JPS59136642A - Nuclear magnetic resonance apparatus - Google Patents

Nuclear magnetic resonance apparatus

Info

Publication number
JPS59136642A
JPS59136642A JP58010880A JP1088083A JPS59136642A JP S59136642 A JPS59136642 A JP S59136642A JP 58010880 A JP58010880 A JP 58010880A JP 1088083 A JP1088083 A JP 1088083A JP S59136642 A JPS59136642 A JP S59136642A
Authority
JP
Japan
Prior art keywords
magnetic field
signal
resonance
nuclear magnetic
detectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58010880A
Other languages
Japanese (ja)
Inventor
Hideo Shino
英雄 志野
Kozo Sato
浩三 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP58010880A priority Critical patent/JPS59136642A/en
Publication of JPS59136642A publication Critical patent/JPS59136642A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3621NMR receivers or demodulators, e.g. preamplifiers, means for frequency modulation of the MR signal using a digital down converter, means for analog to digital conversion [ADC] or for filtering or processing of the MR signal such as bandpass filtering, resampling, decimation or interpolation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To detect exactly a nuclear magnetic resonance point independently of the phase of a detection system by detecting a resonance signal for controlling magnetic field by two detectors different in the phases by 90 deg., performing the addition, etc. after squaring to determine the resonance information. CONSTITUTION:The nuclear magnetic resonance detecting signal through a transmitting and receiving coil 3 for controlling magnetic field is detected by the detectors 11, 12 different by 90 deg. in the phases, wherein oscillating outputs different by 90 deg. in the phases are impressed respectively from an oscilltor 5. The detected result is processed by a square-low detectors 15, 16, an adder 18, a square rooter 19, etc. to determine the nuclear magnetic resonance information. By this constitution, the nuclear magnetic resonance point is detected exactly and independently of the phase shift of the detection system.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は核磁気共鳴装置に関し、特に磁場を安定に保つ
磁場制御装置を億えた核磁気共鳴装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a nuclear magnetic resonance apparatus, and more particularly to a nuclear magnetic resonance apparatus equipped with a magnetic field control device to keep the magnetic field stable.

[従来技術] 一般に、核磁気共鳴装置に使用される分極磁場は長時間
にわたって10(〜10−3程度の安定度が要求され、
そのために従来核磁気共鳴信号に基づいて磁場変動を検
出し、それを打消すようにした磁場制御装置が使用され
ている。これは核磁気共鳴において、核の共鳴周波数(
ω0)と外部磁場(l−1o)との間に核固有の定数で
ある磁気回転比(γ)を用いてω0−γHoの関係が成
立することに着目し、磁場の変動を共鳴周波数の変化と
して検出し、その変動を補正するものである。
[Prior Art] Generally, the polarization magnetic field used in a nuclear magnetic resonance apparatus is required to have a stability of about 10 (~10-3) over a long period of time.
To this end, conventional magnetic field control devices have been used that detect magnetic field fluctuations based on nuclear magnetic resonance signals and cancel them. In nuclear magnetic resonance, this is the resonance frequency of the nucleus (
Focusing on the fact that the relationship ω0-γHo is established between ω0) and the external magnetic field (l-1o) using the gyromagnetic ratio (γ), which is a constant unique to the nucleus, we calculate the variation in the magnetic field as a change in the resonant frequency. The system detects the fluctuations as follows and corrects the fluctuations.

斯かる磁場制御装置では、測定試料中に特定の核例えば
重水素核2Dを含む制御用試料を混入し、重水素核の共
鳴周波数の高周波を照則し、得られる2Dの共鳴信号(
Uモード波形)を磁場制御信号とし了磁石の磁場強度制
御手段に負帰遷し自動制御ループを形成することにより
磁場を安定化している。ところが、この制御ループが働
く範囲は比較的狭いため、磁場の強度をその動作範囲に
予め設定する操作が必要であり、オペレータの負担にな
っていた。
In such a magnetic field control device, a control sample containing a specific nucleus, for example, a deuterium nucleus 2D, is mixed into a measurement sample, and the high frequency of the resonance frequency of the deuterium nucleus is focused on, and the resulting 2D resonance signal (
The magnetic field is stabilized by using the U mode waveform as a magnetic field control signal and passing it negatively to the magnetic field strength control means of the magnet to form an automatic control loop. However, since the range in which this control loop operates is relatively narrow, it is necessary to preset the strength of the magnetic field within the operating range, which is a burden on the operator.

