JP3094041B2 - Nickel hydrogen secondary battery module - Google Patents

Nickel hydrogen secondary battery module

Info

Publication number
JP3094041B2
JP3094041B2 JP03189052A JP18905291A JP3094041B2 JP 3094041 B2 JP3094041 B2 JP 3094041B2 JP 03189052 A JP03189052 A JP 03189052A JP 18905291 A JP18905291 A JP 18905291A JP 3094041 B2 JP3094041 B2 JP 3094041B2
Authority
JP
Japan
Prior art keywords
nickel
secondary battery
metal hydride
battery module
hydride secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03189052A
Other languages
Japanese (ja)
Other versions
JPH0536392A (en
Inventor
裕之 長谷部
和太 武野
克治 池田
優治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP03189052A priority Critical patent/JP3094041B2/en
Publication of JPH0536392A publication Critical patent/JPH0536392A/en
Application granted granted Critical
Publication of JP3094041B2 publication Critical patent/JP3094041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はニッケル水素二次電池モ
ジュールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-hydrogen secondary battery module.

【0002】[0002]

【従来の技術】近年、複数本の二次電池を樹脂製容器内
に収納した二次電池モジュールは、ポータブルビデオや
ラップトップコンピュータ等の電子機器に組込まれる電
源として多用されるようになってきている。それに伴っ
て、前記二次電池モジュールに対して高容量化と共に、
短時間で充電可能なことが要求されている。
2. Description of the Related Art In recent years, a secondary battery module in which a plurality of secondary batteries are housed in a resin container has been frequently used as a power supply incorporated in electronic devices such as portable video and laptop computers. I have. Along with that, along with increasing the capacity of the secondary battery module,
It is required that the battery can be charged in a short time.

【0003】上記高容量化の要求に応えるため、ニッケ
ルカドミウム二次電池の2倍程度にまで電池容量を高め
たニッケル水素二次電池が開発されており、かかるニッ
ケル水素二次電池を複数本収納したニッケル水素二次電
池モジュールが提案されている。更に、短時間で充電す
る要求にも応えるため、前記高容量化したニッケル水素
二次電池モジュールを大電流で充電することが検討され
ている。
In order to meet the above demand for higher capacity, a nickel-metal hydride secondary battery having a battery capacity approximately twice as large as that of a nickel-cadmium secondary battery has been developed. A nickel-metal hydride secondary battery module has been proposed. Further, in order to meet the demand for charging in a short time, charging of the nickel hydride secondary battery module having a large capacity with a large current has been studied.

【0004】ところで、二次電池は、充電時において電
気エネルギーから化学エネルギーへの変換効率が100
%とはならず、この変換されなかった分が熱エネルギー
となるため加熱される。特に充電が進むに連れて前記変
換効率が低下するためより高温に加熱される。こうして
二次電池が加熱されても電池単体で充電した場合では、
電池缶表面から外気に直接放熱されるため電池の温度上
昇を特に問題を生じない程度に抑制できる。
Incidentally, a secondary battery has a conversion efficiency of 100 from electric energy to chemical energy during charging.
%, And the unconverted portion becomes heat energy and is heated. In particular, as the charging proceeds, the conversion efficiency decreases, so that the battery is heated to a higher temperature. Even if the secondary battery is heated in this way, if the battery is charged alone,
Since the heat is directly radiated from the surface of the battery can to the outside air, the temperature rise of the battery can be suppressed to a level that does not cause any particular problem.

