JP2008046003A - Magnetic field rocking removal method in nmr - Google Patents

Magnetic field rocking removal method in nmr Download PDF

Info

Publication number
JP2008046003A
JP2008046003A JP2006222141A JP2006222141A JP2008046003A JP 2008046003 A JP2008046003 A JP 2008046003A JP 2006222141 A JP2006222141 A JP 2006222141A JP 2006222141 A JP2006222141 A JP 2006222141A JP 2008046003 A JP2008046003 A JP 2008046003A
Authority
JP
Japan
Prior art keywords
nmr
magnetic field
coil
measurement
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006222141A
Other languages
Japanese (ja)
Inventor
Takahiro Iijima
隆広 飯島
Kiyonori Takegoshi
清乃理 竹腰
Kenjiro Hata
健二郎 端
Tei Shimizu
禎 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2006222141A priority Critical patent/JP2008046003A/en
Publication of JP2008046003A publication Critical patent/JP2008046003A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for performing more accurate correction than hitherto by operating an NMR signal for correction by using only the second coil. <P>SOLUTION: This magnetic field rocking removal method in NMR has a configuration characterized as follows: measurement of magnetic field rocking data (a value of magnetic field intensity acquired as a function of time) by the second coil arranged concentrically with the first coil for NMR measurement, and the NMR measurement are performed simultaneously; both measurements are synchronized (measured at the same time); the magnetic field rocking data measured with time resolution which is similar to or higher than the NMR measurement are acquired as a function of time; and then an acquired measurement result is combined with the NMR signal on a computer, to thereby acquire an accurate NMR spectrum desired to be known finally. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、磁場揺動が大きすぎて従来方法では高精度な測定が困難だったNMR測定における磁場揺動除去方法に関する。ここでNMR測定とは、物質の分子構造等を知るために行う分析技術の一種であって、磁場発生装置(磁石)が作る磁場の中心に、測定したい物質(試料)を置き、その試料の直近に、高周波の送信と受信が可能なコイル(第1コイル)を置いて、試料中の原子核磁気モーメントによって高周波が吸収・放出される現象(核磁気共鳴現象)をNMR信号として測定する技術であって、NMR信号とは具体的には第1コイルに発生する電圧の強度と位相のことであり、NMR測定ではNMR信号をある一定時間の範囲内で時間の関数として測定し、その測定データに対してコンピュータ上で一定の変換(フーリエ変換と呼ばれる計算)を施し、エネルギーの関数としてのスペクトルを取得し、そのスペクトルを評価・解析することにより試料の分子構造等に関する情報を得るものである。   The present invention relates to a magnetic field fluctuation removal method in NMR measurement, in which magnetic field fluctuation is too large and high-precision measurement is difficult with a conventional method. Here, NMR measurement is a kind of analysis technique performed to know the molecular structure of a substance, and the substance (sample) to be measured is placed at the center of the magnetic field created by the magnetic field generator (magnet), and the sample is measured. This is a technology to measure the phenomenon (nuclear magnetic resonance phenomenon) in which a high frequency is absorbed and emitted by the nuclear magnetic moment in a sample (nuclear magnetic resonance phenomenon) as a NMR signal by placing a coil (first coil) capable of transmitting and receiving high frequency. The NMR signal is specifically the intensity and phase of the voltage generated in the first coil. In NMR measurement, the NMR signal is measured as a function of time within a certain time range, and the measurement data A certain transformation (calculation called Fourier transformation) is performed on the computer to obtain a spectrum as a function of energy, and the spectrum is evaluated and analyzed. It is intended to obtain information about the molecular structure or the like.

