JPS619568A - Formation of coated film - Google Patents

Formation of coated film

Info

Publication number
JPS619568A
JPS619568A JP13042384A JP13042384A JPS619568A JP S619568 A JPS619568 A JP S619568A JP 13042384 A JP13042384 A JP 13042384A JP 13042384 A JP13042384 A JP 13042384A JP S619568 A JPS619568 A JP S619568A
Authority
JP
Japan
Prior art keywords
substrate
thickness
film
coated
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13042384A
Other languages
Japanese (ja)
Inventor
Yoshiaki Tanimoto
谷本 芳昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13042384A priority Critical patent/JPS619568A/en
Publication of JPS619568A publication Critical patent/JPS619568A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders

Abstract

PURPOSE:To make the thickness of an Al film in a recess uniform by changing periodically the angle of the substrate surface with a target when the Al film is formed on the substrate of a semiconductor chip having plural recesses for contact holes on the surface by sputtering. CONSTITUTION:Al fine particles M formed by Ar ions from the radiation surface 4 of an Al target 3 are radiated in an Ar atmosphere on the surface of a substrate 1 to be coated having plural recesses 5 as contact holes to form an Al thin film on the surface 2 of the substrate 1 to be coated by sputtering. In this case, since the thickness of the Al coated film 6 is changed by the position of the recess 5 on the surface to be coated, a table 11 fixed to the substrate 1 is rotated in the directions as shown by the arrows 7 and 8 with the X-axis and the Y-axis as the axis of rotation through the expansion and contraction of a hinge 12 and four rods 13 to change the angle with the target 3. Accordingly, the thickness of the Al coated film 6 in the recesses 5 at the central part and the peripheral part of the coated surface 2 is made uniform.

Description

【発明の詳細な説明】 +a+  産業上の利用分野 本発明は、被着膜の形成方法に係り、特に、半導体装置
の主要部品である半導体チップを製造する基体上に、例
えばスパッタ法などにより例えば電極を形成する材料な
どを被着する際における被着膜の形成方法に関す。
Detailed Description of the Invention +a+ Industrial Field of Application The present invention relates to a method of forming a deposited film, and in particular, it relates to a method of forming a deposited film on a substrate for manufacturing a semiconductor chip, which is a main component of a semiconductor device, by, for example, a sputtering method. This invention relates to a method of forming a deposited film when depositing a material for forming an electrode.

半導体装置は、その便宜性から多方面に使用されている
ことは今更説明するまでもないが、その主要部品である
半導体チップは、一般に半導体基体(ウェハ)上にトラ
ンジスタなどの半導体素子を形成したもので、その信頼
性には、該半導体素子本体の良し悪しは勿論であるが、
該半導体素子からの配線導出の良し悪しも大きく影響す
る。
There is no need to explain that semiconductor devices are used in a wide variety of fields due to their convenience, but their main component, the semiconductor chip, is generally a semiconductor device with semiconductor elements such as transistors formed on a semiconductor substrate (wafer). Its reliability depends not only on the quality of the semiconductor element itself, but also on
The quality of wiring lead-out from the semiconductor element also has a large influence.

(b)  従来の技術 前記配線導出は、通常、前記半導体素子を覆う絶縁膜に
コンタクトホールを形成し、その上に例えばアルミニウ
ムなどの電極材料を例えばスパッタ法などにより被着し
、この被着膜をバターニングして電極および配線を形成
することによって行っている。この際、前記配線導出の
良し悪しは、該被着膜の該コンタクトホール部における
カバレージの良し悪しに左右される。
(b) Prior Art The above-mentioned wiring derivation usually involves forming a contact hole in an insulating film covering the semiconductor element, depositing an electrode material such as aluminum on the contact hole by sputtering, etc., and depositing this deposited film. This is done by patterning to form electrodes and wiring. At this time, the quality of the wiring lead-out depends on the quality of coverage in the contact hole portion of the deposited film.

