JPS6193940A - Nuclear magnetic resonator - Google Patents

Nuclear magnetic resonator

Info

Publication number
JPS6193940A
JPS6193940A JP21465184A JP21465184A JPS6193940A JP S6193940 A JPS6193940 A JP S6193940A JP 21465184 A JP21465184 A JP 21465184A JP 21465184 A JP21465184 A JP 21465184A JP S6193940 A JPS6193940 A JP S6193940A
Authority
JP
Japan
Prior art keywords
frequency
coil
magnetic resonance
nuclear magnetic
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21465184A
Other languages
Japanese (ja)
Inventor
Naoyuki Fujii
藤井 直之
Kazuhiro Matsushita
和弘 松下
Nobuyoshi Miyabayashi
延良 宮林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP21465184A priority Critical patent/JPS6193940A/en
Publication of JPS6193940A publication Critical patent/JPS6193940A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/46NMR spectroscopy

Abstract

PURPOSE:To remove the unnecessary peak of high intensity by calculating power spectral data from the nuclear magnetic resonance spectral data obtd. from a transmitting and receiving coil and supplying the frequency corresponding to the data position of the max. intensity to a decoupling coil. CONSTITUTION:A sample tube 2 is disposed in the static magnetic field generated by a magnet 1. The transmitting and receiving coil 3 and the decoupling coil 4 are disposed in proximity to the tube 2. An oscillator 5 generates the high frequency to be supplied to the coil 3 and a variable frequency oscillator 6 generates the high frequency to be supplied to the coil 4. The nuclear magnetic resonance spectral data obtd. from the coil 3 is fed to a data processing unit 3, by which the powder spectral data is calculated in accordance with the real number component and imaginary number component. The frequency corresponding to the data position of the max. intensity in the power spectral data is determined and the oscillation frequency of the oscillator 6 is set at said frequency. The unnecessary peak of the large intensity occurring from water or solvent, etc. and appearing in the nuclear magnetic resonance spectrum is thus removed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は核磁気共鳴装置(NMR装置)に関し、特にN
MRスペクトル中に出現する水あるいは溶媒等に起因す
る大強度の不要ピークを除去した測定を自動的に行うこ
とのできるNMR装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a nuclear magnetic resonance apparatus (NMR apparatus), and in particular to a nuclear magnetic resonance apparatus (NMR apparatus).
The present invention relates to an NMR apparatus that can automatically perform measurements by removing unnecessary peaks of high intensity caused by water, solvent, etc. that appear in an MR spectrum.

[従来の技術] NMR装置においては、静磁場中に配置された被測定試
料に高周波パルス磁場を照射し、該高周波パルス磁場の
照射に基づいて派生する自由誘導減衰信@(FID信号
)を検出し、時間領域の信号であるこのFID信号を周
波数領域へフーリエ変換し、例えば第4図(d)に示す
ようなNMRスペクトルを得ている。ところが、水溶液
試料について水素核(プロトン)観測を行うような場合
、このスペクトル中には試料を溶かした溶媒(水)のピ
ークが出現し、しかも圧倒的に量が多いため、そのピー
ク強度は極めて大きなものになってしまう。そして、装
置の利得はこの大強度の溶媒ピークが飽和しないように
設定されるため、目的とする微m試料成分の信号は十分
なSN比が得られない結果になる。
[Prior art] In an NMR apparatus, a high-frequency pulsed magnetic field is irradiated onto a sample to be measured placed in a static magnetic field, and a free induction decay signal @ (FID signal) derived from the irradiation of the high-frequency pulsed magnetic field is detected. Then, this FID signal, which is a signal in the time domain, is Fourier transformed into the frequency domain to obtain an NMR spectrum as shown in FIG. 4(d), for example. However, when observing hydrogen nuclei (protons) in an aqueous solution sample, a peak from the solvent (water) in which the sample was dissolved appears in the spectrum, and because the amount is overwhelmingly large, the peak intensity is extremely low. It becomes something big. Since the gain of the apparatus is set so as not to saturate this high-intensity solvent peak, a sufficient signal-to-noise ratio cannot be obtained for the signal of the target microm sample component.

