JPS6123953A - Nuclear magnetic resonance device - Google Patents

Nuclear magnetic resonance device

Info

Publication number
JPS6123953A
JPS6123953A JP14395984A JP14395984A JPS6123953A JP S6123953 A JPS6123953 A JP S6123953A JP 14395984 A JP14395984 A JP 14395984A JP 14395984 A JP14395984 A JP 14395984A JP S6123953 A JPS6123953 A JP S6123953A
Authority
JP
Japan
Prior art keywords
magnetic field
signal
frequency
observation
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14395984A
Other languages
Japanese (ja)
Inventor
Keiji Eguchi
江口 恵二
Soichi Nagai
永井 壮一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP14395984A priority Critical patent/JPS6123953A/en
Publication of JPS6123953A publication Critical patent/JPS6123953A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/58Calibration of imaging systems, e.g. using test probes, Phantoms; Calibration objects or fiducial markers such as active or passive RF coils surrounding an MR active material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56563Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of the main magnetic field B0, e.g. temporal variation of the magnitude or spatial inhomogeneity of B0

Abstract

PURPOSE:To correct the adverse influence of variation of a magnetic field with good responsibility by comparing the position of a peak in a spectrum signal obtained by Fourier-transforming a detected free induction attenuation signal with the position of a peak obtained by the last measurement, and varying the frequency of a high frequency for observation. CONSTITUTION:A transmitting and receiving coil 2 for observation and coils 3X, 3Y, 4X, and 4Y for magnetic field slope generation are arranged in a static magnetic field established by a magnet 1. A high-frequency signal from an oscillator 5 is supplied to the coil 2 through a gate 6 and a power amplifier 7 to irradiate an object of observation arranged internally. A free induction attenuation signal (FID signal) induced at the coil 2 is led out through a gate 8, amplifier 9, and demodulating circuit 10 and sent to a computer 12 through an A/D converter 11. The compuver 12 transforms the FID signal on Fourier basis and compares the position of the peak in the obtained spectrum signal with the position of the peak in the spectrum signal obtained by the last measurement to vary the oscillation frequency of the oscillator 5. Thus, the evil influence of magnetic field variation is corrected with good responsibility.

Description

【発明の詳細な説明】 し産業上の利用分野コ 本発明は、静磁場の変動による悪影vIを除くことので
きる核磁気共鳴(NMR)装置に関するものぐあり、特
にNMRCT等のNMR映像装置に用いてな−f適であ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a nuclear magnetic resonance (NMR) apparatus that can eliminate the negative effects caused by fluctuations in a static magnetic field, and in particular to NMR imaging apparatus such as NMRCT. It is suitable for use in -f.

[従来の技術I NMR装置に用いられる静磁場には高い磁場安定度が要
求され、磁場安定化手段が設(プられるのが酋通である
。この磁場安定化手段としては、静磁場内に配置される
磁場安定化用の基準試料に核磁気共鳴を起こさせ、その
共鳴信号の変化によって静磁場の変動を検出し、検出信
号に基づいて静磁場強度を制御する所謂NMRロック技
術が広く用いられている。
[Prior art I] High magnetic field stability is required for the static magnetic field used in an NMR apparatus, and a magnetic field stabilizing means is provided.As this magnetic field stabilizing means, a The so-called NMR locking technology is widely used, in which nuclear magnetic resonance is caused in a reference sample for magnetic field stabilization to be placed, and fluctuations in the static magnetic field are detected by changes in the resonance signal, and the strength of the static magnetic field is controlled based on the detected signal. It is being

[発明が解決しようとする問題点] このような従来技術では、静磁場の強度を制御りるため
、応答速度に難がある。又、静磁場を発生ずる手段とし
て超伝導磁石を用いたNMR装詩では、静磁場強度が時
間の経過に従って大幅にずれて静!i場の強度可変範囲
から外れてしまい、安定化されないといった問題点もあ
る。
[Problems to be Solved by the Invention] Such conventional techniques have difficulty in response speed because the strength of the static magnetic field is controlled. In addition, in NMR systems that use superconducting magnets as a means of generating a static magnetic field, the static magnetic field strength deviates significantly over time and becomes static! There is also the problem that the i-field falls outside the range of variable intensity and is not stabilized.