従来技術Conventional technology

NMR測定に用いる磁石は、強ければ強い程、NMR測定における感度と分解能が向上し、物質の構造解析の精度が上がる。特に強い磁場を発生する磁石として水冷銅磁石やハイブリッド磁石等があるが、これらは磁場の安定度が著しく悪いため高分解能NMRに適さなかった。
従来は、プローブの中又は外に第2コイル及び補正用コイル(第3コイル)を巻き、磁場の揺動を取り除いていた。ここでプローブとは、第1コイルとその周辺の共振回路のことであって、NMRにおいて高周波を送信及び受信するための第1コイル、第1コイルを照射高周波に共振させるために取り付けた固定及び可変コンデンサ、第1コイルや上記コンデンサなどを結ぶセミリジッド線、プローブ内部に空気を送り込むためのチューブ等から成り、これらがアルミニウムの管に収まっている。プローブ中の第1コイルの内側に試料を置き、試料位置が磁場中心に一致するようにプローブは磁石に設置され、NMR測定が行われる。
The stronger the magnet used for NMR measurement, the higher the sensitivity and resolution in NMR measurement and the higher the accuracy of structural analysis of the substance. There are water-cooled copper magnets and hybrid magnets as magnets that generate a particularly strong magnetic field, but these are not suitable for high-resolution NMR because the stability of the magnetic field is extremely poor.
Conventionally, the second coil and the correction coil (third coil) are wound inside or outside the probe to remove the fluctuation of the magnetic field. Here, the probe refers to the first coil and its surrounding resonance circuit, which is a first coil for transmitting and receiving a high frequency in NMR, a fixed attached to resonate the first coil to an irradiation high frequency, and It consists of a variable capacitor, a semi-rigid wire connecting the first coil and the capacitor, a tube for sending air into the probe, and the like, which are contained in an aluminum tube. A sample is placed inside the first coil in the probe, and the probe is placed on a magnet so that the sample position coincides with the center of the magnetic field, and NMR measurement is performed.

従来の方法では、第2コイルに磁場揺動に伴う誘導起電力によって発生する電流値を計測し、そのデータをフィードバック回路へ送り、第2コイルに流れた電流と大きさは同じであるが向きは逆となる電流を第3コイルに流すことにより、試料が受ける磁場揺動の影響を打ち消していた。しかしながら、この方法では2つのコイル(第1及び第2コイル)位置が空間的に異なるため、試料の位置で磁場の揺動をきれいに取り除くのは困難であった。また、フィードバック回路を通すため、第2コイルと第3コイルに流れる電流の間には時間的ずれが生じ、これもまた磁場揺動をきれいに取り除く障害になっていた。   In the conventional method, the current value generated by the induced electromotive force in the second coil due to the magnetic field fluctuation is measured, and the data is sent to the feedback circuit. In this case, the opposite current is caused to flow through the third coil, thereby canceling the influence of the magnetic field fluctuation applied to the sample. However, in this method, since the positions of the two coils (first and second coils) are spatially different, it is difficult to cleanly remove the fluctuation of the magnetic field at the position of the sample. Further, since the feedback circuit is passed, there is a time lag between the currents flowing in the second coil and the third coil, and this also becomes an obstacle to cleanly remove the magnetic field fluctuation.

本発明は、第2コイルだけを用い、補正はNMR信号を操作することにより、従来よりも正確な補正を行う方法を提供する。   The present invention provides a method in which only the second coil is used, and the correction is performed by manipulating the NMR signal, thereby making the correction more accurate than before.

本発明のNMRにおける磁場揺動除去方法は、NMR測定用の第一コイルと同心状に配した第二コイルによる磁場揺動データ(時間の関数として取得した磁場強度の値)の測定とNMR測定とを同時に行い、両測定を同期(同時刻に測定すること)させて、しかも、NMR測定と同等又はそれ以上の時間分解能で計測した磁場揺動データを時間の関数として取得し、次に取得した測定結果をコンピュータ上でNMR信号と組み合わせて、最終的に知りたい正確なNMRスペクトルを取得することを特徴とする構成を採用した。   The method for removing magnetic field fluctuations in NMR of the present invention comprises measuring magnetic field fluctuation data (magnetic field strength values acquired as a function of time) and NMR measurement using a second coil arranged concentrically with the first coil for NMR measurement. Are performed simultaneously, both measurements are synchronized (measured at the same time), and magnetic field fluctuation data measured with a time resolution equal to or higher than NMR measurement is acquired as a function of time, and then acquired. The measurement result was combined with an NMR signal on a computer to obtain an accurate NMR spectrum to be finally obtained.