この操作は、共鳴信号を観察しながら磁場強度を変えて
行き、共鳴信号レベルが高くなり磁場強度が共鳴点に近
イ」いたことを確認して制御ループを働かせるものであ
るが、実際には検出系の位相が狂っていると共鳴点にあ
るのに共鳴信号が零になることがあり、オペレータは予
め位相関係の調整を行わねばならず、この操作を自動化
することは困難であった。
In this operation, the magnetic field strength is changed while observing the resonance signal, and the control loop is activated after confirming that the resonance signal level is high and the magnetic field strength is close to the resonance point. If the detection system is out of phase, the resonance signal may become zero even though it is at the resonance point, and the operator must adjust the phase relationship in advance, making it difficult to automate this operation.

[発明の目的] 本発明はこの点に鑑みてなされICものであり、制御用
の核の共鳴信号を検出する手段として、90°位相の異
なる2つの検波器を用いることにより、位相関係の調整
が不要で自動的に磁場強度を共鳴点付近に設定すること
のできる核磁気共鳴装置を提供することを目的としてい
る。
[Object of the Invention] The present invention has been made in view of this point, and is an IC device that uses two detectors with a 90° phase difference to adjust the phase relationship as a means for detecting the nuclear resonance signal for control. It is an object of the present invention to provide a nuclear magnetic resonance apparatus that can automatically set the magnetic field strength near the resonance point without the need for the magnetic field strength.

[発明の構成] 本発明による核磁気共鳴装置は、分極磁場を掃引する手
段と、分極磁場中に置かれた制御用試料に高周波磁場を
照射するための照射コイルと、該コイルへ供給する高周
波を発生するための発振器と、制御用コイルからの共鳴
信号を検出するための検出コイルと、該検出コイルから
1qられる検出信号が供給される90°位相の異なる2
つの検波器と、該2つの検波器からの夫々の出力信号を
2乗して加算する演算手段と、該演算手段の出力に基づ
き前記掃引手段による磁場掃引を停止づる信号を発生す
る判別手段から構成されることを特徴としている。
[Structure of the Invention] A nuclear magnetic resonance apparatus according to the present invention includes means for sweeping a polarized magnetic field, an irradiation coil for irradiating a control sample placed in the polarized magnetic field with a high-frequency magnetic field, and a high-frequency wave supplied to the coil. an oscillator for generating the resonance signal, a detection coil for detecting the resonance signal from the control coil, and two oscillators with a 90° phase difference to which the detection signal 1q from the detection coil is supplied.
an arithmetic means for squaring and adding the respective output signals from the two wave detectors; and a discriminating means for generating a signal to stop the magnetic field sweeping by the sweeping means based on the output of the arithmetic means. It is characterized by being configured.

[実施例] 以下本発明の一実施例を添付図面に基づき詳述する。[Example] An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