[問題点を解決するための手段] 本発明は、この点に鑑みてなされたものであり、観測核
の共鳴周波数を持つ観測用高周波を静磁場中の観測対象
に送受信コイルを介してパルス的に繰返し照射し、照射
後に該送受信コイルに生じる自由誘導減衰信号を繰返し
検出して記憶手段に格納するようにした核磁気共鳴装置
において、検出した自由誘導減衰信号をフーリエ変換す
る手段と、フーリエ変換により得られるスペクトル信号
中のピークの位置を前回の測定で得られたスペクトル信
号中のピークの位置と比較する比較手段と、該比較手段
からの出力信号に基づいて前記観測用高周波の周波数を
変化させる手段とを備えたことを特徴としている。以下
、図面を用いて本発明を詳説づる。
[Means for Solving the Problems] The present invention has been made in view of this point, and it transmits an observation high frequency having the resonant frequency of the observation nucleus to an observation target in a static magnetic field in a pulsed manner through a transmitting/receiving coil. In a nuclear magnetic resonance apparatus in which a free induction attenuation signal generated in the transmitter/receiver coil is repeatedly irradiated and is repeatedly detected and stored in a storage means, means for Fourier transforming the detected free induction attenuation signal; a comparison means for comparing the position of the peak in the spectrum signal obtained by the previous measurement with the position of the peak in the spectrum signal obtained in the previous measurement, and changing the frequency of the observation high frequency based on the output signal from the comparison means. The invention is characterized in that it is equipped with a means for causing Hereinafter, the present invention will be explained in detail using the drawings.

[実施例] 第1図は本発明の一実施例の構成を示すブロック図であ
り、図において1は静磁場を発生するための磁石である
。その静磁場内には観測用送受信コイル2.磁場勾配発
生用コイル3X、3Y、4X、4Yが配置されている。
[Embodiment] FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, and in the figure, 1 is a magnet for generating a static magnetic field. Inside the static magnetic field is an observation transmitter/receiver coil 2. Magnetic field gradient generating coils 3X, 3Y, 4X, and 4Y are arranged.

5は観測核の共鳴周波数を持つ高周波を発生する発振器
で、該発振器5からの高周波はゲート6及び電力増幅器
7を介して前記送受信コイル2へ高周波パルスとして供
給され、該送受信コイルを介してその内部に配置される
観測対象へ高周波パルス磁場として照射される。該高周
波パルス照射後送受信コイル2に誘起された自由誘導減
衰信号(FID信号)はゲート8.増幅器9及び復調回
路10を介して取出され、A−D変換器11によってデ
ジタル信号に変換されてコンピュータ12へ送られる。
Reference numeral 5 denotes an oscillator that generates a high frequency wave having the resonant frequency of the observation nucleus. The high frequency wave from the oscillator 5 is supplied as a high frequency pulse to the transmitting/receiving coil 2 via the gate 6 and the power amplifier 7. A high-frequency pulsed magnetic field is irradiated to the observation target placed inside. After the high-frequency pulse irradiation, the free induction damping signal (FID signal) induced in the transmitter/receiver coil 2 is sent to the gate 8. The signal is extracted through an amplifier 9 and a demodulation circuit 10, converted into a digital signal by an A-D converter 11, and sent to a computer 12.

該コンピュータ12は、FID信号を映像用メモリ13
又は補正用メモリ14へ格納すると共に、前記発振器5
の発振周波数を可変する補正信号を発生する。15は前
記磁場勾配発生用コイルへ電流を供給するための勾配発
生回路、16は前記ゲート6.7.A−D変換器11及
び勾配発生回路15を制御するためのタイミング制御回
路である。
The computer 12 stores the FID signal in a video memory 13.
or stored in the correction memory 14 and the oscillator 5
A correction signal is generated to vary the oscillation frequency of the oscillation frequency. 15 is a gradient generation circuit for supplying current to the magnetic field gradient generation coil; 16 is the gate 6.7. This is a timing control circuit for controlling the A-D converter 11 and the gradient generation circuit 15.