そこで、このような不都合を除くため、溶媒のピークに
相当する周波数の高周波磁場をFTD信号のサンプリン
グ前に試料に照射する・ことにより予め溶媒のプロトン
のみを飽和させてあき、それにより溶媒のピークを抑圧
する所謂ホモゲートデカップリング法(HGD法)が良
く利用されている。
Therefore, in order to eliminate this inconvenience, only the protons of the solvent are saturated in advance by irradiating the sample with a high-frequency magnetic field of a frequency corresponding to the peak of the solvent before sampling the FTD signal. The so-called homogate decoupling method (HGD method) is often used to suppress this.

[発明が解決しようとする問題点] 仁ころが、この方法を実施するためには、先ずHGD法
ではない通常の測定法で試料のNMRスペクトルを得、
オペレータがそのスペクトル中の溶媒ピークの位置から
その溶媒ピークの周波数を確認し、次にオペレータがデ
カップリング用高周波発振器の発振周波数をその溶媒ピ
ークの周波数に設定し、それからHGD法による測定を
開始する、というように複雑な手順を踏まねばならず、
熟練を要するばかりでなく 、′1At1定時間も長く
なってしまうことは避(ブられなかった。
[Problems to be Solved by the Invention] In order to implement this method, Nikoro first obtains the NMR spectrum of the sample using a normal measurement method other than the HGD method.
The operator confirms the frequency of the solvent peak from the position of the solvent peak in the spectrum, then sets the oscillation frequency of the decoupling high-frequency oscillator to the frequency of the solvent peak, and then starts measurement using the HGD method. , it is necessary to go through complicated steps such as
Not only did this require skill, but it was also inevitable that the '1At1 constant time would become long.

本発明はこの点に鑑みてなされたものであり、デカップ
リング用高周波発振器の発振周波数の設定を自動的に行
うことのできるNMR装置を提供することを目的として
いる。
The present invention has been made in view of this point, and it is an object of the present invention to provide an NMR apparatus that can automatically set the oscillation frequency of a high-frequency oscillator for decoupling.

[問題点を解決するための手段] この目的を達成するため、本発明は、静磁場中に置かれ
る被測定試料の近傍に配置される送受信コイル及びデカ
ップリング用コイルと、該送受信コイルへ観測用高周波
パルスを供給するための手段と、該デカップリング用コ
イルへ供給するためのデカップリング用高周波を発生す
るだめの可変周波数発振器と、前記送受信コイルを介し
た高周波パルス磁場照射に基づいて派生する自由誘導減
衰信号を検出する手段と、該自由誘導減衰信号をフーリ
エ変換してNMRスペクトルを得るための手段とを備え
たNMR装置において、得られたNMRスペクトルデー
タの実数成分及び虚数成分に基づいてパワースペクトル
データを求める演算手段と、該パワースペクトルデータ
中の最大強度のデータ位置を求める最大値検出手段と、
求めたデータ位置に基づいて該データに対応する周波数
を求める手段とを設け、前記可変周波数発振器の発振周
波数を該周波数に設定するようにしたことを特徴として
いる。以下、図面を用いて本発明の一実施例を詳説する
[Means for Solving the Problems] In order to achieve this object, the present invention provides a transmitting/receiving coil and a decoupling coil placed near a sample to be measured placed in a static magnetic field, and an observation coil connected to the transmitting/receiving coil. means for supplying a high frequency pulse for decoupling, a variable frequency oscillator for generating a high frequency decoupling wave to be supplied to the decoupling coil; In an NMR apparatus comprising means for detecting a free induction attenuation signal and means for Fourier transforming the free induction attenuation signal to obtain an NMR spectrum, based on the real component and imaginary component of the obtained NMR spectrum data, calculation means for obtaining power spectrum data; maximum value detection means for obtaining the maximum intensity data position in the power spectrum data;
The present invention is characterized in that a means for determining a frequency corresponding to the data based on the determined data position is provided, and the oscillation frequency of the variable frequency oscillator is set to the frequency. Hereinafter, one embodiment of the present invention will be explained in detail using the drawings.