このようにすることで従来には望みえなかった高精度の磁気安定を得ることができ、高磁場下で高分解能なスペクトルを得ることが可能となる。   By doing so, it is possible to obtain high-precision magnetic stability that could not be expected in the past, and to obtain a high-resolution spectrum under a high magnetic field.

実施のための最良の態様Best Mode for Implementation

図1, 2はそれぞれ本法により磁場揺動を補正するための、実施例としての装置の概念図及び全体図である。
プローブの下部に試料(103)が置かれる。NMR測定は、周波数シンセサイザ(207)から発信されたラジオ波が、増幅器(111)等を経由した後に、試料(103)へ第1コイル(104)から照射され、その結果得られるNMR信号を第1コイル(104)で受信し、前増幅器(107)やADコンバータ(226)等を通った後にパーソナル・コンピュータ(228)へと送られる。
プローブの周りには、第2コイル(105)が試料(103)を取り巻くように設置される。
パーソナル・コンピュータ(228)からはNMR 測定に対する同期信号が発信され、オシロスコープ(106)はこの信号を受信すると、第2コイル(105)に磁場揺動に伴って生ずる誘導起電力の測定を開始する。
1 and 2 are a conceptual view and an overall view of an apparatus as an embodiment for correcting magnetic field fluctuations according to this method.
A sample (103) is placed under the probe. In the NMR measurement, the radio wave transmitted from the frequency synthesizer (207) passes through the amplifier (111) and the like, and then irradiates the sample (103) from the first coil (104). The signal is received by one coil (104), passed through a preamplifier (107), an AD converter (226), etc., and then sent to a personal computer (228).
A second coil (105) is installed around the probe so as to surround the sample (103).
A synchronization signal for NMR measurement is transmitted from the personal computer (228), and upon receiving this signal, the oscilloscope (106) starts measuring the induced electromotive force generated in the second coil (105) due to the magnetic field fluctuation. .

測定された誘導起電力のデータは、パーソナル・コンピュータ(228)上で後述する方法によりNMRの位相角へと変換され、NMR信号の磁場揺動成分を取り除く働きをする。
図3(a)は30 Tのハイブリッド磁石で測定したKBr試料の補正前の79Br NMR信号である。
図中の(i)は自己誘導減衰、(ii)はそれをフーリエ変換したスペクトルを表す。15.5 kHzのマジック角回転を行っている。また、信号の積算はしていない。
The measured electromotive force data is converted into an NMR phase angle by a method described later on a personal computer (228), and functions to remove the magnetic field fluctuation component of the NMR signal.
FIG. 3A is a 79 Br NMR signal before correction of a KBr sample measured with a 30 T hybrid magnet.
In the figure, (i) represents self-induced attenuation, and (ii) represents a spectrum obtained by Fourier transforming the same. The magic angle is rotated at 15.5 kHz. In addition, signal integration is not performed.

この自己誘導減衰信号g(t)は、スペクトルがn個のLorentzian lineから成っている場合、以下の式1ように書ける。 This self-induced attenuation signal g (t) can be written as the following Equation 1 when the spectrum is composed of n Lorentzian lines.

式1Formula 1


[1]
ここでa, Dw, f0j及びT2jはそれぞれ、j番目のスペクトル成分に対する信号強度、NMR 周波数、初期位相、及びスピン−スピン緩和時間を表す。

[1]
Here, a j , Dw j , f 0j, and T 2j represent the signal intensity, NMR frequency, initial phase, and spin-spin relaxation time for the j th spectral component, respectively.

f(t)は磁石の磁場揺動によって起こる位相の揺らぎであり、次式2で記述される。 f f (t) is a phase fluctuation caused by the magnetic field fluctuation of the magnet, and is expressed by the following equation 2.

式2Formula 2


[2]
ここで、gは核の磁気回転比である。B(t)は磁場の揺らぎの関数であり、本法では第2コイル(105)に誘起される起電力V(t)をNMRと同期測定することにより、これを求める。

[2]
Here, g is the gyromagnetic ratio of the nucleus. B f (t) is a function of the fluctuation of the magnetic field. In this method, the electromotive force V (t) induced in the second coil (105) is measured in synchronization with NMR to obtain this.