【0005】しかしながら、前記ニッケル水素二次電池
モジュールを大電流で充電した場合、該二次電池モジュ
ール内に複数本のニッケル水素二次電池が近接して収納
されていること、ニッケル水素二次電池と樹脂製容器と
の間隙によって断熱効果が生じていること等が原因とな
って、ニッケル水素二次電池の温度が急激に上昇する。
その結果、ニッケル水素二次電池モジュール内に安全対
策として組込まれている温度ブレーカが満充電前に作動
して充電不良となったり、ニッケル水素二次電池内にお
いて負極材料の水素吸蔵合金とアルカリ電解液とが高温
下で腐食を伴なう反応を生じて電池寿命が短くなるとい
う問題がある。このようなことから、前記ニッケル水素
二次電池モジュールでは、充電時のニッケル水素二次電
池の温度上昇を抑制することが重要な課題となってい
る。
However, when the nickel-metal hydride secondary battery module is charged with a large current, a plurality of nickel-metal hydride secondary batteries are stored in the secondary battery module in close proximity, The temperature of the nickel-metal hydride secondary battery rapidly rises due to the heat insulation effect caused by the gap between the battery and the resin container.
As a result, the temperature breaker built into the nickel-metal hydride secondary battery module as a safety measure operates before full charge, resulting in poor charging. There is a problem that the reaction with the liquid at high temperature causes a reaction accompanied by corrosion, thereby shortening the battery life. For this reason, in the nickel-metal hydride secondary battery module, it is an important issue to suppress the temperature rise of the nickel-metal hydride secondary battery during charging.

【0006】なお、前記ニッケル水素二次電池モジュー
ルにおける充電時のニッケル水素二次電池の温度上昇を
抑制するために、充電時の電流値を小さくする方法、電
池電圧や電池温度を検出して充電時の電流値を細かく制
御する方法などが提案されている。しかしながら、これ
らの方法では、充電時間が長くなったり、非常に複雑な
充電制御回路を必要とするなどの問題があるため本質的
な解決には至っていない。
In order to suppress the temperature rise of the nickel-metal hydride secondary battery at the time of charging in the nickel-metal hydride secondary battery module, a method of reducing the current value at the time of charging, and detecting the battery voltage and the battery temperature to charge the battery. A method of finely controlling the current value at the time has been proposed. However, these methods have not been essentially solved because of problems such as a long charging time and a very complicated charge control circuit.

【0007】[0007]

【発明が解決しようとする課題】本発明は、従来の問題
点を解決するためになされたもので、充電時のニッケル
水素二次電池の温度上昇を抑制することが可能なニッケ
ル水素二次電池モジュールを提供しようとするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the conventional problems, and is intended to suppress a rise in temperature of a nickel-metal hydride secondary battery during charging. It is intended to provide a module.

【0008】[0008]

【課題を解決するための手段】本発明に係るニッケル水
素二次電池モジュールは、樹脂製容器と、前記容器内に
収納される複数本のニッケル水素二次電池と、伝熱性部
材とを具備したニッケル水素二次電池モジュールにおい
て、前記伝熱性部材は、前記容器の内側面と前記ニッケ
ル水素二次電池との間隙に充填されることを特徴とする
ものである。
Means for Solving the Problems Nickel water according to the present invention
The elementary secondary battery module has a resin container and a
A plurality of nickel-metal hydride rechargeable batteries to be stored and a heat conductive part
In the nickel-metal hydride secondary battery module provided with a material, the heat conductive member is provided between the inner surface of the container and the nickel
Characterized in that it is filled in the gap with the hydrogen rechargeable battery
Things.

【0009】前記ニッケル水素二次電池としては、例え
ばペースト式ニッケル正極と水素吸蔵合金負極との間に
セパレータを介在させた電極群を電池缶内に収納し、更
にアルカリ電解液を注液して封口した構造のものが挙げ
られる。
In the nickel-hydrogen secondary battery, for example, an electrode group in which a separator is interposed between a paste-type nickel positive electrode and a hydrogen-absorbing alloy negative electrode is housed in a battery can, and an alkaline electrolyte is further injected. One having a sealed structure is exemplified.

【0010】前記ペースト式ニッケル正極としては、活
物質としての水酸化ニッケルに結着剤及び必要に応じて
酸化コバルトなどを配合した組成の合剤を集電体である
導電性芯体に形成したものが挙げられる。
As the paste-type nickel positive electrode, a mixture having a composition in which a binder and, if necessary, cobalt oxide are blended with nickel hydroxide as an active material is formed on a conductive core as a current collector. Things.