上述の如き構成において、制御回路16はゲート6.8
を第2図(a)、(b)に示すタイミングで0N−OF
Fする。そのため、ゲート6を介して短いパルス幅を持
った観測パルスが適宜な時間間隔で取出され、観測対象
に照射されると共に、該観測パルス魚身4後に送受信コ
イル2に誘起されるF’ID信号がゲート8.復調回路
10を介して取出され、ゲート8と同時に動作するΔ−
り変換器11を介してコンピュータ12へ送られてメモ
リへ記憶される。
In the configuration as described above, the control circuit 16 has a gate 6.8.
is 0N-OF at the timing shown in Figure 2 (a) and (b).
F. Therefore, an observation pulse with a short pulse width is taken out at appropriate time intervals through the gate 6 and irradiated onto the observation target, and an F'ID signal is induced in the transmitting/receiving coil 2 after the observation pulse fish body 4. is gate 8. Δ− is taken out via the demodulation circuit 10 and operates simultaneously with the gate 8.
It is sent via converter 11 to computer 12 and stored in memory.

第2図(C)は勾配発生回路の動作状態を示し、ONの
時には勾配磁場によって選択された特定部位からのF■
D信号FiDaが得られ、該FID信号はメモリ13へ
順次格納される。そして、測定後、このメモリ13に格
納された多数のFID信号FIDaに基づいて映像が作
成される。
FIG. 2(C) shows the operating state of the gradient generating circuit, and when it is ON, F
A D signal FiDa is obtained, and the FID signal is sequentially stored in the memory 13. After the measurement, an image is created based on the large number of FID signals FIDa stored in the memory 13.

本発明では、このような映像用測定の間に、例えば映像
用測定が10回行われる毎に1回の割合で磁場変動検出
用測定が行われる。即ち、タイミング制御回路16は、
第2図(C)に示すように、10回の映像用測定が行わ
れる毎に1回勾配発生回路15の動作を停止させる。こ
の時得られるFID信号信号I Dbは、磁場勾配が存
在しないので測定対象の広い範囲からの強度の高いもの
となり、該FIDbはコンピュータ12によりメモリ1
4へ格納される。
In the present invention, during such video measurements, magnetic field fluctuation detection measurements are performed, for example, once every 10 video measurements. That is, the timing control circuit 16
As shown in FIG. 2(C), the operation of the gradient generating circuit 15 is stopped once every 10 video measurements. Since there is no magnetic field gradient, the FID signal I Db obtained at this time has high intensity from a wide range of the measurement target, and the FID signal I Db is stored in the memory 1 by the computer 12.
4.

そして、コンピュータ12は、保有しているフーリエ変
換プログラムにより該FIDbを直ちにフーリエ変換し
、例えば第3図(a)に示すようなNMRスペクトルを
得る。
Then, the computer 12 immediately performs Fourier transform on the FIDb using the Fourier transform program it has, and obtains an NMR spectrum as shown in FIG. 3(a), for example.

このようにして得られたNMRスペクトルの横軸(ま、
静磁場の強度又は高周波磁場の周波数に対応しており、
静磁場の強度が何等かの原因により変化すると、第3図
(b)に示すようにスペクトル全体がその変化に対応し
た量シフトする。性って、このスペクトルを繰返し測定
し、スペクトルのシフ1〜量を求めれば、静磁場強度の
変化の量を変化の方向も含めて検出することができる。
The horizontal axis of the NMR spectrum obtained in this way (
It corresponds to the strength of static magnetic field or the frequency of high-frequency magnetic field,
When the strength of the static magnetic field changes for some reason, the entire spectrum shifts by an amount corresponding to the change, as shown in FIG. 3(b). However, by repeatedly measuring this spectrum and determining the amount of shift in the spectrum, it is possible to detect the amount of change in the static magnetic field strength, including the direction of the change.