第2図ta+は従来の一般的なスパッタ法における要部
構成を示した斜視図で、1はスパッタにより膜を形成す
る基体、2はその被着面、3はターゲットと称する被着
膜材料体、4はその材料を放射する放射面である。また
、同図には理解に便利なようにx、y、z軸を付しであ
る。
FIG. 2 ta+ is a perspective view showing the configuration of main parts in a conventional general sputtering method, in which 1 is a substrate on which a film is formed by sputtering, 2 is a surface to which the film is deposited, and 3 is a material body for the deposited film called a target. , 4 is the radiation surface that emits the material. Additionally, x, y, and z axes are added to the figure for convenience of understanding.

即ち、被着面2をX2面にし、Y軸が被着面2の中心を
通るものとすれば、放射面4は、被着面2から被着面2
の前方Y軸方向に間隔りをとり、中心をY軸におき、被
着面2に向いて配置されている。間隔りは通常50〜6
0顛程度である。
That is, if the adherend surface 2 is the X2 plane and the Y axis passes through the center of the adherend surface 2, then the radiation surface 4 is from the adherend surface 2 to the adherend surface 2.
They are spaced apart from each other in the front Y-axis direction, are centered on the Y-axis, and are disposed facing the adherend surface 2. Spacing is usually 50-6
It is about 0 days.

スパッタによる被着膜の形成は、凡そ10−コTorr
程度のアルゴン雰囲気中に上記配置をなし、被着膜材料
体3をカソードにして、アノード(図示省略)との間に
放電させることにより、アルゴンイオンArが放射面4
を叩いて、放射面4から被着膜材料体3の材料Mを放射
させ、材料Mが被着面2に被着してなされる。
The deposition film is formed by sputtering at approximately 10-Torr.
By making the above arrangement in an argon atmosphere of about 100 mL, using the deposited film material 3 as a cathode, and discharging between it and an anode (not shown), argon ions Ar are emitted onto the radiation surface 4.
The material M of the deposited film material body 3 is radiated from the radiation surface 4 by being hit, and the material M is deposited on the deposition surface 2.

この際、基体1の大きさく例えば直径)に対して、被着
膜材料体3の大きさを約1.5倍にすると、被着面2に
形成される被着膜の厚さが全面に渡り略均−になること
が、経験的に知られている。
At this time, if the size of the deposited film material body 3 is made approximately 1.5 times the size of the substrate 1 (for example, the diameter), the thickness of the deposited film formed on the deposited surface 2 will be increased to the entire surface. It is empirically known that the migration is approximately equal.

(C)  発明が解決しようとする問題点しかしながら
、前述したコンタクトホールを有する場合などのように
、被着面2に第2図(b)および(C)(共に側断面図
)図示の如く窪5がある場合には、被着膜6の厚さは、
窪5の部分で均一にならない。
(C) Problems to be Solved by the Invention However, in cases where the above-mentioned contact hole is provided, the adherend surface 2 has a depression as shown in FIGS. 2(b) and 2(C) (both side sectional views). 5, the thickness of the deposited film 6 is
It is not uniform in the depression 5 part.

即ち、図(blは窪5が被着面2の中央部にある場合を
、図(C)は窪5が被着面2の周辺部(図上、上が中央
側、下が縁側を示す)にある場合を示しており、図示(
blに示した、中央部にある窪5の肩部における被着膜
6の厚さTlおよびT2は揃っているが、図示(C)に
示した、周辺部にある窪5の肩部における被着膜6の厚
さは、図上の上側(T3)と下側(T4)とが異なり、
厚さT4が薄くなっている。
That is, Figure (bl) shows the case where the recess 5 is located at the center of the adherend surface 2, and Figure (C) shows the case where the recess 5 is located at the periphery of the adherend surface 2 (the upper part shows the center side and the lower part shows the edge side). ), and the diagram shows (
The thicknesses Tl and T2 of the deposited film 6 at the shoulder of the depression 5 in the central part shown in FIG. The thickness of the deposited film 6 is different between the upper side (T3) and the lower side (T4) in the figure.
The thickness T4 is thinner.