【0011】前記正極の合剤中に配合される結着剤とし
ては、例えばポリアクリル酸ソーダ、ポリアクリル酸カ
リウムなどのポリアクリル酸塩及びカルボキシメチルセ
ルロース(CMC)等を挙げることができる。かかる結
着剤の配合割合は、水酸化ニッケル100重量部に対し
て0.1〜2重量部の範囲とすることが望ましい。
Examples of the binder mixed in the positive electrode mixture include polyacrylates such as sodium polyacrylate and potassium polyacrylate, and carboxymethyl cellulose (CMC). It is desirable that the compounding ratio of the binder is in the range of 0.1 to 2 parts by weight based on 100 parts by weight of nickel hydroxide.

【0012】前記正極の導電性芯体としては、例えばパ
ンチドメタル、エキスパンドメタル、金網等の二次元構
造のもの、発泡メタル、金属繊維の焼結基板、フェルト
状金属多孔体などの三次元構造のもの等を挙げることが
できる。
Examples of the conductive core of the positive electrode include those having a two-dimensional structure such as punched metal, expanded metal, and wire mesh, foamed metals, sintered substrates of metal fibers, and three-dimensional structures such as felt-like metal porous bodies. And the like.

【0013】前記ペースト式ニッケル正極は、例えば前
記水酸化ニッケル、結着剤、及び酸化コバルト等を水の
存在下で混練してペーストを調製し、このペーストを前
記導電性芯体に塗布、乾燥した後、ローラプレスを行な
うことにより製造される。前記水素吸蔵合金負極として
は、水素吸蔵合金粉末及び導電材粉末と結着剤を配合し
た組成の合剤を集電体である導電性芯体に形成したもの
が挙げられる。
The paste-type nickel positive electrode is prepared, for example, by kneading the above-mentioned nickel hydroxide, binder, cobalt oxide and the like in the presence of water to prepare a paste, applying the paste to the conductive core, and drying the paste. After that, it is manufactured by performing a roller press. Examples of the hydrogen storage alloy negative electrode include those in which a mixture having a composition of a mixture of a hydrogen storage alloy powder, a conductive material powder, and a binder is formed on a conductive core serving as a current collector.

【0014】前記負極の合剤中に配合される水素吸蔵合
金としては、格別制限されるものではなく、電解液中で
電気化学的に発生させた水素を吸蔵でき、かつ放電時に
その吸蔵水素を容易に放出できるものであればよい。例
えば、一般式XY5-a a (但し、XはLaを含む希土
類元素、YはNi、ZはCo、Mn、Al、Fe、T
i、Cu、Zn、Zr、Cr、V、Bから選ばれる少な
くとも1種の元素、aは0≦a<2.0を示す)にて表
されるものが用いられる。具体的にはLaNi5、Mm
Ni5 、LmNi5 (Lm;ランタン富化したミッシュ
メタル)、及びこれらのNiの一部をCo、Mn、A
l、Fe、Ti、Cu、Zn、Zr、Cr、V、Bのよ
うな元素で置換した多元素系のものを挙げることができ
る。
The hydrogen storage alloy mixed in the mixture of the negative electrode is not particularly limited, and can store electrochemically generated hydrogen in an electrolyte and discharge the stored hydrogen during discharge. Any material that can be easily released may be used. For example, the general formula XY 5-a Z a (where, X is a rare earth element including La, Y is Ni, Z is Co, Mn, Al, Fe, T
At least one element selected from i, Cu, Zn, Zr, Cr, V, and B, and a represents 0 ≦ a <2.0) is used. Specifically, LaNi 5 , Mm
Ni 5 , LmNi 5 (Lm; lanthanum-enriched misch metal), and a part of these Nis are Co, Mn, A
Examples thereof include multi-element-based materials that are substituted with elements such as 1, Fe, Ti, Cu, Zn, Zr, Cr, V, and B.