(t)とV(t)の関係は以下の式3である。 The relationship between B f (t) and V (t) is Equation 3 below.

式3Formula 3


[3]
ここで、m及びSはそれぞれコイルの巻き数及びコイルの断面積である。
cは第2コイル(105)の内側にあるプローブやロータ等の材料物質の透磁率を考慮するためのパラメータである。Dtは微小時間を表す。

[3]
Here, m and S are the number of turns of the coil and the cross-sectional area of the coil, respectively.
c is a parameter for considering the magnetic permeability of a material substance such as a probe or a rotor inside the second coil (105). Dt represents a minute time.

図4(a)はオシロスコープ(106)で観測したV(t)の時間依存性である。
図4(b)は上式により変換したB(t)の時間依存性である。
このB(t)と式[2]からf(t)を求め、exp[if(t)]を作成した。
これが図3(b)である。NMR信号に対する磁場揺動の効果の補正は以下の式4による処理により行われる。
FIG. 4A shows the time dependence of V (t) observed with the oscilloscope (106).
FIG. 4B shows the time dependence of B f (t) converted by the above equation.
From this B f (t) and the equation [2], f f (t) was obtained, and exp [if f (t)] was created.
This is FIG. 3 (b). Correction of the effect of the magnetic field fluctuation on the NMR signal is performed by the processing according to the following Equation 4.

式4Formula 4


[4]
g’(t)にはf(t)は含まれておらず、通常の磁場揺動のない磁場下での自己誘導減衰の信号となる。図3(a)の信号に、図2(b)のデータを用いて式[4]の処理を行ったのが図3(c)である。

[4]
g ′ (t) does not include f f (t), and is a signal for self-induced attenuation under a magnetic field without a normal magnetic field fluctuation. FIG. 3C shows the processing of equation [4] performed on the signal of FIG. 3A using the data of FIG. 2B.

N個の信号の積算を行う場合、測定ごとに磁場揺動の仕方が変化する。従って、補正なしの信号を積算すれば、得られるスペクトルは複数のピークから成るスペクトルになってしまう。実際に20個の信号を単純に足し合わせたものが図2(e)である。   When integrating N signals, the manner of magnetic field fluctuation changes for each measurement. Therefore, if signals without correction are integrated, the obtained spectrum becomes a spectrum composed of a plurality of peaks. FIG. 2 (e) shows a simple addition of 20 signals actually.

k回目の測定の信号g(t)は式[1]を書き直して式5となる。 The signal g k (t) of the k-th measurement is rewritten from Equation [1] to become Equation 5.

式5Formula 5


[5]
ffk(t)はk回目の測定時の磁場揺動に伴う位相角である。

[5]
f fk (t) is a phase angle associated with the magnetic field fluctuation at the k-th measurement.

この位相角ffk(t)をN回の測定の度に求め、以下の式6のように補正処理を行う。 This phase angle f fk (t) is obtained every N times of measurement, and correction processing is performed as shown in Equation 6 below.

式6Equation 6


[6]
G’(t)にffk(t)は含まれないため、安定磁場下の信号が得られる。
20個の信号を式[6]に従い、測定毎に磁場揺動の補正をして足し合わせた結果が図3(d)である。
スペクトルは、-6 kHz付近のメイン・ピーク(及びこのピークからマジック角回転の周波数の整数倍だけ離れた位置に存在するスピニング・サイドバンド)から成るものになり、本法が充分に有用であることが確認された。

[6]
Since f fk (t) is not included in G ′ (t), a signal under a stable magnetic field is obtained.
FIG. 3D shows the result of adding the 20 signals according to the equation [6] and correcting the magnetic field fluctuation for each measurement.
The spectrum consists of a main peak around -6 kHz (and spinning sidebands located at an integer multiple of the magic angle rotation frequency from this peak) and the method is fully useful. It was confirmed.