この傾向は基体1が大きくなると顕著である。This tendency becomes more noticeable as the base body 1 becomes larger.

例えば、大きさが約2μm角、深さが約1μmの窪5を
有し、直径が約150fiφの基体1、即ちコンタクト
ホールを有する6!ンφの大型ウェハに、厚さTが約1
μmになるようにアルミニウム(材料M)を被着(スパ
ッタ時間約1分)すると、窪5の肩部の厚さT1〜T4
の中で、厚さT1〜T3は、厚さTの凡そ172程度に
揃っているが、厚さT4は、厚さT3の172以下で極
めて薄くなる。
For example, the base body 1 has a depression 5 with a size of about 2 μm square and a depth of about 1 μm, and a diameter of about 150 fiφ, that is, a contact hole 6! For a large wafer of diameter φ, the thickness T is approximately 1
When aluminum (material M) is deposited to a thickness of μm (sputtering time approximately 1 minute), the thickness of the shoulder portion of the recess 5 is T1 to T4.
Among them, the thicknesses T1 to T3 are approximately equal to about 172 times the thickness T, but the thickness T4 becomes extremely thin when it is less than 172 times the thickness T3.

このことは、例えば、半導体チップにおける前記配線導
出において、ウェハ(基体)が太きくなると、ウェハ周
辺部のコンタクトホール部におけるカバレージが悪くな
り、その部分で断線を生ずる危険性に繋がる問題点とな
る。
For example, in the wiring derivation of a semiconductor chip, as the wafer (substrate) becomes thicker, the coverage in the contact hole area at the periphery of the wafer deteriorates, leading to the risk of disconnection in that area. .

(d)  問題点を解決するための手段上記問題点は、
被着膜材料体の材料を放射させる際に、基体被着面と該
被着面から該材料体に向かう方向とがなす角度を周期的
に変化さると云う手段を講することによって解決される
(d) Means to solve the problem The above problem is
This can be solved by taking a method of periodically changing the angle formed between the substrate adhering surface and the direction from the adhering surface toward the material when emitting the material of the adhering film material. .

(e)  作用 第2図1alおよび(C)図示において、厚さT4が薄
くなるのは、材料Mの放射が、放射面4の全面から一様
に行われず、然も該放射の密度が方向により異なって、
被着面2周辺部においては、縁側に向かう横方向の成分
が少ないことに起因すると考えられる。
(e) Effect In the illustrations in FIG. 2 1al and (C), the thickness T4 is thin because the radiation of the material M is not uniformly distributed over the entire surface of the radiation surface 4, and the density of the radiation is not uniform in the direction. Depending on the
This is thought to be due to the fact that there are few lateral components toward the edge in the peripheral area of the adherend surface 2.

そこで、被着面2を放射面4に対して傾斜させることに
より、前記横方向の場合より材料Mの放射密度が大きい
方向の放射を利用して、厚さT4が従来より厚い被着膜
6を形成することが可能になる。
Therefore, by tilting the deposition surface 2 with respect to the radiation surface 4, the radiation in the direction in which the radiation density of the material M is greater than that in the horizontal direction is utilized, and the thickness T4 is thicker than in the past. It becomes possible to form.

然もこの作用は、基体lが大きくなっても変わらず、む
しろ、従来方法では基体1が大きくなると厚さT4が薄
くなることを引合にすると、基体1が大きい方で効果が
大きいことになる。
However, this effect does not change even if the base 1 becomes larger; in fact, considering that in the conventional method, the thickness T4 becomes thinner as the base 1 becomes larger, the effect is greater when the base 1 is larger. .

前記傾斜を固定すれば、被着面2上の一方向にのみ厚さ
T4が厚くなって偏るので、本発明においては、該傾斜
を周期的に変化させて、被着面2上の方向による偏りを
無くしている。
If the inclination is fixed, the thickness T4 will become thicker and uneven in only one direction on the adherend surface 2. Therefore, in the present invention, the inclination is periodically changed to increase the thickness T4 depending on the direction on the adherend surface 2. It eliminates bias.

