関する。
Detailed Description of the Invention (-r) Industrial Application Field The present invention uses an electrode provided with a hydrogen storage alloy having the ability to absorb and release hydrogen as a negative electrode, and an electrode provided with a metal oxide as a positive electrode. This invention relates to the structure of metal-hydrogen alkaline storage batteries such as nickel-hydrogen batteries.

(ロ)従来の技術 従来からよく用いられる蓄電池としては鉛電池及びニッ
ケルーカドミウム電池があるが、近年これら電池より軽
量で且つ高容量となる可能性があるということで、特に
低圧に於いて負極活物質である水素を可逆的に吸蔵及び
放出することのできるLaNi5やCaNi5などの水
素吸蔵合金を備えた電極を負極に用い、水酸化ニッケル
などの金属酸化物を正極活物質とする電極を正極に用い
た金属−水素アルカリ蓄電池が注目されている。そして
、。
(b) Conventional technology Lead-acid batteries and nickel-cadmium batteries have traditionally been commonly used storage batteries, but in recent years they have been developed to be lighter than these batteries and have the potential to have higher capacities, so negative electrodes have been developed, especially at low pressure. An electrode with a hydrogen storage alloy such as LaNi5 or CaNi5 that can reversibly absorb and release hydrogen as an active material is used as the negative electrode, and an electrode with a metal oxide such as nickel hydroxide as the positive electrode active material is used as the positive electrode. The metal-hydrogen alkaline storage battery used for this purpose is attracting attention. and,.

この水素吸蔵合金である金属水素化物を備えた水素吸蔵
電極は、一般番こ特公昭58−46827号公報に於い
て提案されているように、水素吸蔵合金粉末を導電材粉
末と共に焼結して多孔体を作製し、これを水素吸蔵電極
とする方法、あるいは特開昭53−103541号公報
に於いて提案されているように水素吸蔵合金粉末と導電
材粉末とを結着剤によって結合させて水素吸蔵電極とす
る方法によって作製される。
This hydrogen storage electrode comprising a metal hydride, which is a hydrogen storage alloy, is produced by sintering a hydrogen storage alloy powder together with a conductive material powder, as proposed in Japanese Patent Publication No. 58-46827. A method of producing a porous body and using it as a hydrogen storage electrode, or a method of bonding a hydrogen storage alloy powder and a conductive material powder with a binder as proposed in JP-A-53-103541. It is produced by a method that makes it a hydrogen storage electrode.

通常、電池を構成している電極は、電極の温度が高温に
なると充電効率が低下することが良く知られている。と
ころが、前述したような水素吸蔵電極を負極に用いた金
属−水素アルカリ土類金属は、活物質である水素を負極
で吸蔵することにより充電が進み、この水素の吸蔵倣に
よって極板容量が定まるため、水素の吸蔵Stは多い程
好しいが、水素吸蔵合金が水素を吸蔵する反応が発熱反
応であるため、高温(こなると特に水素吸蔵能力が著し
く低下するという欠点を有しており、充電末期あるいは
高温作動時に十分に水素を吸蔵できず満足できる極板容
量を得ることができなかった。
It is well known that the charging efficiency of the electrodes that make up a battery typically decreases when the temperature of the electrodes becomes high. However, in metal-hydrogen alkaline earth metals that use the hydrogen storage electrode as the negative electrode as described above, charging progresses by storing hydrogen, which is an active material, at the negative electrode, and the electrode plate capacity is determined by the absorption of hydrogen. Therefore, the higher the hydrogen storage capacity, the better, but since the reaction in which the hydrogen storage alloy stores hydrogen is an exothermic reaction, it has the disadvantage that the hydrogen storage capacity in particular decreases significantly at high temperatures. At the terminal stage or during high-temperature operation, sufficient hydrogen could not be absorbed and a satisfactory electrode plate capacity could not be obtained.

eX)発明が解決しようとする問題点 本発明は負極の水素吸蔵電極からの放熱をスムーズに行
なわせしめることで、充電末期及び高温作動時に於いて
も負極に水素を十分に吸蔵させ容量の低下を抑制しよう
とするものである。
eX) Problems to be Solved by the Invention The present invention makes it possible to smoothly dissipate heat from the hydrogen storage electrode of the negative electrode, so that hydrogen can be sufficiently stored in the negative electrode even at the end of charging and during high-temperature operation, thereby preventing a decrease in capacity. It is something that we are trying to suppress.