第1図は本発明の一実施例の構成を示すブロック図であ
る。図中1は試料管で、中に測定用試料と制御用試料が
入れられている。2は磁場強度可変用コイル、3は磁場
制御用送受信コイル、4は送受信切換スイッチで適宜な
周期で送信状態及び受信状態を切換える。発振器5から
発生した高周波は混合器6において局部発振器7からの
高周波と混合され、その混合出力は送信期間に増幅器8
゜切換スイッチ4を介して送受信コイル3へ供給される
。その高周波照射により送受信コイル3に誘起された検
出信号は、受信期間にスイッチ4及び増幅器9を介して
前記局部発掘器からの高周波が供給されている混合器1
0へ送られる。該混合器10の出力は、検波器11.1
2へ送られるが、検波器11には前記発振器5からO°
位相の高周波が供給され、検波器12には同じく90°
位相の高周波が供給されている。2つの検波器の出力と
して得られた共鳴信号は、ローパスフィルター13.1
4を介して取出され、2東器15.16を介して加算器
17へ送られる。18は該加算器17の出力信号の平方
根を検出する1z2乗回路、19は該1z2乗回路18
から得られた信号を所定レベルと比較するレベル判別器
で、該判別器19の出ツノパルスは磁場掃引回路20へ
送られる。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention. In the figure, 1 is a sample tube in which a measurement sample and a control sample are placed. 2 is a coil for varying magnetic field strength; 3 is a transmitting/receiving coil for magnetic field control; and 4 is a transmitting/receiving switch for switching between a transmitting state and a receiving state at appropriate intervals. The high frequency generated from the oscillator 5 is mixed with the high frequency from the local oscillator 7 in the mixer 6, and the mixed output is sent to the amplifier 8 during the transmission period.
It is supplied to the transmitting/receiving coil 3 via the ° changeover switch 4. The detection signal induced in the transmitter/receiver coil 3 by the high frequency irradiation is transmitted to the mixer 1 which is supplied with the high frequency from the local excavator via the switch 4 and the amplifier 9 during the reception period.
Sent to 0. The output of the mixer 10 is sent to a detector 11.1.
2, but the detector 11 receives the O° signal from the oscillator 5.
A high frequency wave with a phase of 90° is supplied to the detector 12.
Phase high frequency is supplied. The resonance signals obtained as outputs of the two detectors are filtered through a low-pass filter 13.1.
4, and sent to the adder 17 via the two-way registers 15 and 16. 18 is a 1z square circuit that detects the square root of the output signal of the adder 17; 19 is the 1z square circuit 18;
The output pulse of the discriminator 19 is sent to the magnetic field sweep circuit 20.

21は該磁場掃引回路からの掃引信号と、磁場補正回路
22からの磁場補正信号と、スイッチ23を介して送ら
れる共鳴信号とを加算して増幅器24を介して前記磁場
強度可変用コイル2へ送るための加算器である。尚、2
5はマスクの発振器で、他の発振器5.7は該発振器2
5に従属し位相同期した状態で所定の周波数の信号を発
生覆る。
21 adds the sweep signal from the magnetic field sweep circuit, the magnetic field correction signal from the magnetic field correction circuit 22, and the resonance signal sent via the switch 23, and sends the resultant signal to the magnetic field strength variable coil 2 via the amplifier 24. This is an adder for sending. Furthermore, 2
5 is a mask oscillator, and the other oscillators 5.7 are the oscillators 2
5 and generates a signal of a predetermined frequency in a phase-synchronized state.