ところで、核磁気共鳴の条件は、静磁場強度をH1高周
波ta場の周波数をf、観測核の磁気回転比をγとした
時、2πf−γ[」と表わされ、静磁場強度と高周波磁
場の周波数とは1対1で対応している。そのため、この
ようにして磁場強度の変動Δ1」が検出できれば、2π
(f+Δf)−γ(1」+ΔH)を成立させるΔfをΔ
f−γ△H/2πとして即座に求めることができ、観測
用の高周波の周波数をその八fだけ補正し′てやれば、
共鳴条件は常に一定に維持されることになる。
By the way, the conditions for nuclear magnetic resonance are expressed as 2πf-γ['', where the static magnetic field strength is the frequency of the H1 high-frequency ta field and γ is the gyromagnetic ratio of the observation nucleus, and the static magnetic field strength and the high-frequency magnetic field are There is a one-to-one correspondence with the frequency. Therefore, if we can detect the variation Δ1 in magnetic field strength in this way, then 2π
Δf that makes (f+Δf)-γ(1''+ΔH) hold is Δ
It can be immediately obtained as f-γ△H/2π, and if the frequency of the high frequency for observation is corrected by that 8f,
The resonance conditions will always be kept constant.

そこで、コンピュータ12には、ΔH(実際にはスペク
トルの8動旬〉から八fへの予め求めた変換テーブルが
記憶されており、該コンピュータ12は適宜な間隔で行
われる磁場変化検出用測定のたびに、得られるN IV
I Rスペクトルをその前の測定で得られたスペクトル
と比較し、スペクトルの移動量を求め、その移動量に対
応した補正M八fを変換テーブルから求め、求めた八f
を指定づる信号を次の映像用測定が行われる直前の第2
図(d)に示すタイミングで前記発揚器5へ送る。
Therefore, the computer 12 stores a predetermined conversion table from ΔH (actually, the 8th phase of the spectrum) to 8f, and the computer 12 stores a conversion table determined in advance from ΔH (actually, the 8th phase of the spectrum) to 8f, and the computer 12 is used to perform measurements for detecting magnetic field changes at appropriate intervals. Each time, the obtained N IV
Compare the IR spectrum with the spectrum obtained in the previous measurement, find the amount of shift of the spectrum, find the correction M8f corresponding to the amount of shift from the conversion table, and calculate the found 8f.
The signal specifying the
It is sent to the energizer 5 at the timing shown in FIG. 5(d).

該発振器5はそれに基づき発振周波数を即座に八fたけ
変化させるため、磁場強度が変動した場合であっても、
次の映像用測定は補正された周波数の高周波を用いて行
われることになる。フーリエ変換に時間がかかる場合に
は、第2図(d)のタイミングに限らず、Δfが求めら
れた時点で、発振器5の周波数を変化させれば良いこと
は言うよ(心ない。
Based on this, the oscillator 5 instantly changes the oscillation frequency by 8 f, so even if the magnetic field strength fluctuates,
The next video measurement will be performed using the corrected frequency radio frequency. If the Fourier transform takes time, the frequency of the oscillator 5 can be changed at the time when Δf is obtained, not just at the timing shown in FIG. 2(d) (please do not worry).

尚、コンピュータ12によるスペクトルのシフ1へ量の
検出は、パターン認識の考え方に基づいて行うようにし
ても良いし、予め指定された特定のピークに着目し、そ
のピークの移動量を求めるようにしでも良く、種々の方
法を用いることができる。
Note that the computer 12 may detect the amount of shift 1 in the spectrum based on the concept of pattern recognition, or it may focus on a specific peak specified in advance and calculate the amount of shift of that peak. However, various methods can be used.

又、[嘗ホした実施例では10回の映像用測定毎に1回
の14i揚変動検出用測定を行うようにしたが、磁場強
度の変動が少ない場合には100回に1回行うようにし
ても良いし、何回毎に行うかは適宜選定覆れば良い。
In addition, [in the embodiment described above, the 14i lift fluctuation detection measurement was performed once every 10 video measurements, but if the fluctuation of the magnetic field strength is small, it may be performed once every 100 times. You can also choose the number of times you want to do it as appropriate.