[実施例] 第1図は本発明を実施したNMR装置の一例を示すブロ
ック図である。図において1は静磁場を発生する磁石、
2は静磁場内に配置される試料管、3.4は試料管に近
接して配置される送受信コイルとデカップリング用コイ
ル、5は送受信コイル3へ供給する高周波を発生する発
振器、6はデカップリング用コイル4へ供給する高周波
を発生する可変周波数発振器である。発振器5で生成さ
れた高周波は、ゲート7、増幅器8を介して前記送受信
コイル3へ送られ、高周波パルス磁場として試料へ照射
される。この高周波パルス磁場照射後試料コイル3に誘
起される共鳴信号は、増幅器9及びゲート10を介して
取出され、復調器11へ送られる。復調により得られた
自由誘導減衰信号(FID信号)は、A−D変換器12
を介してデータ処理装置13へ送られる。
[Example] FIG. 1 is a block diagram showing an example of an NMR apparatus implementing the present invention. In the figure, 1 is a magnet that generates a static magnetic field,
2 is a sample tube placed in a static magnetic field, 3.4 is a transmitting/receiving coil and a decoupling coil placed close to the sample tube, 5 is an oscillator that generates a high frequency to be supplied to the transmitting/receiving coil 3, and 6 is a decoupling coil. This is a variable frequency oscillator that generates high frequency waves to be supplied to the ring coil 4. The high frequency generated by the oscillator 5 is sent to the transmitting/receiving coil 3 via the gate 7 and the amplifier 8, and is irradiated onto the sample as a high frequency pulsed magnetic field. A resonance signal induced in the sample coil 3 after irradiation with this high-frequency pulsed magnetic field is extracted via an amplifier 9 and a gate 10 and sent to a demodulator 11. The free induction decay signal (FID signal) obtained by demodulation is sent to the A-D converter 12.
The data is sent to the data processing device 13 via.

上記データ処理装置13は、FID信号記憶部14、フ
ーリエ変換処理部15及びそれに付属するメモリ16、
パワースペクトル演算部17及びそれに付属するメモリ
18、最大値検出部19、周波数算定部20を備えてお
り、発振器6の発振周波数はこの算定部20で求められ
た周波数に設定される。尚、21及び22は発振器6と
コイル4との間に挿入されるゲート及び増幅器、23は
前記ゲート7.10.21及びA−D変換器12の動作
を制御するタイミング回路である。
The data processing device 13 includes an FID signal storage section 14, a Fourier transform processing section 15, and a memory 16 attached thereto;
It includes a power spectrum calculation section 17, a memory 18 attached thereto, a maximum value detection section 19, and a frequency calculation section 20, and the oscillation frequency of the oscillator 6 is set to the frequency determined by the calculation section 20. Note that 21 and 22 are gates and amplifiers inserted between the oscillator 6 and the coil 4, and 23 is a timing circuit that controls the operations of the gates 7, 10, and 21 and the A/D converter 12.

上述の如き構成において、測定は第2図に示す手順に従
って進められる。即ち、 (1)発振器6を動作させず、発振器5の発・据置波数
をプロトンの共鳴周波数に設定し、HGD法ではない通
常の測定法で仮測定が行われる。この場合、ゲート7は
第3図(a)のタイミングでONになり、それによって
高周波パルス磁場が試料に照射され、照!)l後ゲート
10は第3図(b)のタイミングでONになり、FID
信号がその期間取出される。取出されたFID信号はゲ
ート10と同じ期間動作するA−D変換器12によって
サンプリングされ、FID信号記憶部14へ記憶される
In the configuration as described above, measurements proceed according to the procedure shown in FIG. That is, (1) The oscillator 6 is not operated, the oscillation/stationary wave number of the oscillator 5 is set to the resonant frequency of protons, and a temporary measurement is performed using a normal measurement method other than the HGD method. In this case, the gate 7 is turned on at the timing shown in FIG. 3(a), and a high-frequency pulsed magnetic field is irradiated onto the sample. ) After l, the gate 10 is turned on at the timing shown in FIG. 3(b), and the FID
A signal is extracted for that period. The extracted FID signal is sampled by the A-D converter 12 which operates for the same period as the gate 10, and is stored in the FID signal storage section 14.