かくして、例えば、半導体チップにおける前記配線導出
において、ウェハ(基体)が大きくなっても、コンタク
トホール部におけるカバレージを向上し、その部分で断
線を生ずる危険性を低減させることが可能になる。
Thus, for example, in leading out the wiring in a semiconductor chip, even if the wafer (substrate) becomes larger, it is possible to improve the coverage in the contact hole portion and reduce the risk of disconnection in that portion.

なお、本方法は、その原理からして、従来例で示したス
パッタ法に限られず、基体被着面の前方に配設された被
着膜材料体から該被着膜材料体の材料を放射させて該被
着面上に該材料の被着膜を形成する被着膜形成法、例え
ば蒸着法などにも適用して有効である。
Note that the principle of this method is not limited to the sputtering method shown in the conventional example, but the method involves emitting the material of the deposited film material from a deposited film material disposed in front of the substrate deposition surface. The present invention is also effective when applied to a method of forming a deposited film of the material on the surface to be deposited, such as a vapor deposition method.

(f)  実施例 以下本発明による被着膜形成方法の一実施例を示した第
1図により説明する。企図を通じ同一符号は同一対象物
を示す。
(f) Example Hereinafter, an example of the method for forming a deposited film according to the present invention will be explained with reference to FIG. The same reference numerals refer to the same objects throughout the design.

第1図において、図(alは本発明の方法によるスパッ
タ法の一実施例における要部構成を示した斜視図、図(
b)および図(C)はその実施例により被着膜を被着し
た一例の状況を示した側断面図である。
In FIG. 1, FIG.
b) and Fig. (C) are side sectional views showing an example of a state in which a coating film is applied according to the embodiment.

第1図(a)図示は、第2図(a)図示に対応している
が、第1図(a)図示では、基体1が矢印7.8で示す
ようにX軸およびZ軸を軸にして回動するようになって
いる。その他は第2図+a)図示と変わらない。矢印7
の回動は被着面2とY軸とがYZ面でなす角度θ2に士
約30度の変化を与え、矢印8の回動は被着面2とY軸
とがXY面でなす角度θXに士約30度の変化を与えて
いる。然も、矢印7の回動周期は約5秒、矢印8の回動
周期は約6秒と再回動周期を変えであるので、被着面2
における全ての方向において、被着面2とY軸とのなす
角度は士約30度の変化をする。
The illustration in FIG. 1(a) corresponds to the illustration in FIG. 2(a), but in the illustration in FIG. It is designed to rotate. Other details are the same as shown in Figure 2+a). arrow 7
The rotation of arrow 8 changes the angle θ2 between the adherend surface 2 and the Y-axis in the YZ plane by about 30 degrees, and the rotation of arrow 8 changes the angle θX between the adherend surface 2 and the Y-axis in the XY plane. This gives a change of about 30 degrees to the surface. However, since the rotation period of arrow 7 is about 5 seconds and the rotation period of arrow 8 is about 6 seconds, the re-rotation period is different.
In all directions in , the angle between the adherend surface 2 and the Y axis changes by about 30 degrees.

なお、前記回動を与えるスパッタ装置例の要部構成は、
第1図fd)に側断面図で示した如くである。
In addition, the main part configuration of the example of the sputtering apparatus that provides the rotation is as follows:
As shown in a side sectional view in FIG. 1 fd).

基体1を固定するテーブル11は、その裏面中心でヒン
ジ12を介して支承され自在に揺動可能であり、ヒンジ
12の上下左右に位置する点が、規則的に図上左右動す
る四本のロッド13にそれぞれ押されて第1図fa)図
示矢印7ないし8の回動をなす。
The table 11 to which the base body 1 is fixed is supported at the center of its back surface via a hinge 12 and can swing freely. They are pushed by the rods 13 and rotate as indicated by arrows 7 and 8 in FIG. 1 fa).