に)問題点を解決°するための手段 本発明は電極体の外面に位置する水素吸蔵合金を備えた
負極を、電池外装缶の内面に直接あるいはグリス状熱伝
導性物質を介して接触させてなるものである。
2) Means for Solving the Problems The present invention provides a negative electrode equipped with a hydrogen storage alloy located on the outer surface of the electrode body, which is brought into contact with the inner surface of the battery outer can either directly or through a grease-like thermally conductive material. It is what it is.

匝)作用 電極体の外面に水素吸蔵合金を備えた負極を位置させ且
つこの負極を電池外装缶の内面に接触させると、負極で
発生する熱は速やかに電池外装缶番こ伝わり、電池外装
缶の表面全体から放熱することができ、負極の温度上昇
を抑制することができる。
) When a negative electrode equipped with a hydrogen storage alloy is placed on the outer surface of the working electrode body and this negative electrode is brought into contact with the inner surface of the battery outer can, the heat generated at the negative electrode is quickly transferred to the battery outer can number, and the battery outer can is heated. Heat can be radiated from the entire surface of the electrode, and temperature rise of the negative electrode can be suppressed.

(へ)実施例 水素吸蔵能力を有するLaNi5を機械的に粉砕して微
粉化し、このLaNi5粉末に小さなせん断力で粒子が
簡単に繊維化し塑性変形するポリテトラフルオロエチレ
ン粉末を、LaNi5粉末の重量に対して1〜5%添加
して混合機で均一に混合すると共にポリテトラフルオロ
エチレンを繊維化させる。次いでこのポリテトラフルオ
ロエチレンが繊維化した混合物に水を加えてペースト状
とした後ニブケル板の両面に貼り付けて水素吸蔵電極を
得る。こうして作製された水素吸蔵電極と放電容量が1
200mAHである焼結式ニッケル正極との間にセパレ
ータを介して巻回して水素吸蔵電極が最外周に位置する
渦巻電極体を構成する。この電極体を鉄にニッケルメッ
キを施してなる電池外装缶に挿入し、電極体最外周の水
素吸蔵電極を電池外装缶の内面に接触させた後、アルカ
リ電解液を注入し封口を行なってニッケルー水素電池(
Alを作製した。第1図はこの電池的の縦断面図であり
、図中(1λはニッケル極、(2)は水素極、(3)は
セパレータ、(4)は電池外装缶を示す。また同様にし
て前述の渦巻電極体を、予め内周面に熱伝導性シリコン
グリスを配した鉄にニッケルメッキを施してなる電池外
装缶に挿入し、電極体最外周に位置する水素吸蔵電極と
電池外装缶とを熱伝導性シリコングリスを介して密看さ
せてなる電池的及び前記LaN i 5粉末と繊維化し
たポリテトラフルオロエチレンの混合物を電池外装缶の
内面に沿うよう充填し、この混合物を電池外装缶の内面
と接触させたのち、この充填された混合物の四部空間、
すなわち電池外装缶の中央部にセパレータを介してニッ
ケル活物質、導電材及び粘性剤からなる混合物を充填し
てなる電池tc+を作製した。第、2図は前記電池(B
)の縦断面図、第3図は電池(C1の縦断面図であり、
図中(1)乃至(4)は第1図で示した同一符号の構成
物を示しており、また(5)は集電棒、(6)は熱fi
:ミニ導性シリコングリスる。更に比較としてこうして
作製された電池的と同様にして電極体最外周にニッケル
極が位置する比較電池CD+及び電池(0)と同様にし
てニッケル極と水素極の位置を反対とした電池(Elを
作製した。
(F) Example: LaNi5 having hydrogen storage capacity is mechanically crushed into a fine powder, and polytetrafluoroethylene powder, whose particles easily become fibers and plastically deform with a small shearing force, is added to the LaNi5 powder to reduce the weight of the LaNi5 powder. The polytetrafluoroethylene is added in an amount of 1 to 5% and mixed uniformly with a mixer, and the polytetrafluoroethylene is made into fibers. Next, water is added to the polytetrafluoroethylene fiber mixture to form a paste, which is then pasted on both sides of a nibkel plate to obtain a hydrogen storage electrode. The hydrogen storage electrode produced in this way has a discharge capacity of 1
It is wound around a 200 mAH sintered nickel positive electrode with a separator interposed therebetween to form a spiral electrode body in which the hydrogen storage electrode is located at the outermost periphery. This electrode body is inserted into a battery case made of nickel-plated iron, and the hydrogen storage electrode on the outermost periphery of the electrode body is brought into contact with the inner surface of the battery case. After that, an alkaline electrolyte is injected and the cap is sealed. Hydrogen battery (
Al was produced. FIG. 1 is a vertical cross-sectional view of this battery. The spiral electrode body is inserted into a battery exterior can made of nickel-plated iron with thermally conductive silicone grease arranged on the inner circumferential surface in advance, and the hydrogen storage electrode located on the outermost periphery of the electrode body and the battery exterior can are inserted. A mixture of the LaN i 5 powder and fibrous polytetrafluoroethylene is filled along the inner surface of the battery outer can, and this mixture is sealed inside the battery outer can. After contact with the inner surface, the four-part space of this filled mixture,
That is, a battery tc+ was prepared by filling the center of a battery outer can with a mixture consisting of a nickel active material, a conductive material, and a viscous agent via a separator. FIG. 2 shows the battery (B
), FIG. 3 is a vertical cross-sectional view of the battery (C1),
In the figure, (1) to (4) indicate components with the same symbols as shown in FIG. 1, (5) is a current collector rod, and (6) is a thermal
:Mini conductive silicone grease. Furthermore, for comparison, a comparative battery CD+ was prepared in which the nickel electrode was located on the outermost periphery of the electrode body in the same manner as in the battery thus prepared, and a battery in which the positions of the nickel electrode and the hydrogen electrode were reversed in the same manner as in battery (0) (El was Created.