上述の如き構成にd3いて、磁場制御用の核が例えば重
水素核2D、その共鳴周波数が61.3M+−IZ(”
I近、発振器5の周波数が10.7Mt−1z、発振器
7の周波数が72M1−1zで、混合器6において両者
を混合し、差の周波数として61.3M1−IZの照射
用高周波を得ているものとする。該高周波は送信期間に
スイッチ4を介してコイル3へ送られて制御用試料に照
射される。受信期間にコイル3に発生した検出信号はそ
の61.3MHzに共鳴信号が重畳しており、該検出信
号はスイッチ4を介して混合器10へ送られ、発振器7
からの72MHzの信号と混合され、差の周波数として
10.7M1−1zに変換される。この変換された検出
信号は90’位相の異なる検波器11.12へ送られ、
10.7M1−1zの参照信号に基づいて検波されるた
め、フィルタ13.14の出力としては90°位相の異
なる共鳴信号が得られることになる。この時同時に掃引
回路20により磁場強度が4iil引されるため、検出
系の位相が正しく調整されていれば、検波器11.12
からは磁場掃引に伴なって例えば第2図(a)、(b)
に示1様なVモード及びUモードNMR信号が得られる
In the above-described configuration d3, the magnetic field control nucleus is, for example, a deuterium nucleus 2D, and its resonance frequency is 61.3M+-IZ ("
Near I, the frequency of the oscillator 5 is 10.7Mt-1z and the frequency of the oscillator 7 is 72M1-1z, and both are mixed in the mixer 6 to obtain a high frequency for irradiation of 61.3M1-IZ as the difference frequency. shall be taken as a thing. The high frequency is sent to the coil 3 via the switch 4 during the transmission period and is irradiated onto the control sample. The detection signal generated in the coil 3 during the reception period has a resonance signal superimposed on its 61.3 MHz, and the detection signal is sent to the mixer 10 via the switch 4, and the oscillator 7
is mixed with the 72 MHz signal from , and converted to a difference frequency of 10.7M1-1z. This converted detection signal is sent to detectors 11 and 12 with a 90' phase difference,
Since detection is performed based on the reference signal of 10.7M1-1z, resonance signals having a phase difference of 90° are obtained as the output of the filter 13.14. At this time, the magnetic field strength is subtracted by 4iil by the sweep circuit 20, so if the phase of the detection system is adjusted correctly, the detectors 11 and 12
For example, as shown in Fig. 2 (a) and (b), as the magnetic field sweeps,
V-mode and U-mode NMR signals as shown in FIG. 1 are obtained.

この2種のNMR信号は、2D核の磁気共鳴を90°位
相の異なる2つの検出系でとらえたものであり、第3図
に示す様な1回巻のラセン1−の直交するX−Y平面へ
の射影と考えることにより容易に理解することが出来る
These two types of NMR signals are the magnetic resonance of the 2D nucleus captured by two detection systems with a 90° phase difference. It can be easily understood by thinking of it as a projection onto a plane.

即ち、2D核の持つ磁化ベクトルMが磁場Gの掃引に伴
なって共鳴点Go付近でラセン運動した時の軌跡をラセ
ンLとして三次元的に表わせば、それをX平面に射影し
たものがVモードNMR信号でおり、Y平面に射影した
ものがUモートNMR信号である。尚、第3図では見易
くするためにラセンLをG軸から離して描いたが、正確
にはラセンLの直線部分はG軸と一致している。従って
、V、U両モー1’ N M R信号はピーク以外の平
坦部分か零レベルとなる。
In other words, if the trajectory of the magnetization vector M of the 2D nucleus in a helical motion near the resonance point Go as the magnetic field G sweeps is three-dimensionally expressed as a helix L, then the projection of it onto the X plane is V. This is a mode NMR signal, and the one projected onto the Y plane is a U-mode NMR signal. In FIG. 3, the helix L is drawn away from the G-axis for ease of viewing, but more accurately, the straight line portion of the helix L coincides with the G-axis. Therefore, both the V and U mode 1'NMR signals have a flat portion other than the peak or a zero level.

この時、検出系において位相ずれがあると、X。At this time, if there is a phase shift in the detection system, X.

Y平面はラセンLに対し例えば第3図において破線で示
づX’ 、Y’ 平面の様に回転する。このため、X’
 、Y’平面への射影は第2図(C)。
The Y plane rotates with respect to the helix L, for example, like the X' and Y' planes shown by broken lines in FIG. For this reason, X'
, the projection onto the Y' plane is shown in Figure 2 (C).

(d )に示す様に変化してしまい、共鳴点でない所で
信号レベルが最大になる。従って検出系が1チヤンネル
しか無く第2図(c)、(d)のうちどちらか一方しか
観察できなかった従来装置では、単純に11号レベルの
みから共鳴点を見つけて磁場設定を自動化することはで
きず、オペレータが検出系の位相調整を手動で行っては
じめて共鳴点であるか否かが判断できたわけである。
The signal changes as shown in (d), and the signal level reaches its maximum at a location other than the resonance point. Therefore, with conventional devices that had only one detection system and could only observe either one of Figures 2 (c) and (d), it was necessary to simply find the resonance point from the No. 11 level and automate the magnetic field setting. It was not possible to do so, and it was only possible to determine whether or not it was a resonance point until the operator manually adjusted the phase of the detection system.