[効果] 以上詳述した如く本発明によれば、静磁場の変動をN 
M Rスペクトルのシフ1〜に基づいて測定し、その結
果に基づいて観測用高周波の周波数を補正して共鳴条件
を一定に保っているため、極めて速い応答速度で磁場変
動による悪影響を補正することができる。又、静磁場の
調整可変範囲は極めて狭いが、周波数の可変頻回は大き
くとることができるので、静磁場が大幅に変動する場合
であっても広い範囲にわたって補正を行うことが可能で
ある。
[Effect] As detailed above, according to the present invention, fluctuations in the static magnetic field can be reduced to N
Measurements are made based on shift 1 of the MR spectrum, and the resonance conditions are kept constant by correcting the frequency of the observation high frequency based on the results, so the negative effects due to magnetic field fluctuations can be corrected with an extremely fast response speed. I can do it. Further, although the variable range of adjustment of the static magnetic field is extremely narrow, the frequency of frequency can be varied, so even if the static magnetic field fluctuates significantly, it is possible to perform correction over a wide range.

又、本実施例では、磁場変動検出用測定を行う際に、磁
場勾配を発生しないようにしているため、磁場勾配が存
在する場合に比べ極めて強度の大きなFID信号を得る
ことができる。従つC,得られるNMRスペクトルも明
瞭なものとなり、シフト量の検出を精度良く行うことが
可能である。
Furthermore, in this embodiment, since no magnetic field gradient is generated when performing measurements for detecting magnetic field fluctuations, it is possible to obtain an FID signal that is extremely strong compared to a case where a magnetic field gradient exists. Therefore, the obtained NMR spectrum becomes clear, and it is possible to detect the shift amount with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
その動作を説明するためのタイミング図、第3図はスペ
クトルのシフトを説明ブるための図である。 1:磁石、2:送受信コイル、 3X、3Y、4X、4Y:磁場勾配発生用コイル、5:
高周波発振器、6,8:ゲート、 10:復調回路、12:コンピュータ、13.14:メ
モリ、15;勾配発生回路、16:タイミング制御回路
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a timing diagram for explaining its operation, and FIG. 3 is a diagram for explaining a spectrum shift. 1: Magnet, 2: Transmitting/receiving coil, 3X, 3Y, 4X, 4Y: Magnetic field gradient generation coil, 5:
High frequency oscillator, 6, 8: Gate, 10: Demodulation circuit, 12: Computer, 13.14: Memory, 15: Gradient generation circuit, 16: Timing control circuit.

Claims (1)

【特許請求の範囲】[Claims] (1)観測核の共鳴周波数を持つ観測用高周波を静磁場
中の観測対象に送受信コイルを介してパルス的に繰返し
照射し、照射後に該送受信コイルに生じる自由誘導減衰
信号を繰返し検出して記憶手段に格納するようにした核
磁気共鳴装置において、検出した自由誘導減衰信号をフ
ーリエ変換する手段と、フーリエ変換により得られるス
ペクトル信号中のピークの位置を前回の測定で得られた
スペクトル信号中のピークの位置と比較する比較手段と
、該比較手段からの出力信号に基づいて前記観測用高周
波の周波数を変化させる手段とを備えたことを特徴とす
る核磁気共鳴装置。
(1) A high-frequency observation wave having the resonance frequency of the observation nucleus is repeatedly irradiated in a pulsed manner to an observation target in a static magnetic field via a transmitter/receiver coil, and after irradiation, the free induction attenuation signal generated in the transmitter/receiver coil is repeatedly detected and stored. In the nuclear magnetic resonance apparatus, the means for Fourier-transforming the detected free induction decay signal and the means for Fourier-transforming the detected free induction decay signal, and the means for detecting the position of the peak in the spectral signal obtained by the Fourier transformation in the spectral signal obtained in the previous measurement. A nuclear magnetic resonance apparatus characterized by comprising a comparison means for comparing the position of a peak, and a means for changing the frequency of the observation high frequency wave based on an output signal from the comparison means.
JP14395984A 1984-07-11 1984-07-11 Nuclear magnetic resonance device Pending JPS6123953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14395984A JPS6123953A (en) 1984-07-11 1984-07-11 Nuclear magnetic resonance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14395984A JPS6123953A (en) 1984-07-11 1984-07-11 Nuclear magnetic resonance device

Publications (1)