(2)このFID信号をフーリエ変換部15にてフーリ
エ変換することにより、周波数領域のスペクトルデータ
に変換する。スペクトルデータは複素数x+iYの形で
得られ、メモリ16に格納される。このスペクトルデー
タの実数部を取出して表示すると例えば第4図(a)の
ような吸収波形のスペクトルが得られ、虚数部を取出し
て表示すると例えば第4図(b)のような分散波形のス
ペクトルが得られる。これらのスペクトル中には当゛ 
   然のことながら溶媒による大強度ビークPsが存
在している。
(2) This FID signal is subjected to Fourier transform in the Fourier transform section 15, thereby converting it into frequency domain spectral data. Spectral data is obtained in the form of complex numbers x+iY and stored in memory 16. If the real part of this spectral data is extracted and displayed, a spectrum with an absorption waveform as shown in FIG. 4(a), for example, is obtained, and if the imaginary part is extracted and displayed, a spectrum with a dispersion waveform as shown in FIG. 4(b), for example, is obtained. is obtained. In these spectra there are
Naturally, there is a large peak Ps due to the solvent.

(3)演W部17において、全データについて%24−
”y’2−の演蒜を行い、パワースペクトルデータを得
る。パワースペクトルデータはメモリ18に格納される
。このパワースペクトルは、第4図(C)、に示すよう
にピーク幅が広がって分−解能が低くなるものの、位相
ずれによる影響を受けないという特徴がある。
(3) In performance W part 17, %24- for all data
``y'2-'' to obtain power spectrum data. The power spectrum data is stored in the memory 18. As shown in FIG. -Although the resolution is lower, it has the characteristic that it is not affected by phase shift.

(4)最大値検出部19において、全パワースペクトル
データを読出して強度を比較することにより最も強度が
高いものく即ち溶媒のビークPsiを検出する。
(4) The maximum value detection unit 19 reads out all the power spectrum data and compares the intensities to detect the peak Psi of the solvent having the highest intensity.

(5ン周波数算定回路20は、(4)において検出した
最高強度のパワースペクトルデータの位置(データ番号
)から溶媒ピークの周波数fsを算定する。この周波数
の算定は、基準となる周波数(発振器5の発振周波数)
と1データ当りの周波数変化へfとから容易に行うこと
ができる。
(The frequency calculation circuit 20 calculates the solvent peak frequency fs from the position (data number) of the highest intensity power spectrum data detected in (4). This frequency calculation is performed using the reference frequency (oscillator 5 oscillation frequency)
This can be easily done from f to the frequency change per data.

(6)発振器6の発振周波数を(5)で算定した周波数
fs1.:設定する。
(6) The oscillation frequency of the oscillator 6 is the frequency fs1 calculated in (5). : Set.

(7)HGD法を用いて本測定を行う。この場合、観測
側チャンネルの動作は仮測定と全く同じであり、ゲート
7が第3図(a)のタイミングでONになって高周波パ
ルスが試料に照射され、照射後ゲート10が第3図(b
)のタイミングでONになってFID信号がその期間取
出され、ゲート10と同じ期間動作するA−D変換器1
2を介してサンプリングされ、FID信号記憶部14へ
記憶される。
(7) Perform the main measurement using the HGD method. In this case, the operation of the observation side channel is exactly the same as the temporary measurement, and the gate 7 is turned on at the timing shown in FIG. b
), the A-D converter 1 is turned ON and the FID signal is taken out during that period, and operates for the same period as the gate 10.
2 and stored in the FID signal storage section 14.

仮測定と異なるのはゲート21が高周波パルスの照射に
先立って第3図(C)のタイミングでONになり、その
期間周波数fsの高周波磁場がデカップリング用コイル
4から試料に照射されることである。
The difference from the preliminary measurement is that the gate 21 is turned on at the timing shown in FIG. 3(C) prior to the irradiation of the high-frequency pulse, and during that period a high-frequency magnetic field with a frequency fs is irradiated from the decoupling coil 4 to the sample. be.