ところで、磁場Gの掃引に伴なっ゛C磁化ベベクトルが
共鳴点イ」近でラセン運動した時の軌跡として与えられ
たうセンLの上の点Pと軸G(ラセンの直線部分と一致
)との距離(第3図におけるA)に着目すると、Aの値
は第4図に示づ様にPがラセンLの直線部分にある時は
零で、Pが磁場掃引に伴なってラセンLの曲線部分を移
動づる時に増減し、磁場強度が共鳴点Goにある時即ち
第3図にd′3(プるPoの位置にある時に極大値を示
すことが分る。従って、第3図に示す様に点PをX平面
By the way, the point P on the center L and the axis G (coinciding with the straight line part of the spiral), which is given as the locus when the C magnetization vector moves in a helical manner near the resonance point A as the magnetic field G sweeps. Focusing on the distance (A in Fig. 3), the value of A is zero when P is on the straight line part of helix L as shown in Fig. 4, and the value of A is zero when P is on the straight line part of helix L as the magnetic field sweeps. It can be seen that the magnetic field strength increases and decreases as it moves along the curved part, and shows a maximum value when it is at the resonance point Go, that is, at the position d'3 (Po in Figure 3). Place point P on the X plane as shown.

Y平面に射影したpx、pyの信号レベルa、bからA
= (a2+b2 )V2を求めれば、検出系の位相が
どんな状態であってもAが最大の位置、即ち共鳴点Go
の位置を求めることができる。そこで本発明では、検波
器11.12からフィルタ13.14を介して取出され
た90°位相の異なる共鳴信号を2重器15.16によ
って夫々2乗した後、加算器17によって加締し、更に
1/2乗回路18を通ずことによって前述した八−(a
2+1)2)V2の値を得ている。従って、1/2乗回
路18の出力が予め設定したレベルに到達した時に判別
器1つからパルスを発生させ、該パルスにより磁場掃引
回路20による磁場掃引を停止さければ、磁場は2D核
の共鳴点(゛停止することになり、それに同期して、又
はその後にオペレータの操作でスイッチ23を閉じれば
、検波器11から得られる共鳴信号が磁場強瓜可変用コ
イル2に帰還され、自動制御ループが形成されるため、
磁場強度はその共鳴点に固定的に保持されることになる
A from signal levels a and b of px and py projected onto the Y plane
= (a2+b2) By finding V2, no matter what the phase of the detection system is, the position where A is maximum, that is, the resonance point Go
The position of can be found. Therefore, in the present invention, the resonance signals having a 90° phase difference extracted from the detectors 11 and 12 via the filters 13 and 14 are respectively squared by the doublers 15 and 16, and then tightened by the adder 17. Furthermore, by passing through the 1/2 power circuit 18, the above-mentioned 8-(a
2+1)2) Obtaining the value of V2. Therefore, if a pulse is generated from one discriminator when the output of the 1/2 power circuit 18 reaches a preset level, and the magnetic field sweep by the magnetic field sweep circuit 20 is stopped by this pulse, the magnetic field is If the operator closes the switch 23 in synchronization with the resonance point (stops) or after that, the resonance signal obtained from the detector 11 is fed back to the magnetic field strength variable coil 2, and automatic control is performed. Because a loop is formed,
The magnetic field strength will be held fixed at its resonance point.

尚、上述した実施例では演算を2東器15,16、加算
器17.1/2乗回路1Bの組み合わせで行ったが、第
5図に示づ様に、検波器11.12からフィルタ13.
14を介して取出された2つの共鳴信号をAD変換器2
6.27により夫々AD変換してデジタル信号に変換し
、デジタル演算器28を用いてAの値を求める様にして
も良いことは苦うまでもない。32は△1つ変換及び演
算のタイミングを指定づるためのクロック信号を発生す
るクロック発振器である。
In the above-described embodiment, the calculation was performed using a combination of the 2D detectors 15 and 16, the adder 17, and the 1/2 power circuit 1B, but as shown in FIG. ..
The two resonance signals taken out through the AD converter 2
6.27, it goes without saying that each signal may be AD converted into a digital signal, and the value of A may be determined using the digital arithmetic unit 28. A clock oscillator 32 generates a clock signal for specifying the timing of Δ1 conversion and calculation.