第4図(”l及び(blは上述した電池(AHBIpI
の外気温にすすする負極容置及び負極温度の測定結果を
示したものであり、また、第5図(al及び(blは上
述した電池(C1fElと同様の測定結果を示したもの
である。
FIG. 4 ("l and (bl are the above-mentioned batteries (AHBIpI
Figure 5 (al and (bl) shows the same measurement results as for the above-mentioned battery (C1fEl).

尚、負極の温度は負極を充電によって祠充電にしたとき
の温度を示している。第4図(λ)及び第5図(a)か
ら本発明電池内)及び町は比較電池(1)lより優れた
特性を示し、また本発明電池(C1も比較電池(Elよ
り優れた特性を示すことがわかる。
Note that the temperature of the negative electrode indicates the temperature when the negative electrode is charged to a shrine charge. From FIG. 4 (λ) and FIG. 5 (a), the batteries of the present invention (within the battery of the present invention) and Machi exhibited better characteristics than the comparative battery (1)1, and the battery of the present invention (C1 also exhibited better properties than the comparative battery (El). It can be seen that this shows that

通常、水素吸蔵合金である金属水素化物は水素を吸蔵す
る際に発熱を伴ない、また高温になると水素及威圧が高
くなるという性質を有している。
Usually, metal hydrides, which are hydrogen storage alloys, generate heat when storing hydrogen, and have the property that hydrogen and coercive pressure increase at high temperatures.

このため充電反応1ζ相当する水素吸蔵反応を進行させ
るためには電池的負極の温度を低くすることが必要であ
る。したがって比較電池(D+及び(E)に於ける負極
はその外面に正極が位置しており、負極で発生する熱が
逃げ難い状態にあり負極の温度が上昇するため俺容量の
減少が生じたものと考えられる。これに対して本発明電
池^)(Bl及び(C1はjI4図(bl及び第5図f
blから明らかなように、負極の温度が比較電池IDI
及び(E+より低く抑えられている。
Therefore, in order to advance the hydrogen storage reaction corresponding to charging reaction 1ζ, it is necessary to lower the temperature of the battery negative electrode. Therefore, in the comparative batteries (D+ and (E)), the positive electrode is located on the outer surface of the negative electrode, making it difficult for the heat generated at the negative electrode to escape, and the temperature of the negative electrode increases, resulting in a decrease in capacity. In contrast, the batteries of the present invention ^) (Bl and (C1) are shown in Fig. jI4 (bl and Fig. 5 f).
As is clear from bl, the temperature of the negative electrode is higher than the comparative battery IDI.
and (is kept lower than E+.