(8)本測定でIHられたFID信号をフーリエ変換部
15にてフーリエ変換することにより、周波数領域のス
ペクトルデータに変換する。それにより得られるスペク
トルは、第4図(d)に示すように溶媒のピークが周波
数fsの高周波磁場照射により抑圧されたものとなる。
(8) The FID signal subjected to IH in the main measurement is subjected to Fourier transform in the Fourier transform section 15, thereby converting it into frequency domain spectral data. In the resulting spectrum, as shown in FIG. 4(d), the peak of the solvent is suppressed by the high-frequency magnetic field irradiation with the frequency fs.

尚、上記実施例ではHG ’D法を用いる場合について
述べたが、観測核と同じ核についてデカップリングを行
う所謂ホモデカップリングはHGD法以外にも各種提案
されており、それらのすべてについて本発明を適用する
ことができる。
In the above embodiment, the case where the HG'D method is used has been described, but there are various so-called homodecoupling methods other than the HGD method that decouple the same nucleus as the observation nucleus, and the present invention applies to all of them. can be applied.

[発明の効果] 以上詳述した如く、本発明によれば、デカップリング用
発振器の発振周波数の設定を自動的に行うことのできる
NMR装置が実現される。
[Effects of the Invention] As described in detail above, according to the present invention, an NMR apparatus that can automatically set the oscillation frequency of a decoupling oscillator is realized.

又、本発明では仮測定で得たスペクトルデータに基づい
てパワースペクトルを求め、そのパワースペクトルに基
づいて溶媒ピークを求めているため、仮測定は位相調整
を全く考慮しないで行うことができる。
Furthermore, in the present invention, a power spectrum is determined based on the spectral data obtained in the preliminary measurement, and a solvent peak is determined based on the power spectrum, so that the preliminary measurement can be performed without considering phase adjustment at all.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実旅したNMR装置の一例を示すブロ
ック図、第2図は第1図の実施例において行われる測定
の手°順を示す図、第3図は第1図の実施例の動作を説
明するためのタイミング図、第4図は測定の過程で得ら
れるスペクトルを示す図である。 1:!a石      2:試料管 3:送受信コイル 4:デカツブリング用コイル 5.6:発振器 7.10.21 :ゲート 11:復調器    12:A−D変換器13:データ
処理装置 14:FID信号記憶部 15:フーリエ変換処理部 16.18:メモリ 17:パワースペクトル演算部
FIG. 1 is a block diagram showing an example of an NMR apparatus in which the present invention was applied, FIG. 2 is a diagram showing the measurement procedure performed in the embodiment of FIG. 1, and FIG. A timing diagram for explaining the operation of the example, and FIG. 4 is a diagram showing a spectrum obtained in the course of measurement. 1:! a stone 2: sample tube 3: transmitting/receiving coil 4: decabbing coil 5.6: oscillator 7.10.21: gate 11: demodulator 12: A-D converter 13: data processing device 14: FID signal storage section 15 :Fourier transform processing unit 16.18:Memory 17:Power spectrum calculation unit

Claims (1)