本法によりNMR信号の磁場揺動成分を取り除くための装置の回路図Circuit diagram of an apparatus for removing the magnetic field fluctuation component of NMR signals by this method 実施例のNMR信号を示し、(a)は補正前のNMR信号、(b)は補正用信号、(c)は補正後の信号、(d)は20個の補正後の信号の足し合わせ、(e)は補正がない場合のNMR信号の足し合わせであって、それぞれ(i)に自己誘導減衰を、(ii)に(i)をFourier変換したものを示す。The NMR signal of an Example is shown, (a) is an NMR signal before correction, (b) is a signal for correction, (c) is a signal after correction, (d) is a sum of 20 signals after correction, (E) is an addition of NMR signals when there is no correction, and (i) shows the self-induced attenuation, and (ii) shows the Fourier transform of (i). 実施例としての磁場揺動データであって、(a)は磁場揺動補正用コイルに生じた誘導起電力の動揺を、(b)は(a)から求めた磁場揺動。It is magnetic field fluctuation data as an example, (a) shows the fluctuation of the induced electromotive force generated in the magnetic field fluctuation correction coil, and (b) shows the magnetic field fluctuation obtained from (a).

符号の説明Explanation of symbols

・ 磁石(N極)
・ 磁石(S極)
・ 試料
・ 第1コイル
・ 第2コイル
・ オシロスコープ
・ 前増幅器
・ クロスダイオード
・ デュプレクサ
・ クロスダイオード
・ 増幅器
・ ブランキング・パルス
・ アテネッタ

・ パルサ
・ ラジオ波スイッチ
・ ロー・パス・フィルタ
・ ダブル・バランス・ミキサ
・ パワー・ディバイダ
・ ダブル・バランス・ミキサ
・ 周波数シンセサイザ
・ 中間周波数
・ パワー・ディバイダ
・ 位相シフタ(0°)
・ 位相シフタ(90°)
・ 位相シフタ(180°)
・ 位相シフタ(270°)
・ バンド・パス・フィルタ
・ 中間周波数増幅器
・ パワー・ディバイダ
・ パワー・ディバイダ
・ 位相シフタ(0°)
・ 位相シフタ(90°)
・ 位相検出器(コサイン)
・ 位相検出器(サイン)
・ ロー・パス・フィルタ(コサイン)
・ ロー・パス・フィルタ(サイン)
・ ビデオ増幅器(コサイン)
・ ビデオ増幅器(サイン)
・ ADコンバータ
・ オシロスコープ
・ パーソナル・コンピュータ
・ Magnet (N pole)
・ Magnet (S pole)
・ Sample ・ First coil ・ Second coil ・ Oscilloscope ・ Preamplifier ・ Cross diode ・ Duplexer ・ Cross diode ・ Amplifier ・ Blanking pulse ・ Attenuator

• Pulser • Radio wave switch • Low pass filter • Double balance mixer • Power divider • Double balance mixer • Frequency synthesizer • Intermediate frequency • Power divider • Phase shifter (0 °)
・ Phase shifter (90 °)
・ Phase shifter (180 °)
・ Phase shifter (270 °)
• Band pass filter • Intermediate frequency amplifier • Power divider • Power divider • Phase shifter (0 °)
・ Phase shifter (90 °)
・ Phase detector (cosine)
・ Phase detector (signature)
Low pass filter (cosine)
Low pass filter (signature)
・ Video amplifier (cosine)
・ Video amplifier (sign)
・ AD converter ・ Oscilloscope ・ Personal computer

Claims (1)

NMR測定用の第一コイルと同心状に配した第二コイルによる磁場揺動データ(時間の関数として取得した磁場強度の値)の測定とNMR測定とを同時に行い、両測定結果を同期(同時刻に測定すること)させて、しかも、NMR測定と同等又はそれ以上の時間分解能で計測した磁場揺動データを時間の関数として取得し、次に取得した測定結果をコンピュータ上でNMR信号と組み合わせて、最終的に知りたい正確なNMRスペクトルを取得することを特徴とするNMRにおける磁場揺動除去方法
Measurement of magnetic field fluctuation data (magnetic field strength value obtained as a function of time) and NMR measurement by a second coil arranged concentrically with the first coil for NMR measurement and NMR measurement were performed simultaneously. The magnetic field fluctuation data measured with a time resolution equal to or higher than that of NMR measurement is acquired as a function of time, and then the acquired measurement result is combined with the NMR signal on a computer. Method for removing magnetic field fluctuations in NMR, characterized in that an accurate NMR spectrum to be finally obtained is acquired.
JP2006222141A 2006-08-17 2006-08-17 Magnetic field rocking removal method in nmr Pending JP2008046003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006222141A JP2008046003A (en) 2006-08-17 2006-08-17 Magnetic field rocking removal method in nmr