これは充電時に負極で発生した熱が電極体の外面に位置
する負極から金属製電池外装缶に伝わり、この電池外装
缶の表面から速やかに放出されて負極が冷却されるため
であり電池(Blのように負極と電池外装缶の間にグリ
ス状の熱伝導性物質を介して接触させたものは負極の熱
が電池外装缶に特に伝わり易いため冷却効果が大きくな
りでいる。これによって負極の容量劣化が抑えられたと
考えられる。また、充放電を繰り返し行なうと金属水素
。    化物の微粉化が生じ負極に熱が滞り易くなる
が、本発明電池のように負極で発生する熱を電池外装缶
に速やかに伝えることで放出できる電池は充放電を繰り
返した際にもスムーズに放熱できその効果は大きい。
This is because the heat generated at the negative electrode during charging is transmitted from the negative electrode located on the outer surface of the electrode body to the metal battery case, and is quickly released from the surface of the battery case to cool the negative electrode. When the negative electrode and the battery case are brought into contact with each other through a grease-like thermally conductive substance, the heat of the negative electrode is particularly easily transferred to the battery case, resulting in a large cooling effect. It is thought that capacity deterioration was suppressed.Also, when charging and discharging are repeated, metallic hydrogen compounds become pulverized and heat tends to accumulate in the negative electrode, but as in the battery of the present invention, heat generated in the negative electrode is Batteries that can dissipate heat by quickly discharging heat can dissipate heat smoothly even after repeated charging and discharging, which is highly effective.

(ト)発明の効果 本発明の金属−水素アルカリ蓄電池は電極体の外面に位
置する水素吸蔵合金を備えた負極を金属製電池外装缶の
内面に直接あるいはグリス状の熱伝導性物質を介して接
触させたものであるので、充電の際負極で発生する熱を
スムーズに電池外部に放出でき、負極容量の低下を抑制
することができる。尚、本発明電池は電池外装缶と接触
する電極体外面金てに負極を位置させることが好ましい
が、この前記外装缶と接する位置全てに負極を配さずと
も同様の効果を得ることができる。
(G) Effects of the Invention The metal-hydrogen alkaline storage battery of the present invention has a negative electrode equipped with a hydrogen storage alloy located on the outer surface of the electrode body, which is attached directly to the inner surface of the metal battery outer case or through a grease-like thermally conductive material. Since they are in contact with each other, heat generated at the negative electrode during charging can be smoothly released to the outside of the battery, and a decrease in negative electrode capacity can be suppressed. In addition, in the battery of the present invention, it is preferable that the negative electrode be located on the outer metal surface of the electrode body that comes into contact with the battery outer can, but the same effect can be obtained even if the negative electrode is not placed at all positions in contact with the battery outer can. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明電池の縦断面図、第4図fa
t及び第5図(2L)は本発明電池と比較電池の外気温
に対する負極容量を示す図面、fJ4図fbl及び第5
図fb)は本発明電池と比較電池の外気温に対する負極
の温度を示す図面である。 +11・・・ニッケル極、+21・・・水素極、(31
・・・セパレータ、(4)・・・電池外装缶、(5)・
・・集電棒、(6)・・・熱伝導性シリ(D)CE) コングリス、四FBlfC1・・・本発明電池、月間・
・・比較電池。
Figures 1 to 3 are longitudinal sectional views of the battery of the present invention, and Figure 4 fa
t and FIG. 5 (2L) are drawings showing the negative electrode capacity with respect to the outside temperature of the battery of the present invention and the comparison battery, fJ4, fbl, and
Figure fb) is a diagram showing the temperature of the negative electrode with respect to the outside temperature of the battery of the present invention and the comparative battery. +11...Nickel electrode, +21...Hydrogen electrode, (31
... Separator, (4) ... Battery exterior can, (5).
... Current collector rod, (6) ... Thermal conductive silicon (D) CE) Congres, 4FBlfC1 ... Invention battery, Monthly
・Comparison battery.

Claims (1)

【特許請求の範囲】[Claims] (1)水素吸蔵合金を備えた負極と正極との間にセパレ
ータを介して構成された電極体を金属製電池外装缶に収
納してなる電池であつて、前記電極体の外面に位置する
負極が前記電池外装缶の内面に直接あるいはグリス状の
熱伝導性物質を介して接触していることを特徴とする金
属−水素アルカリ蓄電池。
(1) A battery comprising an electrode body configured with a separator interposed between a negative electrode and a positive electrode comprising a hydrogen storage alloy and housed in a metal battery case, the negative electrode being located on the outer surface of the electrode body. is in contact with the inner surface of the battery outer can directly or via a grease-like thermally conductive substance.
JP21993784A 1984-08-10 1984-10-18 Metal-hydrogen alkaline storage battery Expired - Lifetime JP2598891B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP21993784A JP2598891B2 (en) 1984-10-18 1984-10-18 Metal-hydrogen alkaline storage battery
FR848418698A FR2569059B1 (en) 1984-08-10 1984-12-07 ALKALINE METAL / HYDROGEN ACCUMULATOR
DE19843444998 DE3444998A1 (en) 1984-08-10 1984-12-10 METAL / HYDROGEN ALKALI ACCUMULATOR BATTERY
GB08431142A GB2162994B (en) 1984-08-10 1984-12-10 Metal/hydrogen alkaline storage battery
US06/841,058 US4636445A (en) 1984-08-10 1986-03-17 Metal/hydrogen alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21993784A JP2598891B2 (en) 1984-10-18 1984-10-18 Metal-hydrogen alkaline storage battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8200492A Division JPH08339821A (en) 1996-07-30 1996-07-30 Metal-hydrogen alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS6199278A true JPS6199278A (en) 1986-05-17
JP2598891B2 JP2598891B2 (en) 1997-04-09