Publication Number Publication Date
JPS6123953A true JPS6123953A (en) 1986-02-01

Family

ID=15351027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14395984A Pending JPS6123953A (en) 1984-07-11 1984-07-11 Nuclear magnetic resonance device

Country Status (1)

Country Link
JP (1) JPS6123953A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0265956A2 (en) * 1986-10-29 1988-05-04 Hitachi Medical Corporation Method for correcting position deviation due to static magnetic field change in NMR imaging device
JPS63222757A (en) * 1987-03-13 1988-09-16 株式会社 日立メデイコ Nuclear magnetic resonance imaging apparatus
JPS63286141A (en) * 1987-04-29 1988-11-22 ゼネラル・エレクトリック・カンパニイ Mr scanner and method for controlling frequency thereof
JPS63296737A (en) * 1987-05-29 1988-12-02 Yokogawa Medical Syst Ltd High frequency power supply apparatus
JP2010281812A (en) * 2009-04-27 2010-12-16 Bruker Biospin Ag Device for extremely precise synchronization of nmr transmission frequency to resonance frequency of nmr line taking into consideration non-constant rf phase, and synchronization system of the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0265956A2 (en) * 1986-10-29 1988-05-04 Hitachi Medical Corporation Method for correcting position deviation due to static magnetic field change in NMR imaging device
EP0585973A1 (en) * 1986-10-29 1994-03-09 Hitachi Medical Corporation Method for correcting position deviation due to static magnetic field change in an NMR imaging device
JPS63222757A (en) * 1987-03-13 1988-09-16 株式会社 日立メデイコ Nuclear magnetic resonance imaging apparatus
JPH0376133B2 (en) * 1987-03-13 1991-12-04 Hitachi Medical Corp
JPS63286141A (en) * 1987-04-29 1988-11-22 ゼネラル・エレクトリック・カンパニイ Mr scanner and method for controlling frequency thereof
JPS63296737A (en) * 1987-05-29 1988-12-02 Yokogawa Medical Syst Ltd High frequency power supply apparatus
JPH0376137B2 (en) * 1987-05-29 1991-12-04 Yokokawa Medeikaru Shisutemu Kk
JP2010281812A (en) * 2009-04-27 2010-12-16 Bruker Biospin Ag Device for extremely precise synchronization of nmr transmission frequency to resonance frequency of nmr line taking into consideration non-constant rf phase, and synchronization system of the same

Similar Documents

Publication Publication Date Title
JPH0638943A (en) Magnetic resonance imaging system and method
EP1078274A1 (en) Method of and device for the compensation of variations of the main magnetic field during magnetic resonance imaging
JPS61191949A (en) Magnetic resonance imaging apparatus
US4931733A (en) Method and apparatus for determining shim coil current in nuclear magnetic resonance imaging
JPS6123953A (en) Nuclear magnetic resonance device
JP2945048B2 (en) Magnetic resonance imaging equipment
US4171511A (en) Automatic field-frequency lock in an NMR spectrometer
US6777939B2 (en) Coil system with current regulation based on emitted heat
JPH03210237A (en) Magnetic resonance apparatus
JPS612047A (en) Nuclear magnetic resonator device
EP0361574A1 (en) Method of and device for eddy current compensation in MR apparatus
US4899110A (en) Magnetic resonance imaging apparatus with stabilized magnetic field
RU2047871C1 (en) Magnetoresonant tomograph device
US5471141A (en) Method and apparatus for regulating radio frequency pulse
US4210861A (en) Fourier-transform nuclear gyromagnetic resonance spectrometer
US3496454A (en) Frequency tracking magnetic field regulator employing means for abruptly shifting the regulated field intensity
JP2001224570A (en) Magnetic resonance imaging instrument
JPS61235741A (en) Nuclear magnetic resonance device
JPS59202050A (en) Nuclear magnetic resonance video apparatus
JPH04327834A (en) Magnetic resonance imaging device
JPH02295548A (en) Magnetic resonance imaging device
SU750407A1 (en) Magnetometer
JP2597098B2 (en) Magnetic resonance imaging equipment
JPH0351038A (en) Impedance adjusting device for rf coil in mri device
JPH0357980A (en) Method for adjusting high-frequency output