【特許請求の範囲】[Claims] 静磁場中に置かれる被測定試料の近傍に配置される送受
信コイル及びデカップリング用コイルと、該送受信コイ
ルへ観測用高周波パルスを供給するための手段と、該デ
カップリング用コイルへ供給するためのデカップリング
用高周波を発生するための可変周波数発振器と、前記送
受信コイルを介した高周波パルス磁場照射に基づいて派
生する自由誘導減衰信号を検出する手段と、該自由誘導
減衰信号をフーリエ変換して核磁気共鳴スペクトルを得
るための手段とを備えた核磁気共鳴装置において、得ら
れた核磁気共鳴スペクトルデータの実数成分及び虚数成
分に基づいてパワースペクトルデータを求める演算手段
と、該パワースペクトルデータ中の最大強度のデータ位
置を求める最大値検出手段と、求めたデータ位置に基づ
いて該データに対応する周波数を求める手段とを設け、
前記可変周波数発振器の発振周波数を該周波数に設定す
ることを特徴とする核磁気共鳴装置。
A transmitting/receiving coil and a decoupling coil disposed near a measurement sample placed in a static magnetic field, a means for supplying observation high frequency pulses to the transmitting/receiving coil, and a means for supplying observation high frequency pulses to the decoupling coil. a variable frequency oscillator for generating a high frequency wave for decoupling; a means for detecting a free induction damping signal derived based on the high frequency pulsed magnetic field irradiation via the transmitter/receiver coil; A nuclear magnetic resonance apparatus comprising: means for obtaining a magnetic resonance spectrum, a calculation means for obtaining power spectrum data based on real and imaginary components of the obtained nuclear magnetic resonance spectrum data; Providing maximum value detection means for determining the data position of maximum intensity, and means for determining the frequency corresponding to the data based on the determined data position,
A nuclear magnetic resonance apparatus characterized in that the oscillation frequency of the variable frequency oscillator is set to the above frequency.
JP21465184A 1984-10-13 1984-10-13 Nuclear magnetic resonator Pending JPS6193940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21465184A JPS6193940A (en) 1984-10-13 1984-10-13 Nuclear magnetic resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21465184A JPS6193940A (en) 1984-10-13 1984-10-13 Nuclear magnetic resonator

Publications (1)

Publication Number Publication Date
JPS6193940A true JPS6193940A (en) 1986-05-12

Family

ID=16659291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21465184A Pending JPS6193940A (en) 1984-10-13 1984-10-13 Nuclear magnetic resonator

Country Status (1)

Country Link
JP (1) JPS6193940A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518953A (en) * 1978-07-27 1980-02-09 Jeol Ltd Multiplex nuclear magnetic resonance device
JPS59136642A (en) * 1983-01-26 1984-08-06 Jeol Ltd Nuclear magnetic resonance apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518953A (en) * 1978-07-27 1980-02-09 Jeol Ltd Multiplex nuclear magnetic resonance device
JPS59136642A (en) * 1983-01-26 1984-08-06 Jeol Ltd Nuclear magnetic resonance apparatus

Similar Documents

Publication Publication Date Title
JPS6155058B2 (en)
US4171511A (en) Automatic field-frequency lock in an NMR spectrometer
JPS6193940A (en) Nuclear magnetic resonator
US6856133B1 (en) Method and apparatus for detecting a substance using a nuclear resonance
EP0823640B1 (en) Suppression of radiation damping in NMR
US5043664A (en) Magnetic resonance spectroscopy method and device for performing the method
EP0148362B1 (en) Method of obtaining pseudofiltering effect in process of accumulation and nuclear magnetic resonance spectrometry utilizing same
US4689561A (en) Nuclear magnetic resonance spectroscopy
JPH0324991B2 (en)
EP0371349A2 (en) A method of phase and amplitude correction of NMR signals using a reference marker
EP0583260B1 (en) Method and apparatus for obtaining an nmr signal having a preselected frequency domain
JPS612047A (en) Nuclear magnetic resonator device
JP2008046003A (en) Magnetic field rocking removal method in nmr
Tseytlin et al. Decoupling of excitation and receive coils in pulsed magnetic resonance using sinusoidal magnetic field modulation
JP2526468B2 (en) MRI equipment
US4641096A (en) Nuclear magnetic resonance spectrometry
JPS61118649A (en) Nuclear magnetic resonance apparatus
JPS6316705B2 (en)
JPH06222121A (en) Pulse fourier-transform electron spin-resonance device
del Río Portilla et al. Accurate determination of small nuclear magnetic resonance coupling constants from decoupling experiments
SU748225A1 (en) Nuclear quadrupole resonance double-frequency pulse spectrometer
SU754279A1 (en) Device for obtaining and phase detecting of magnetic resonance signals
SU823994A1 (en) Radiospectrometer of electron paramagnetic resonance
JPS6013463B2 (en) Magnetic field control device in nuclear magnetic resonance equipment
RU2086968C1 (en) Osmium-187 isotope recorder