【0015】前記負極の合剤中に配合される導電材粉末
としては、例えばカーボンブラック、黒鉛、アセチレン
ブラック等を挙げることができる。かかる導電材粉末の
配合割合は、水素吸蔵合金粉末100重量部に対して
0.1〜4重量部の範囲とすることが望ましい。より好
ましい導電性粉末の配合割合は、水素吸蔵合金粉末10
0重量部に対して0.1〜2重量部の範囲である。
Examples of the conductive material powder mixed in the negative electrode mixture include carbon black, graphite, and acetylene black. The mixing ratio of the conductive material powder is desirably in the range of 0.1 to 4 parts by weight with respect to 100 parts by weight of the hydrogen storage alloy powder. A more preferable compounding ratio of the conductive powder is hydrogen storage alloy powder 10
It is in the range of 0.1 to 2 parts by weight with respect to 0 parts by weight.

【0016】前記負極の合剤中に配合される結着剤とし
ては、例えばポリアクリル酸ソーダ、ポリアクリル酸カ
リウムなどのポリアクリル酸塩、ポリテトラフルオロエ
チレン(PTFE)などのフッ素系樹脂、及びカルボキ
シメチルセルロース(CMC)等を挙げることができ
る。かかる結着剤の配合割合は、水素吸蔵合金粉末10
0重量部に対して0.1〜5重量部の範囲とすることが
望ましい。
Examples of the binder compounded in the mixture of the negative electrode include polyacrylates such as sodium polyacrylate and potassium polyacrylate, fluorine resins such as polytetrafluoroethylene (PTFE), and the like. Carboxymethyl cellulose (CMC) and the like can be mentioned. The compounding ratio of the binder is 10%.
It is desirable that the content is in the range of 0.1 to 5 parts by weight with respect to 0 parts by weight.

【0017】前記負極の導電性芯体としては、例えばパ
ンチドメタル、エキスパンドメタル、金網等の二次元構
造のもの、発泡メタル、金属繊維の焼結基板、フェルト
状金属多孔体などの三次元構造のもの等を挙げることが
できる。
Examples of the conductive core of the negative electrode include those having a two-dimensional structure such as punched metal, expanded metal, and wire mesh, foamed metals, sintered substrates of metal fibers, and three-dimensional structures such as felt-like metal porous bodies. And the like.

【0018】前記水素吸蔵合金負極は、例えば前記水素
吸蔵合金粉末、導電材粉末、及び結着剤などを水の存在
下で混練してペーストを調製し、このペーストを前記導
電性芯体に塗布、乾燥した後、ローラプレスを行なうこ
とにより製造される。
The hydrogen storage alloy negative electrode is prepared, for example, by kneading the hydrogen storage alloy powder, conductive material powder, binder and the like in the presence of water to prepare a paste, and applying the paste to the conductive core. It is manufactured by performing a roller press after drying.

【0019】前記ペースト式ニッケル正極と水素吸蔵合
金負極との間に介在されるセパレータとしては、ナイロ
ン、ポリプロピレン等の合成樹脂製不織布などを挙げる
ことができる。
Examples of the separator interposed between the paste-type nickel positive electrode and the hydrogen storage alloy negative electrode include nonwoven fabrics made of synthetic resin such as nylon and polypropylene.

【0020】前記伝熱性部材は、例えばシリコーングリ
ース、シリコーン接着剤、シリカフィラーを混合させた
グリース、金属フィラーを混合させたグリース等の熱伝
導率が空気よりも大きい流動性を有する材料から形成す
ることができる。
The heat conductive member is formed of a material having a fluidity such as silicone grease, silicone adhesive, grease mixed with silica filler, grease mixed with metal filler, etc., which has a higher thermal conductivity than air. be able to.