この方法で、例えば、先に述べた従来実施例と同様に、
大きさが約2μm角、深さが約1μmの窪5を有し、直
径が約15ONφの基体1、即ちコンタクトホールを有
する6!ンφの大型ウェハに、厚さTが約1μmになる
ようにアルミニウム(材料M)を被着(スパッタ時間約
1分)した結果は、第1図fblおよびfc)図示の如
くである。
In this method, for example, similar to the conventional embodiment described above,
The base body 1 has a depression 5 with a size of about 2 μm square and a depth of about 1 μm, and a diameter of about 15 ONφ, that is, a contact hole 6! The results of depositing aluminum (material M) on a large wafer of diameter φ to a thickness T of approximately 1 μm (sputtering time approximately 1 minute) are as shown in FIG. 1 (fbl and fc).

即ち、第1図(blおよび(C1図示はそれぞれ第2図
(b)および(C)図示に対応しているが、第1図(b
)およびte1図示の厚さT1〜T3は、第1図(b)
および(C)図示の厚さT1〜T3と殆ど変わっていな
い。一方、第1図fc1図示の厚さT4は、厚さT3の
374程度になり、第2図(C1図示の厚さT4の1.
5倍以上になっている。
That is, although the illustrations in FIG. 1 (bl and (C1) correspond to the illustrations in FIG. 2 (b) and (C), respectively,
) and the thicknesses T1 to T3 shown in te1 are as shown in Fig. 1(b).
and (C) the thicknesses are almost unchanged from the illustrated thicknesses T1 to T3. On the other hand, the thickness T4 shown in FIG. 1 fc1 is approximately 374 times the thickness T3, and the thickness T4 shown in FIG.
It's more than 5 times more.

(酌 発明の効果 以上に説明したように、本発明による手段を講すること
により、基体が大きくなるのに伴い、その被着面周辺部
にある窪の肩部の被着膜の厚さが薄くなるのを、抑制す
ることが可能になり、例えば、半導体チップにおける前
記配線導出において、ウェハ(基体)が大きくなっても
、コンタクトホール部におけるカバレージを向上し、そ
の部分で断線を生ずる危険性を低減させることを可能に
させる効果がある。
(Effects of the Invention As explained above, by taking the measures of the present invention, as the substrate becomes larger, the thickness of the deposited film on the shoulder of the depression in the periphery of the deposited surface decreases. For example, even when the wafer (substrate) becomes larger, it is possible to suppress the thinning of the wiring in a semiconductor chip, and even if the wafer (substrate) becomes larger, the coverage in the contact hole area can be improved, and there is a risk of disconnection in that area. This has the effect of making it possible to reduce the

【図面の簡単な説明】[Brief explanation of the drawing]

第1図+a)は本発明の方法によるスパッタ法の一実施
例における要部構成を示した斜視図、第1図(b)およ
びfclはその実施例により被着膜を被着した一例の状
況を示した側断面図、第1図(d)は基体に回動を与え
るスパッタ装置例の要部構成を示した側断面図、 第2図(alは従来の一般的なスパッタ法における要部
構成を示した斜視図、 第2図(b)および(C1はその方法により被着膜を被
着した一例の状況を示した側断面図である。 図面において、 1は基体、      2は被着面、 3は被着膜材料体、  4は放射面、 5は窪、        6は被着膜、7.8は矢印、
    11はテーブル、12はヒンジ、      
13はロッド、Arはアルゴンイオン、 Lは間隔、 Mは材料、       T、Tl〜T4は厚さ、θx
102は角度、 をそれぞれ示す。 峯l 唄 t#2日
FIG. 1+a) is a perspective view showing the main structure of an embodiment of the sputtering method according to the method of the present invention, and FIG. 1(d) is a side sectional view showing the configuration of the main parts of an example of a sputtering apparatus that rotates the substrate; FIG. FIG. 2(b) is a perspective view showing the structure, and FIG. 3 is the deposited film material body, 4 is the radiation surface, 5 is the depression, 6 is the deposited film, 7.8 is the arrow,
11 is a table, 12 is a hinge,
13 is the rod, Ar is the argon ion, L is the spacing, M is the material, T, Tl~T4 are the thickness, θx
102 indicates the angle, respectively. Mine Utat #2nd