第6図は更に他の実施例を示ず。本実施例ではフィルタ
13.14を介して取出された2つの共鳴信号を時分割
合成回路29により時分割的に混合し、混合した共鳴信
号をAD変換器30によりデジタル信号に変換し、該デ
ジタル合成信号を演算器28へ導いてAの値を求めてお
り、この様にすれば高価なAD変換器が1つでブむ。尚
、第6図において31は時分割及び演算のタイミングを
指定するためのタロツク信号を発生するクロック発振器
である。
FIG. 6 does not show any further embodiments. In this embodiment, two resonance signals taken out through filters 13 and 14 are mixed in a time division manner by a time division synthesis circuit 29, the mixed resonance signal is converted into a digital signal by an AD converter 30, and the digital The composite signal is led to the arithmetic unit 28 to obtain the value of A, and in this way, only one expensive AD converter is required. In FIG. 6, numeral 31 is a clock oscillator that generates a tarok signal for specifying the timing of time division and calculation.

又、実際には演算においてへの値を求める必要は無く、
A2 = a2 +  112の段階で△の値の大小を
判断づることができる。従って1/2乗回路18は必ず
しも必要ではなく、デジタル的な演算手段を用いる場合
も同様に平方根を求める必要はない。
Also, in reality, there is no need to find the value of in the calculation,
The magnitude of the value of Δ can be determined at the stage of A2 = a2 + 112. Therefore, the 1/2 power circuit 18 is not necessarily necessary, and even when digital calculation means are used, it is not necessary to find the square root.

[効果] 以上詳jボした如く本発明によれば、磁場制御用の共鳴
信号を90°ii’Z相の異なる2つの検波器で141
その2つの共鳴信号を夫々2乗して加算することにより
共鳴点の情報を得ているため、検出系の位相ずれに拘わ
らず共鳴点を正確に検出することかでき、磁場設定の自
動化が可能となる。
[Effect] As described in detail above, according to the present invention, resonance signals for magnetic field control are generated at 141° by two detectors with different 90°
Information on the resonance point is obtained by squaring the two resonance signals and adding them, so the resonance point can be detected accurately regardless of the phase shift of the detection system, making it possible to automate magnetic field settings. becomes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示す図、第2図及び
第4図はその動作を説明づるための波形図、第3図は同
じく模式図、第5図及び第6図は他の実施例の要部を示
す図である。 1:試料管、2:磁場強度可変用コイル、3:!1場制
御用送受信コイル、 4.23:スイッチ、5.7.25:発振器、11.1
2:検波器、15.16:2乗器、17.21:加棹器
、18:1/2乗回路、19ニレベル判別器、20:磁
揚昆引回路。 特8′[出願人 日本電子株式会社 代表者 伊藤 −夫
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention, FIGS. 2 and 4 are waveform diagrams for explaining its operation, FIG. 3 is a schematic diagram, and FIGS. 5 and 6 are It is a figure which shows the principal part of another Example. 1: Sample tube, 2: Magnetic field strength variable coil, 3:! 1 Field control transmitting/receiving coil, 4.23: Switch, 5.7.25: Oscillator, 11.1
2: Detector, 15.16: Square generator, 17.21: Calculator, 18: 1/2 power circuit, 19 Two-level discriminator, 20: Magnetic lift circuit. Patent No. 8' [Applicant JEOL Co., Ltd. Representative: Mr. Ito

Claims (1)