【0021】[0021]

【作用】本発明によれば、複数本のニッケル水素二次電
池を樹脂製容器内に収納したニッケル水素二次電池モジ
ュールにおいて、前記ニッケル水素二次電池と前記樹脂
製容器との間隙に伝熱性部材を充填したことによって、
前記ニッケル水素二次電池と前記樹脂製容器との伝熱性
が向上して該ニッケル水素二次電池の放熱が速やかにな
されるため、充電時のニッケル水素二次電池の温度上昇
を抑制できる。
According to the present invention, in a nickel-metal hydride secondary battery module in which a plurality of nickel-metal hydride secondary batteries are housed in a resin-made container, a heat conductive material is provided between the nickel-metal hydride secondary battery and the resin-made container. By filling the member,
Since the heat transfer between the nickel-metal hydride secondary battery and the resin container is improved and the heat of the nickel-metal hydride secondary battery is quickly released, the temperature rise of the nickel-metal hydride secondary battery during charging can be suppressed.

【0022】[0022]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。 実施例1
Embodiments of the present invention will be described below in detail with reference to the drawings. Example 1

【0023】まず、組成がLmNi4.0 Co0.4 Mn
0.3 Al0.3 の水素吸蔵合金粉末を導電性芯体に塗着し
た水素吸蔵合金負極を作製した。つづいて、前記水素吸
蔵合金負極を理論容量が2300mAhのペースト式ニ
ッケル正極と共にポリプロピレン製セパレータを介して
捲回して電極群を作製した。ひきつづき、この電極群を
電池缶内に挿入した後、アルカリ電解液を注液して封口
する。こうして前記ニッケル正極の利用率が100%以
上であって電池容量が約2400mとなっている4/3
Aサイズのニッケル水素二次電池を組立てた。
First, the composition is LmNi 4.0 Co 0.4 Mn.
A hydrogen storage alloy negative electrode was prepared by coating a conductive core with 0.3 Al 0.3 hydrogen storage alloy powder. Subsequently, the hydrogen-absorbing alloy negative electrode was wound with a paste-type nickel positive electrode having a theoretical capacity of 2300 mAh via a polypropylene separator to form an electrode group. Subsequently, after inserting the electrode group into the battery can, an alkaline electrolyte is injected and sealed. Thus, the utilization rate of the nickel positive electrode is 100% or more and the battery capacity is about 2400 m.
An A-size nickel-metal hydride secondary battery was assembled.

【0024】得られたニッケル水素二次電池を用いて次
のようなニッケル水素二次電池モジュールを組立てた。
即ち、図1は実施例1のニッケル水素二次電池モジュー
ルの構造を示す説明図であり、図2は同ニッケル水素二
次電池モジュールの回路図である。図中の1は、厚さ2
mmのABS樹脂板からなる樹脂製容器である。前記樹
脂製容器1内には直列に接続された6個のニッケル水素
二次電池2と、前記ニッケル水素二次電池2間を接続す
る端子3と、3個目の電池2と4個目の電池2との間に
介在された温度72℃で作動するバイメタル式の温度ブ
レーカ4とが収納されている。前記樹脂製容器1の内側
面6と前記ニッケル水素二次電池2との間隙には、シリ
コーングリース(金属フィラーなし)からなる伝熱性部
材5が充填されている。実施例2
The following nickel-hydrogen secondary battery module was assembled using the obtained nickel-hydrogen secondary battery.
That is, FIG. 1 is an explanatory diagram showing the structure of the nickel-metal hydride secondary battery module of Example 1, and FIG. 2 is a circuit diagram of the nickel-metal hydride secondary battery module. 1 in the figure is thickness 2
It is a resin container made of an ABS resin plate of mm. In the resin container 1, six nickel-metal hydride rechargeable batteries 2 connected in series, a terminal 3 for connecting the nickel-metal hydride rechargeable batteries 2, a third battery 2 and a fourth A bimetal type temperature breaker 4 operating at a temperature of 72 ° C. interposed between the battery 2 and the battery 2 is housed. Inside of the resin container 1
The gap between the surface 6 and the nickel-metal hydride secondary battery 2 is filled with a heat conductive member 5 made of silicone grease (without metal filler). Example 2