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006222141A JP2008046003A (en) 2006-08-17 2006-08-17 Magnetic field rocking removal method in nmr

Publications (1)

Publication Number Publication Date
JP2008046003A true JP2008046003A (en) 2008-02-28

Family

ID=39179887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006222141A Pending JP2008046003A (en) 2006-08-17 2006-08-17 Magnetic field rocking removal method in nmr

Country Status (1)

Country Link
JP (1) JP2008046003A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011002098A1 (en) * 2009-07-03 2011-01-06 独立行政法人物質・材料研究機構 Shimming device for superconducting magnet
US8314908B2 (en) 2009-01-27 2012-11-20 Sharp Kabushiki Kaisha Liquid crystal display device with quarter plates and birefringent layers and liquid crystal having substantially vertical alignments in black state
US9104037B2 (en) 2009-07-30 2015-08-11 Sharp Kabushiki Kaisha Liquid crystal display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8314908B2 (en) 2009-01-27 2012-11-20 Sharp Kabushiki Kaisha Liquid crystal display device with quarter plates and birefringent layers and liquid crystal having substantially vertical alignments in black state
WO2011002098A1 (en) * 2009-07-03 2011-01-06 独立行政法人物質・材料研究機構 Shimming device for superconducting magnet
JP5594632B2 (en) * 2009-07-03 2014-09-24 独立行政法人物質・材料研究機構 Shimming device for superconducting magnet
US9104037B2 (en) 2009-07-30 2015-08-11 Sharp Kabushiki Kaisha Liquid crystal display device

Similar Documents

Publication Publication Date Title
Weiger et al. ZTE imaging in humans
JP2009139380A (en) Method for adjusting excitation and detection circuit for nuclear magnetic resonance, and excitation and detection circuit configured to carry out the same
US20060213283A1 (en) NMR methods for measuring fluid flow rates
JP2001190520A (en) Mr method for exciting nuclear magnetization by finite volume
JPH09117435A (en) Measuring device of basic magnetic field of magnet of nuclear spin tomography device
KR101904781B1 (en) Method for transmitting and receiving signal for signal analysis of fmmd and apparatus using the same
JPH0113054B2 (en)
CN114518553B (en) Broadband frequency conversion pseudo-two-dimensional spectrum NMR method for accurately measuring field intensity of electromagnet
WO2006040866A1 (en) Magnetic resonance imaging system
CN1841083B (en) Method for avoiding linear phase error in magnetic resonance spectroscopy
JPS5991345A (en) Nuclear magnetic resonance imaging assembly
JP2008046003A (en) Magnetic field rocking removal method in nmr
JP2006346055A (en) Testing apparatus using magnetic resonance
Hiblot et al. A fully homemade 14 N quadrupole resonance spectrometer
EP2378281A1 (en) A method to measure electron relaxation times T1 in EPR tomography and a system for applying the method
WO2008048204A3 (en) Method and apparatus for high resolution nuclear magnetic resonance imaging and spectroscopy
Asfour Low-field NMR/MRI systems using LabVIEW and advanced data-acquisition techniques
Gaunkar et al. Broadband analysis of response from magnetic cores used in inductive sensors for pulsed nuclear magnetic resonance applications
Biller et al. Characterization of a PXI e based low‐field digital NMR spectrometer
JP5267978B2 (en) Nuclear magnetic resonance imaging system
Di Giuseppe et al. New experimental apparatus for multimodal resonance imaging: initial EPRI and NMRI experimental results
JPH0261252B2 (en)
JP2013234988A (en) Method for nmr measurement
JPWO2012014445A1 (en) Image acquisition method and image acquisition apparatus
Tseytlin et al. Decoupling of excitation and receive coils in pulsed magnetic resonance using sinusoidal magnetic field modulation