Family

ID=16743359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21993784A Expired - Lifetime JP2598891B2 (en) 1984-08-10 1984-10-18 Metal-hydrogen alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2598891B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622467A (en) * 1985-06-27 1987-01-08 Toshiba Corp Hydrogen battery
WO1999005748A1 (en) * 1997-07-25 1999-02-04 Minnesota Mining And Manufacturing Company Rechargeable thin-film electrochemical generator
WO1999005749A1 (en) * 1997-07-25 1999-02-04 Minnesota Mining And Manufacturing Company Thermal conductor for high-energy electrochemical cells
WO1999065095A1 (en) * 1998-06-08 1999-12-16 Toshiba Battery Co., Ltd. Nickel-hydrogen secondary cell
WO2018168386A1 (en) * 2017-03-16 2018-09-20 エリーパワー株式会社 Sealed battery, battery pack and battery for engine ignition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130053A (en) * 1983-12-15 1985-07-11 Toshiba Corp Sealed secondary battery having a negative electrode consisting of hydrogen-absorbing alloy electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130053A (en) * 1983-12-15 1985-07-11 Toshiba Corp Sealed secondary battery having a negative electrode consisting of hydrogen-absorbing alloy electrode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622467A (en) * 1985-06-27 1987-01-08 Toshiba Corp Hydrogen battery
WO1999005748A1 (en) * 1997-07-25 1999-02-04 Minnesota Mining And Manufacturing Company Rechargeable thin-film electrochemical generator
WO1999005749A1 (en) * 1997-07-25 1999-02-04 Minnesota Mining And Manufacturing Company Thermal conductor for high-energy electrochemical cells
JP2001511595A (en) * 1997-07-25 2001-08-14 ミネソタ マイニング アンド マニュファクチャリング カンパニー Thermal conductor for high energy electrochemical cells
WO1999065095A1 (en) * 1998-06-08 1999-12-16 Toshiba Battery Co., Ltd. Nickel-hydrogen secondary cell
WO2018168386A1 (en) * 2017-03-16 2018-09-20 エリーパワー株式会社 Sealed battery, battery pack and battery for engine ignition

Also Published As

Publication number Publication date
JP2598891B2 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
JP3923157B2 (en) Alkaline storage battery
JP7163317B2 (en) Secondary battery having a hollow filled with thermally conductive resin
KR100412625B1 (en) Nickel-hydrogen storage battery
JPS62287568A (en) Manufacture of alkaline storage battery
JPS6199278A (en) Metal-hydrogen alkaline storage battery
JP2604282B2 (en) Alkaline storage battery
JP3598665B2 (en) Active materials for batteries and batteries
JPH1125964A (en) Alkaline storage battery
JP3094041B2 (en) Nickel hydrogen secondary battery module
JPH0329884Y2 (en)
JPH08339821A (en) Metal-hydrogen alkaline storage battery
JP3815511B2 (en) Nickel / metal hydride sealed alkaline storage battery
JP3192694B2 (en) Alkaline storage battery
JP3157237B2 (en) Metal-hydrogen alkaline storage battery
JPS6215769A (en) Nickel-hydrogen alkaline battery
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JP3143109B2 (en) Cylindrical sealed nickel storage battery
JP3118930B2 (en) Hydrogen storage electrode
JPH11191410A (en) Sealed alkaline storage battery
JP3454780B2 (en) Alkaline storage battery
JP3369148B2 (en) Alkaline storage battery
JPH11191412A (en) Alkaline storage battery
JPH10241727A (en) Nickel-hydrogen battery assembly
JP3306154B2 (en) Hydrogen storage alloy and method for producing the same
JP2513456B2 (en) Metal-hydrogen alkaline battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term