【特許請求の範囲】[Claims] 分極磁場を■i引づる手段と、分極磁場中に置かれた制
御用試料に高周波磁場を照射するための照射コイルと、
該コイルへ供給する高周波を発生するための発振器と、
制御用コイルからの共鳴信号を検出するための検出コイ
ルと、該検出コイルから得られる検出信号が供給される
90’位相の異なる2つの検波器と、該2つの検波器か
らの夫々の出力信号を2乗して加算する演算手段と、該
演算手段の出力に基づき前記掃引手段による磁場掃引を
停止り−る信号を発生する判別手段から構成されること
を特徴と覆る核磁気共鳴装置。
a means for drawing a polarized magnetic field; an irradiation coil for irradiating a control sample placed in the polarized magnetic field with a high-frequency magnetic field;
an oscillator for generating a high frequency to be supplied to the coil;
A detection coil for detecting a resonance signal from a control coil, two detectors with different 90' phases to which detection signals obtained from the detection coil are supplied, and respective output signals from the two detectors. What is claimed is: 1. A nuclear magnetic resonance apparatus comprising: a calculation means for squaring and adding the squared values; and a determination means for generating a signal for stopping magnetic field sweeping by the sweeping means based on the output of the calculation means.
JP58010880A 1983-01-26 1983-01-26 Nuclear magnetic resonance apparatus Pending JPS59136642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58010880A JPS59136642A (en) 1983-01-26 1983-01-26 Nuclear magnetic resonance apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58010880A JPS59136642A (en) 1983-01-26 1983-01-26 Nuclear magnetic resonance apparatus

Publications (1)

Publication Number Publication Date
JPS59136642A true JPS59136642A (en) 1984-08-06

Family

ID=11762635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58010880A Pending JPS59136642A (en) 1983-01-26 1983-01-26 Nuclear magnetic resonance apparatus

Country Status (1)

Country Link
JP (1) JPS59136642A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193940A (en) * 1984-10-13 1986-05-12 Jeol Ltd Nuclear magnetic resonator
EP1586915A1 (en) 2004-04-15 2005-10-19 Jeol Ltd. Method of quantifying a magnetic resonance spectrum

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193940A (en) * 1984-10-13 1986-05-12 Jeol Ltd Nuclear magnetic resonator
EP1586915A1 (en) 2004-04-15 2005-10-19 Jeol Ltd. Method of quantifying a magnetic resonance spectrum
US7106059B2 (en) 2004-04-15 2006-09-12 Jeol Ltd. Method of quantifying magnetic resonance spectrum

Similar Documents

Publication Publication Date Title
US2589494A (en) Stabilizing method and system utilizing nuclear precession
US10578690B2 (en) Digital receiver coil with built-in received phase noise indicator
JPS61191949A (en) Magnetic resonance imaging apparatus
JPH0613978B2 (en) Device for the preparation of displacement and / or current signals for satellites directed to the earth
JPS612011A (en) Device for holding meter on one line with moving reflecting body
US20060201233A1 (en) Method for determining a zero-point error in a vibratory gyroscope
KR101120732B1 (en) Method for aligning a rotation rate sensor
JPS59136642A (en) Nuclear magnetic resonance apparatus
US4171511A (en) Automatic field-frequency lock in an NMR spectrometer
JPS59200947A (en) Nuclear magnetic resonance video apparatus
JPS61187626A (en) Method and device for measuring force
JPH0146022B2 (en)
JPS59120852A (en) Nuclear magnetic resonance apparatus
JPS612047A (en) Nuclear magnetic resonator device
US20050151956A1 (en) Apparatus for precise distance measurement
US3753097A (en) Gyromagnetic resonance spectrometers
JPS6123953A (en) Nuclear magnetic resonance device
JP3507568B2 (en) Magnetic resonance imaging system
GB2362726A (en) A feedback control loop
JPH06181903A (en) Magnetic resonance imaging device
SU1690681A1 (en) Device for forming of pulses of respiratory movements
US3381214A (en) Constant current source employing a paramagnetic resonance current to frequency converter
JPH1062520A (en) Cw disturbance wave-removing apparatus
JPS5992368A (en) Magnetic field detector utilizing nuclear magnetic resonance
JPS58113867A (en) Sweeping-receiving device