Claims (1)

【特許請求の範囲】[Claims] 基体被着面の前方に配設された被着膜材料体から該被着
膜材料体の材料を放射させて該被着面上に該材料の被着
膜を形成する際に、該被着面と該被着面から該材料体に
向かう方向とがなす角度を周期的に変化さることを特徴
とする被着膜の形成方法。
When forming a coating film of the material on the coating surface by emitting the material of the coating material body disposed in front of the substrate coating surface, the coating material body is disposed in front of the coating surface. A method for forming a deposited film, characterized in that the angle between the surface and the direction from the deposited surface toward the material body is periodically changed.
JP13042384A 1984-06-25 1984-06-25 Formation of coated film Pending JPS619568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13042384A JPS619568A (en) 1984-06-25 1984-06-25 Formation of coated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13042384A JPS619568A (en) 1984-06-25 1984-06-25 Formation of coated film

Publications (1)

Publication Number Publication Date
JPS619568A true JPS619568A (en) 1986-01-17

Family

ID=15033890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13042384A Pending JPS619568A (en) 1984-06-25 1984-06-25 Formation of coated film

Country Status (1)

Country Link
JP (1) JPS619568A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197561A (en) * 1989-01-24 1990-08-06 Nippon Telegr & Teleph Corp <Ntt> Thin organic film and its production

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122483A (en) * 1973-03-28 1974-11-22
JPS51131481A (en) * 1975-05-12 1976-11-15 Shinko Seiki Kk A vacuum vaporizing apparatus
JPS5815654B2 (en) * 1974-01-11 1983-03-26 ソシエテ アノニム デ− ベ− ア− disc brake

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122483A (en) * 1973-03-28 1974-11-22
JPS5815654B2 (en) * 1974-01-11 1983-03-26 ソシエテ アノニム デ− ベ− ア− disc brake
JPS51131481A (en) * 1975-05-12 1976-11-15 Shinko Seiki Kk A vacuum vaporizing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197561A (en) * 1989-01-24 1990-08-06 Nippon Telegr & Teleph Corp <Ntt> Thin organic film and its production

Similar Documents

Publication Publication Date Title
US20030201723A1 (en) Gas distribution plate electrode for a plasma reactor
JPS62211375A (en) Sputtering device
JPS619568A (en) Formation of coated film
JPH08213321A (en) Uniform film thickness deposition of sputtering material
JPS59170270A (en) Apparatus for forming film
JPH0649936B2 (en) Bias spattering device
JPH01270321A (en) Sputtering device
JP3979745B2 (en) Film forming apparatus and thin film forming method
KR100200499B1 (en) Method of manufacturing inter-connector in semiconductor device
JPH0665731A (en) Apparatus for production of semiconductor
JPH05166815A (en) Plating bump formation method and wafer plating jigs adopted
JPH0151814B2 (en)
JPH0741943A (en) Sputtering device
KR0161390B1 (en) Sputtering method for semiconductor device and sputtering apparatus for this method
JPH0660390B2 (en) Planar magnetron method and apparatus for forming a film on a film formation target substrate having micropores
JPS62122211A (en) Method and apparatus for forming film
JP2000114201A (en) Vapor deposition system
JP2844779B2 (en) Film formation method
JPS62199033A (en) Formation of thin-film
JPH02156536A (en) Film formation, sputtering apparatus used therefor and manufacture of highly integrated semiconductor device using same
JPS5845735A (en) Formation of amorphous thin membrane
JPH04183855A (en) Formation of sputter film
JPS59111325A (en) Manufacture of semiconductor multilayer electrode
JPH01293615A (en) Manufacture of semiconductor device
JPH01225336A (en) Manufacture of semiconductor device