JP2598891B2 - Metal-hydrogen alkaline storage battery - Google Patents

Metal-hydrogen alkaline storage battery

Info

Publication number
JP2598891B2
JP2598891B2 JP21993784A JP21993784A JP2598891B2 JP 2598891 B2 JP2598891 B2 JP 2598891B2 JP 21993784 A JP21993784 A JP 21993784A JP 21993784 A JP21993784 A JP 21993784A JP 2598891 B2 JP2598891 B2 JP 2598891B2
Authority
JP
Japan
Prior art keywords
battery
electrode
negative electrode
hydrogen
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21993784A
Other languages
Japanese (ja)
Other versions
JPS6199278A (en
Inventor
大 山野
貴史 酒井
修弘 古川
修三 村上
孝直 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP21993784A priority Critical patent/JP2598891B2/en
Priority to FR848418698A priority patent/FR2569059B1/en
Priority to DE19843444998 priority patent/DE3444998A1/en
Priority to GB08431142A priority patent/GB2162994B/en
Priority to US06/841,058 priority patent/US4636445A/en
Publication of JPS6199278A publication Critical patent/JPS6199278A/en
Application granted granted Critical
Publication of JP2598891B2 publication Critical patent/JP2598891B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6553Terminals or leads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は水素を吸蔵・放出する能力を有する水素吸蔵
合金を備えた電極を負極とし、金属酸化物を備えた電極
を正極とするニッケル−水素電池のような金属−水素ア
ルカリ蓄電池の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial application field The present invention relates to nickel in which an electrode provided with a hydrogen storage alloy capable of absorbing and releasing hydrogen is used as a negative electrode, and an electrode provided with a metal oxide is used as a positive electrode. -The structure of a metal-hydrogen alkaline storage battery such as a hydrogen battery.

(ロ)従来の技術 従来からよく用いられる蓄電池としては鉛電池及びニ
ッケル−カドミウム電池があるが、近年これら電池より
軽量で且つ高容量となる可能性があるということで、特
に低圧に於いて負極活物質である水素を可逆的に吸蔵及
び放出することのできるLaNi5やCaNi5などの水素吸蔵合
金を備えた電極を負極に用い、水酸化ニッケルなどの金
属酸化物を正極活物質とする電極を正極に用いた金属−
水素アルカリ蓄電池が注目されている。そして、この水
素吸蔵合金である金属水素化物を備えた水素吸蔵電極
は、一般に特公昭58−46827号公報に於いて提案されて
いるように、水素吸蔵合金粉末を導電材粉末と共に焼結
して多孔体を作製し、これを水素吸蔵電極とする方法、
あるいは特開昭53−103541号公報に於いて提案されてい
るように水素吸蔵合金粉末と導電材粉末とを結着剤によ
って結合させて水素吸蔵電極とする方法によって作製さ
れる。
(B) Conventional technology Conventionally used storage batteries include lead batteries and nickel-cadmium batteries. In recent years, these batteries may be lighter and have higher capacities. An electrode with a hydrogen storage alloy such as LaNi 5 or CaNi 5 capable of reversibly storing and releasing hydrogen as the active material as the negative electrode, and an electrode using a metal oxide such as nickel hydroxide as the positive electrode active material Metal used for positive electrode-
Attention has been paid to hydrogen-alkaline storage batteries. A hydrogen storage electrode provided with a metal hydride, which is a hydrogen storage alloy, is obtained by sintering a hydrogen storage alloy powder together with a conductive material powder as generally proposed in Japanese Patent Publication No. 58-46827. A method of producing a porous body and using it as a hydrogen storage electrode,
Alternatively, as proposed in JP-A-53-103541, it is produced by a method of combining a hydrogen storage alloy powder and a conductive material powder with a binder to form a hydrogen storage electrode.

通常、電池を構成している電極は、電極の温度が高温
になると充電効率が低下することが良く知られている。
ところが、前述したような水素吸蔵電極を負極に用いた
金属−水素アルカリ蓄電池では、活物質である水素を負
極で吸蔵することにより充電が進み、この水素の吸蔵量
によって極板容量が定まるため、水素の吸蔵量は多い程
好しいが、水素吸蔵合金が水素を吸蔵する反応が発熱反
応であるため、高温になると特に水素吸蔵能力が著しく
低下するという欠点を有しており、充電末期あるいは高
温作動時に十分に水素を吸蔵できず満足できる極板容量
を得ることができなかった。
It is well known that the charging efficiency of an electrode constituting a battery generally decreases as the temperature of the electrode increases.
However, in a metal-hydrogen alkaline storage battery using a hydrogen storage electrode as a negative electrode as described above, charging proceeds by storing hydrogen as an active material at the negative electrode, and the electrode plate capacity is determined by the amount of hydrogen stored. The greater the amount of hydrogen storage, the better, but the hydrogen storage alloy has a disadvantage that the hydrogen storage capacity is significantly reduced at high temperatures because the reaction of storing hydrogen is an exothermic reaction. Hydrogen could not be sufficiently absorbed during operation, and a satisfactory electrode capacity could not be obtained.

(ハ)発明が解決しようとする問題点 本発明は負極の水素吸蔵電極からの放熱をスムーズに
行なわせしめることで、充電末期及び高温作動時に於い
ても負極に水素を十分に吸蔵させ容量の低下を制御しよ
うとするものである。
(C) Problems to be Solved by the Invention The present invention makes it possible to absorb hydrogen sufficiently in the negative electrode even at the end of charging and during high-temperature operation by reducing the capacity by smoothly releasing heat from the hydrogen storage electrode of the negative electrode. Is to control.

(ニ)問題点を解決するための手段 本発明は電極体の外面に位置する水素吸蔵合金を備え
た負極を、電池外装缶の内面にグリス状熱伝導性物質を
介して接触させてなるものである。
(D) Means for Solving the Problems The present invention comprises a negative electrode provided with a hydrogen storage alloy located on the outer surface of an electrode body, in contact with the inner surface of a battery outer can via a grease-like thermally conductive substance. It is.

(ホ)作 用 電極体の外面に水素吸蔵合金を備えた負極を位置させ
且つこの負極を電池外装缶の内面に接触させると、負極
で発生する熱は速やかに電池外装缶に伝わり、電池外装
缶の表面全体から放熱することができ、負極の温度上昇
を抑制することができる。
(E) Operation When the negative electrode provided with the hydrogen storage alloy is positioned on the outer surface of the electrode body and the negative electrode is brought into contact with the inner surface of the battery outer can, the heat generated at the negative electrode is immediately transmitted to the battery outer can. Heat can be radiated from the entire surface of the can, and the temperature rise of the negative electrode can be suppressed.

(ヘ)実施例 水素吸蔵能力を有するLaNi5を機械的に粉砕して微粉
化し、このLaNi5粉末に小さなせん断力で粒子が簡単に
繊維化し塑性変形するポリテトラフルオロエチレン粉末
を、LaNi5粉末の重量に対して1〜5%添加して混合機
で均一に混合すると共にポリテトラフルオロエチレンを
繊維化させる。次いでこのポリテトラフルオロエチレン
が繊維化した混合物に水を加えてペースト状とした後ニ
ッケル板の両面に貼り付けて水素吸蔵電極を得る。こう
して作製された水素吸蔵電極と放電容量が1200mAHであ
る焼結式ニッケル正極との間にセパレータを介して巻回
して水素吸蔵電極が最外周に位置する渦巻電極体を構成
する。この電極体を、あらかじめ、内周面に熱伝導性シ
リコングリスを配した、鉄にニッケルメッキを施してな
る電池外装缶に挿入した。このようにして、電極体最外
周に位置する水素吸蔵合金電極と電池外装缶とを熱伝導
性シリコングリスを介して密着させてなる本発明電池A
を作製した。
(F) Example micronized mechanically grinding the LaNi 5 having a hydrogen storage capacity, the polytetrafluoroethylene powder particles with a small shear force to the LaNi 5 powder is easily fibrillated plastic deformation, LaNi 5 powder And 1 to 5% of the weight of the mixture, and the mixture is uniformly mixed with a mixer, and the polytetrafluoroethylene is converted into a fiber. Next, water is added to the mixture in which the polytetrafluoroethylene is fiberized to form a paste, which is then attached to both sides of a nickel plate to obtain a hydrogen storage electrode. A spiral electrode body in which the hydrogen storage electrode is located at the outermost periphery is formed by winding the hydrogen storage electrode and the sintered nickel positive electrode having a discharge capacity of 1200 mAH with a separator interposed therebetween. This electrode body was inserted into a battery outer can in which heat conductive silicon grease was disposed on the inner peripheral surface and iron was plated with nickel. In this manner, the battery A of the present invention in which the hydrogen storage alloy electrode located at the outermost periphery of the electrode body and the battery outer can are brought into close contact with each other via the heat conductive silicon grease.
Was prepared.

第1図は、前記本発明電池Aの縦断面図であり、図
中、1はニッケル極、2は水素極、3はセパレータ、4
は電池外装缶、5は熱伝導性シリコングリスである。
FIG. 1 is a longitudinal sectional view of the battery A of the present invention, wherein 1 is a nickel electrode, 2 is a hydrogen electrode, 3 is a separator,
Is a battery outer can, and 5 is a thermally conductive silicon grease.

一方、比較例1として、前記本発明電池Aにおいて使
用した熱導電性シリコングリスを用いずに、他の構成は
同様にして、比較電池Xを作製した。
On the other hand, as Comparative Example 1, a comparative battery X was produced in the same manner as in Comparative Example 1, except that the thermally conductive silicon grease used in Battery A of the present invention was not used.

また、比較例2として、前記比較電池Xにおいて、電
極体最外周にニッケル極が位置する比較電池Yを作製し
た。
In addition, as Comparative Example 2, a comparative battery Y was prepared in which the nickel electrode was located at the outermost periphery of the electrode body in the comparative battery X.

第2図は、上記した電池A、X及びYの外気温に対す
る負極容量の測定結果を示したものである。
FIG. 2 shows the results of measuring the negative electrode capacity of the batteries A, X and Y with respect to the outside air temperature.

また、第3図は、上述した電池A、X及びYの外気温
に対する負極温度の測定結果を示したものである。負極
の温度は、負極を充電によって満充電したときの、温度
を示している。
FIG. 3 shows the measurement results of the negative electrode temperature with respect to the outside air temperature of the batteries A, X, and Y described above. The temperature of the negative electrode indicates the temperature when the negative electrode is fully charged by charging.

通常、水素吸蔵合金である金属水素化物は水素を吸蔵
する際に発熱を伴い、また高温になると水素吸蔵圧が高
くなるという性質を有している。このため充電反応に相
当する水素吸蔵反応を進行させるためには、電池内負極
の温度を低くすることが必要である。従って、比較電池
Yにおける負極は、その外側に正極が位置しており、負
極で発生する熱が逃げにくい状態にある。よって負極の
温度が上昇するため、容量の減少が生じたものと考えら
れる。
Generally, metal hydrides, which are hydrogen storage alloys, have a property that heat is generated when storing hydrogen, and the hydrogen storage pressure increases as the temperature increases. Therefore, it is necessary to lower the temperature of the negative electrode in the battery in order to advance the hydrogen storage reaction corresponding to the charging reaction. Therefore, the negative electrode of the comparative battery Y has the positive electrode located outside thereof, and is in a state where the heat generated in the negative electrode is difficult to escape. Therefore, it is considered that the temperature of the negative electrode increased and the capacity decreased.

これに対して、本発明電池A及び比較電池Xは、第2
図及び第3図から明らかなように、負極の温度が、比較
電池Yより低く抑えられている。これは、充電時に負極
で発生した熱が、電極体の外面に位置する負極から金属
製電池外装缶に伝わり、この電池外装缶の表面から速や
かに放出されて負極が冷却されるためである。そして、
本発明電池Aと比較電池Xとを対比すると、本発明電池
Aでは、負極と電池外装缶の間に、グリス状の熱伝導性
物質を介して接触させているので、負極の熱が電池外装
缶に伝わりやすく、冷却効果が大きくなる。この結果、
負極の容量劣化が抑えられたと考えられる。
On the other hand, the battery A of the present invention and the comparative battery X
As is clear from FIG. 3 and FIG. 3, the temperature of the negative electrode is kept lower than that of the comparative battery Y. This is because heat generated at the negative electrode during charging is transmitted from the negative electrode located on the outer surface of the electrode body to the metal battery outer can, and is quickly released from the surface of the battery outer can to cool the negative electrode. And
When the battery A of the present invention is compared with the comparative battery X, in the battery A of the present invention, since the grease-like heat conductive material is interposed between the negative electrode and the battery outer can, the heat of the negative electrode is reduced. It is easily transmitted to the can, and the cooling effect increases. As a result,
It is considered that the capacity deterioration of the negative electrode was suppressed.

また、充放電を繰り返し行うと、金属水素化物の微粉
化が生じ、負極に熱がたまり易くなるが、本発明電池の
如く、負極で発生する熱を電池外装缶に速やかに伝え
て、電池外へ放出できる。よって、充放電を繰り返した
際にも、スムーズに放熱でき、その効果は大きい。
Further, when charge and discharge are repeatedly performed, metal hydrides are pulverized, and heat easily accumulates on the negative electrode. Can be released to Therefore, even when charge and discharge are repeated, heat can be smoothly radiated, and the effect is large.

(ト)発明の効果 本発明の金属−水素アルカリ蓄電池は、電極体の外面
に位置する水素吸蔵合金を備えた負極を、金属製電池外
装缶の内面に、グリス状の熱伝導性物質を介して接触さ
せたものであるので、充電の際、負極で発生する熱をス
ムーズに電池外部に放出でき、負極の容量低下を抑制す
ることができる。また、電池外装缶と接触する電極体外
面全てに、負極を位置させるのが好ましい。
(G) Effect of the Invention In the metal-hydrogen alkaline storage battery of the present invention, a negative electrode provided with a hydrogen storage alloy located on the outer surface of an electrode body is provided on the inner surface of a metal battery outer can via a grease-like heat conductive substance. Therefore, heat generated at the negative electrode during charging can be smoothly discharged to the outside of the battery, and a decrease in the capacity of the negative electrode can be suppressed. Further, it is preferable that the negative electrode is located on the entire outer surface of the electrode body in contact with the battery outer can.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明電池の縦断面図、第2図は本発明電池と
比較電池の外気温に対する負極容量を示す図面、第3図
は本発明電池と比較電池の外気温に対する負極の温度を
示す図面である。 1……ニッケル極、2……水素極、3……セパレータ、
4……電池外装缶、5……熱伝導性シリコングリス、A
……本発明電池、X、Y……比較電池。
1 is a longitudinal sectional view of the battery of the present invention, FIG. 2 is a drawing showing the negative electrode capacity of the battery of the present invention and the comparative battery with respect to the outside air temperature, and FIG. FIG. 1 ... nickel electrode, 2 ... hydrogen electrode, 3 ... separator,
4 ... battery can, 5 ... thermally conductive silicon grease, A
... Battery of the present invention, X, Y ... Comparative battery.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村上 修三 守口市京阪本通2丁目18番地 三洋電機 株式会社内 (72)発明者 松本 孝直 守口市京阪本通2丁目18番地 三洋電機 株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shuzo Murakami 2-18-18 Keihanhondori Moriguchi City Sanyo Electric Co., Ltd. (72) Inventor Takanao Matsumoto 2-18-18 Keihanhondori Moriguchi City Sanyo Electric Co., Ltd.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水素吸蔵合金を備えた負極と正極との間に
セパレータを介して構成された電極体を金属製電池外装
缶に収納してなる電池であって、前記電極体の外面に位
置する負極が、前記電池外装缶の内面にグリス状の熱伝
導性物質を介して接触していることを特徴とする金属−
水素アルカリ蓄電池。
1. A battery in which an electrode body composed of a negative electrode provided with a hydrogen storage alloy and a positive electrode with a separator interposed therebetween is housed in a metal battery outer can, and is located on an outer surface of the electrode body. Wherein the negative electrode is in contact with the inner surface of the battery outer can via a grease-like heat conductive material.
Hydrogen alkaline storage battery.
JP21993784A 1984-08-10 1984-10-18 Metal-hydrogen alkaline storage battery Expired - Lifetime JP2598891B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP21993784A JP2598891B2 (en) 1984-10-18 1984-10-18 Metal-hydrogen alkaline storage battery
FR848418698A FR2569059B1 (en) 1984-08-10 1984-12-07 ALKALINE METAL / HYDROGEN ACCUMULATOR
DE19843444998 DE3444998A1 (en) 1984-08-10 1984-12-10 METAL / HYDROGEN ALKALI ACCUMULATOR BATTERY
GB08431142A GB2162994B (en) 1984-08-10 1984-12-10 Metal/hydrogen alkaline storage battery
US06/841,058 US4636445A (en) 1984-08-10 1986-03-17 Metal/hydrogen alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21993784A JP2598891B2 (en) 1984-10-18 1984-10-18 Metal-hydrogen alkaline storage battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8200492A Division JPH08339821A (en) 1996-07-30 1996-07-30 Metal-hydrogen alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS6199278A JPS6199278A (en) 1986-05-17
JP2598891B2 true JP2598891B2 (en) 1997-04-09

Family

ID=16743359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21993784A Expired - Lifetime JP2598891B2 (en) 1984-08-10 1984-10-18 Metal-hydrogen alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2598891B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763022B2 (en) * 1985-06-27 1995-07-05 株式会社東芝 Hydrogen battery
US6117584A (en) * 1997-07-25 2000-09-12 3M Innovative Properties Company Thermal conductor for high-energy electrochemical cells
US6120930A (en) * 1997-07-25 2000-09-19 3M Innovative Properties Corporation Rechargeable thin-film electrochemical generator
WO1999065095A1 (en) * 1998-06-08 1999-12-16 Toshiba Battery Co., Ltd. Nickel-hydrogen secondary cell
JP6908261B2 (en) * 2017-03-16 2021-07-21 エリーパワー株式会社 Sealed battery, assembled battery and engine start battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130053A (en) * 1983-12-15 1985-07-11 Toshiba Corp Sealed secondary battery having a negative electrode consisting of hydrogen-absorbing alloy electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130053A (en) * 1983-12-15 1985-07-11 Toshiba Corp Sealed secondary battery having a negative electrode consisting of hydrogen-absorbing alloy electrode

Also Published As

Publication number Publication date
JPS6199278A (en) 1986-05-17

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JPH11176436A (en) Alkaline storage battery
JP2000228191A (en) Hydrogen storage alloy, manufacture of hydrogen storage alloy and alkaline secondary battery
JP2598891B2 (en) Metal-hydrogen alkaline storage battery
JPH1140189A (en) Nickel-hydrogen storage battery
JP2692786B2 (en) Hydrogen storage electrode
JP3094041B2 (en) Nickel hydrogen secondary battery module
JPH0329884Y2 (en)
JPH08339821A (en) Metal-hydrogen alkaline storage battery
JPS6215769A (en) Nickel-hydrogen alkaline battery
JP3113345B2 (en) Hydrogen storage alloy electrode
JP3143109B2 (en) Cylindrical sealed nickel storage battery
JP3118930B2 (en) Hydrogen storage electrode
JP3192694B2 (en) Alkaline storage battery
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JPH0763004B2 (en) Sealed alkaline storage battery
JP3114976B2 (en) Nickel hydride rechargeable battery
JP2594147B2 (en) Metal-hydrogen alkaline storage battery
JP3524633B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH09199162A (en) Sealed alkaline storage battery
JPS61124054A (en) Manufacture of hydrogen occlusion electrode
JP2513456B2 (en) Metal-hydrogen alkaline battery
JPH0690922B2 (en) Sealed alkaline storage battery
JP3297375B2 (en) Nickel hydride rechargeable battery
JPH0636362B2 (en) Metal-hydrogen alkaline storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term