【0025】直径50μm、長さ500μmの銅短繊維
を90体積%混合したシリコーングリースからなる伝熱
性部材を用いた以外、実施例1と同様なニッケル水素二
次電池モジュールを組立てた。 比較例1 樹脂製容器とニッケル水素二次電池との間隙に伝熱性部
材を全く充填しない以外、実施例1と同様なニッケル水
素二次電池モジュールを組立てた。
A nickel-hydrogen secondary battery module similar to that of Example 1 was assembled except that a heat conductive member made of silicone grease mixed with 90% by volume of copper short fiber having a diameter of 50 μm and a length of 500 μm was used. Comparative Example 1 A nickel-hydrogen secondary battery module similar to that of Example 1 was assembled, except that the gap between the resin container and the nickel-metal hydride secondary battery was not filled with any heat-conductive member.

【0026】実施例1,2及び比較例1の電池モジュー
ルについて、1Aで完全放電した後、0.5CmAで1
50%充電する充電試験を行なった。その結果、実施例
1,2の電池モジュールは良好に150%充電できた
が、比較例1の電池モジュールは120%充電時に温度
ブレーカが作動して充電不良となった。
The battery modules of Examples 1 and 2 and Comparative Example 1 were completely discharged at 1 A, and then discharged at 1 C at 0.5 CmA.
A charging test for charging 50% was performed. As a result, the battery modules of Examples 1 and 2 could be charged 150% satisfactorily, but the battery module of Comparative Example 1 was charged poorly due to the operation of the temperature breaker at 120% charge.

【0027】また、上記充電試験において、前記各電池
モジュールのニッケル水素二次電池表面と樹脂製容器外
面とにそれぞれ熱電対を張付けてこれらの温度を測定し
た。その結果、実施例1及び比較例1の電池モジュール
におけるニッケル水素二次電池表面及び樹脂製容器外面
の温度は図3に示すように変化した。なお、実施例2の
電池モジュールにおけるニッケル水素二次電池表面及び
樹脂製容器外面の温度は前記実施例1の電池モジュール
に近似した変化を示した。更に、実施例1,2及び比較
例1の電池モジュールにおけるニッケル水素二次電池表
面及び樹脂製容器外面の充電時の最高到達温度を下記表
1に示す。
In the above-described charging test, thermocouples were attached to the surface of the nickel-hydrogen secondary battery of each battery module and the outer surface of the resin container, respectively, and the temperatures were measured. As a result, in the battery modules of Example 1 and Comparative Example 1, the temperature of the surface of the nickel hydride secondary battery and the temperature of the outer surface of the resin container changed as shown in FIG. The temperature of the surface of the nickel-hydrogen secondary battery and the temperature of the outer surface of the resin container of the battery module of Example 2 showed changes similar to those of the battery module of Example 1. Further, Table 1 below shows the maximum temperature at the time of charging the surface of the nickel-hydrogen secondary battery and the outer surface of the resin container in the battery modules of Examples 1 and 2 and Comparative Example 1.

【0028】 表1 充電時の最高到達温度 ニッケル水素二次電池の表面 樹脂製容器の外面 実施例1 68℃(150%充電時) 58℃(150%充電時) 実施例2 62℃(150%充電時) 58℃(150%充電時) 比較例1 79℃(120%充電時) 59℃(120%充電時) Table 1 Maximum temperature during charging Surface of nickel-metal hydride secondary battery Outer surface of resin container Example 1 68 ° C (at 150% charge) 58 ° C (at 150% charge) Example 2 62 ° C (150%) 58 ° C (at 150% charge) Comparative Example 1 79 ° C (at 120% charge) 59 ° C (at 120% charge)

【0029】図3から明らかなように実施例1の電池モ
ジュールは、比較例1の電池モジュールと比べてニッケ
ル水素二次電池の温度上昇が小さく、かつニッケル水素
二次電池表面と樹脂製容器外面との温度差も小さいこと
がわかる。これは、ニッケル水素二次電池と樹脂製容器
との伝熱性が向上して該ニッケル水素二次電池の放熱が
速やかになされていることによるものである。また、表
1から明らかなように実施例1,2の電池モジュール
は、比較例1の電池モジュールと比べてニッケル水素二
次電池の充電時の最高到達温度が低くなっていることが
わかる。
As is clear from FIG. 3, the battery module of Example 1 has a smaller temperature rise of the nickel-metal hydride secondary battery than the battery module of Comparative Example 1, and the surface of the nickel-metal hydride secondary battery and the outer surface of the resin container. It can also be seen that the temperature difference between them is small. This is because the heat transfer between the nickel-metal hydride secondary battery and the resin container is improved, and the nickel-metal hydride secondary battery is quickly radiated. As is clear from Table 1, the battery modules of Examples 1 and 2 have a lower maximum temperature at the time of charging the nickel-metal hydride secondary battery than the battery module of Comparative Example 1.

【0030】なお、上記実施例では、4/3Aサイズの
ニッケル水素二次電池を収納したニッケル水素二次電池
モジュールについて説明したが、AAサイズ等のニッケ
ル水素二次電池を収納したニッケル水素二次電池モジュ
ールでも同様の効果が得られた。
In the above embodiment, the nickel-hydrogen secondary battery module accommodating a nickel hydrogen secondary battery of 4 / 3A size has been described. Similar effects were obtained with the battery module.

【0031】[0031]

【発明の効果】以上詳述した如く、本発明によれば充電
時のニッケル水素二次電池の温度上昇を抑制でき、ひい
ては高容量で、かつ短時間で充電可能な高信頼性のニッ
ケル水素二次電池モジュールを提供することができる。
As described above in detail, according to the present invention, it is possible to suppress the temperature rise of the nickel-metal hydride secondary battery during charging, and to obtain a highly reliable nickel-metal hydride battery which can be charged in a short time with a high capacity. A secondary battery module can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1のニッケル水素二次電池モジュールの
構造を示す説明図
FIG. 1 is an explanatory view showing the structure of a nickel-metal hydride secondary battery module of Example 1.

【図2】実施例1のニッケル水素二次電池モジュールの
回路図
FIG. 2 is a circuit diagram of a nickel-metal hydride secondary battery module of Example 1.

【図3】実施例1及び比較例1の電池モジュールにおけ
る充電量に対するニッケル水素二次電池表面の温度変化
及び樹脂製容器外面の温度変化を示す特性図
FIG. 3 is a characteristic diagram showing a temperature change on a surface of a nickel-metal hydride secondary battery and a temperature change on a resin container outer surface with respect to a charged amount in the battery modules of Example 1 and Comparative Example 1.

【符号の説明】[Explanation of symbols]

1…樹脂製容器、2…ニッケル水素二次電池、5…伝熱
性部材。
DESCRIPTION OF SYMBOLS 1 ... Resin container, 2 ... Ni-MH secondary battery, 5 ... Heat-conductive member.

フロントページの続き (72)発明者 池田 克治 東京都品川区南品川3丁目4番10号 東 芝電池株式会社内 (72)発明者 佐藤 優治 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合研究所内 (56)参考文献 特開 平3−88275(JP,A) 特開 平3−77263(JP,A) 実開 昭55−132860(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01M 2/02 - 2/08 H01M 10/30 H01M 10/34 H01M 2/10 Continuing on the front page (72) Katsuharu Ikeda 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation (72) Inventor Yuji Sato 1st Kogashi Toshiba-cho, Kouki-ku, Kawasaki-shi, Kawasaki Toshiba Research Institute (56) References JP-A-3-88275 (JP, A) JP-A-3-77263 (JP, A) JP-A 55-132860 (JP, U) (58) Fields studied (Int .Cl. 7 , DB name) H01M 2/02-2/08 H01M 10/30 H01M 10/34 H01M 2/10

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 樹脂製容器と、前記容器内に収納される
複数本のニッケル水素二次電池と、伝熱性部材とを具備
したニッケル水素二次電池モジュールにおいて、前記伝熱性部材は、前記容器の内側面と前記ニッケル水
素二次電池との間隙に充填される ことを特徴とするニッ
ケル水素二次電池モジュール。
1. A resin container and housed in the container.
Equipped with a plurality of nickel-metal hydride secondary batteries and a heat conductive member
In the nickel-metal hydride secondary battery module, the heat conductive member includes an inner surface of the container and the nickel water.
A nickel-metal hydride secondary battery module, which is filled in a gap with an elementary secondary battery .
【請求項2】 前記伝熱性部材は、金属フィラーが混合
されたグリースからなることを特徴とする請求項1記載
のニッケル水素二次電池モジュール。
2. The heat conductive member has a metal filler mixed therein.
2. The grease according to claim 1, wherein said grease is made of grease.
Nickel-metal hydride secondary battery module.
JP03189052A 1991-07-29 1991-07-29 Nickel hydrogen secondary battery module Expired - Fee Related JP3094041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03189052A JP3094041B2 (en) 1991-07-29 1991-07-29 Nickel hydrogen secondary battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03189052A JP3094041B2 (en) 1991-07-29 1991-07-29 Nickel hydrogen secondary battery module

Publications (2)

Publication Number Publication Date
JPH0536392A JPH0536392A (en) 1993-02-12
JP3094041B2 true JP3094041B2 (en) 2000-10-03

Family

ID=16234489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03189052A Expired - Fee Related JP3094041B2 (en) 1991-07-29 1991-07-29 Nickel hydrogen secondary battery module

Country Status (1)

Country Link
JP (1) JP3094041B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5018203B2 (en) * 2007-04-19 2012-09-05 パナソニック株式会社 Power storage unit
JP5018204B2 (en) * 2007-04-19 2012-09-05 パナソニック株式会社 Power storage unit
JP5018119B2 (en) * 2007-02-16 2012-09-05 パナソニック株式会社 Power storage unit
ATE539440T1 (en) 2007-02-16 2012-01-15 Panasonic Corp ELECTRICAL STORAGE UNIT

Also Published As

Publication number Publication date
JPH0536392A (en) 1993-02-12

Similar Documents

Publication Publication Date Title
JP3097347B2 (en) Nickel-metal hydride battery
Ying et al. Studies on rechargeable NiMH batteries
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
Furukawa Development and commercialization of nickel-metal hydride secondary batteries
JPH01309265A (en) Alkaline secondary battery and its manufacture
US5405719A (en) Prismatic sealed alkaline storage battery with nickel hydroxide electrode
JPH11176436A (en) Alkaline storage battery
JPH1140189A (en) Nickel-hydrogen storage battery
Geng et al. Characteristics of the High‐Rate Discharge Capability of a Nickel/Metal Hydride Battery Electrode
JP3094041B2 (en) Nickel hydrogen secondary battery module
JP2555511B2 (en) Alkaline secondary battery
JP2962326B1 (en) Nickel-hydrogen storage battery for backup power supply
JP3102002B2 (en) Hydrogen storage electrode and method for producing the same
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JPS61208755A (en) Pasted negative cadmium plate for sealed alkaline storage battery
JP3461923B2 (en) Negative electrode material for battery and method of manufacturing the same, negative electrode body and secondary battery using the same
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2875822B2 (en) Method for manufacturing nickel-hydrogen secondary battery
JP3012658B2 (en) Nickel hydride rechargeable battery
JP3198891B2 (en) Positive electrode for alkaline storage battery
JP3143109B2 (en) Cylindrical sealed nickel storage battery
JP3192694B2 (en) Alkaline storage battery
JP3176214B2 (en) Activation method of nickel-metal hydride secondary battery
JPH04109556A (en) Closed-type secondary battery
JP3118930B2 (en) Hydrogen storage electrode

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080728

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080728

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080728

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080728

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees