JPS59202050A - Nuclear magnetic resonance video apparatus - Google Patents

Nuclear magnetic resonance video apparatus

Info

Publication number
JPS59202050A
JPS59202050A JP58076427A JP7642783A JPS59202050A JP S59202050 A JPS59202050 A JP S59202050A JP 58076427 A JP58076427 A JP 58076427A JP 7642783 A JP7642783 A JP 7642783A JP S59202050 A JPS59202050 A JP S59202050A
Authority
JP
Japan
Prior art keywords
frequency
magnetic field
signal
magnetic resonance
nuclear magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58076427A
Other languages
Japanese (ja)
Other versions
JPH0250730B2 (en
Inventor
Masaaki Hino
日野 正章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58076427A priority Critical patent/JPS59202050A/en
Publication of JPS59202050A publication Critical patent/JPS59202050A/en
Publication of JPH0250730B2 publication Critical patent/JPH0250730B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/58Calibration of imaging systems, e.g. using test probes, Phantoms; Calibration objects or fiducial markers such as active or passive RF coils surrounding an MR active material

Abstract

PURPOSE:To compensate for deviation between a resonance frequency and a reference frequency without using nuclide differing from an object to be measured and without controlling a static magnetic field by feedback controlling of a reference signal generator based on deviation between the resonance frequency and a reference frequency with the application of the static magnetic field. CONSTITUTION:A nuclear magnetic resonance signal generated in an object 2 to be inspected with the application of an electrostatic magnetic field from an electrostatic magnetic field generator 1 is received with a receiver coil 6 and applied to a phase detector 8 via a low noise amplifier 7 to be detected in the phase by a reference signal from a reference signal generator 3. Then, deviation between the frequency of the resonance signal thus detected in the phase and the frequency of the reference signal is detected with a frequency analyzer 9. A reference signal generator 3 by the detection signal is feedback controlled to compensate the deviation between the reference signal and the resonance signal thereby forming a nuclear magnetic resonance image at a high accuracy and a high efficiency without using nuclide differing from an object to be measured and without controlling an electrostatic magnetic field.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は核磁気共鳴(NMR:nuclear rna
gnetlcresOnans〜以下「NMRJと称す
る)現象を用いて被検体中に存在する成る特定の原子核
のスピン密度および緩和時間定数の反映された画像情報
を得る列えば診断用NMR−CT(CT : comp
utedtomograph〜コンビーータ断層)装置
のとときNMR映像装置に係シ、特に対称原子核の密度
および緩和時間を高精度に且つ尚効率で計測するため静
磁場強度に対応した対象原子核種の共鳴周波数と励起信
号の基準信号周波数との整合の高精度化を図ったNMR
映像装置に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to nuclear magnetic resonance (NMR).
Diagnostic NMR-CT (CT: comp.
In order to measure the density and relaxation time of symmetrical atomic nuclei with high precision and efficiency, especially in order to measure the density and relaxation time of symmetrical atomic nuclei with high precision and efficiency, the resonant frequency and excitation signal of the target atomic nuclide corresponding to the static magnetic field strength are used. NMR with high precision matching with the reference signal frequency of
This relates to video equipment.

〔発明の技術的背景〕[Technical background of the invention]

診断用NMR−CT装置はNMR現象を利用して画像情
報を得る装置であシ、特に得られた画像情報を診断に供
するものである。
A diagnostic NMR-CT device is a device that obtains image information using NMR phenomena, and in particular, the obtained image information is used for diagnosis.

一般にNMR現象を利用して計測を行うNMR装置にお
いては、被検体に印加する均一な静磁場強度に対応した
計測対象核種の共鳴周波数と、励起信号の周波数すなわ
ち励起信号を得るだめの基準信号の周波数とを一致させ
ることが高精度の計測のために必要となる。
In general, in NMR devices that perform measurements using NMR phenomena, the resonance frequency of the nuclide to be measured corresponds to the uniform static magnetic field strength applied to the specimen, and the frequency of the excitation signal, that is, the reference signal used to obtain the excitation signal. It is necessary to match the frequency for highly accurate measurement.

従来の化学分析に用いられているNMR装置においては
、計測対象物が小さく、断面等の二次元映像を得るもの
でもないため、要求される均一@場領域も小さい。そこ
で、この場合は、長時間にわたって静磁場強度と基準信
号周波数との関係をいわゆるBohrの関係(詳細は後
述される)に保つために、検出プローブ内の試料の極〈
近傍に配置された、本来の計測対象核種とは異なる共鳴
周波数を持つ核種(この核種を試料に混合する場合もあ
る。)から得られる共鳴信号を基準の共鳴信号として静
磁場の変動を検出し静磁場発生装置に帰還をかけるいわ
ゆる「NMRロック方式」が用いられている。
In the NMR apparatus used in conventional chemical analysis, the object to be measured is small and it is not possible to obtain a two-dimensional image such as a cross section, so the required uniform field area is also small. Therefore, in this case, in order to maintain the relationship between the static magnetic field strength and the reference signal frequency in the so-called Bohr relationship (details will be described later) over a long period of time, it is necessary to
Fluctuations in the static magnetic field are detected using the resonance signal obtained from a nearby nuclide with a resonance frequency different from that of the nuclide to be measured (this nuclide may be mixed with the sample) as a reference resonance signal. A so-called "NMR lock method" is used in which feedback is applied to the static magnetic field generator.

これに対し、診断用NMR−CT装置は二次元映像を得
るものであシ、しかも計測対象である被検体が分割不能
な生体であるために、必要とする均一磁場領域が大きく
なる。この診断用NMR−CT装置に上述のNMRロッ
ク方式を適用した場合、所要とする均一磁場領域が大き
いため、基準の核種の配設位置に特別な配慮が必要とな
シ、基準の核種の配役位置の選定や診断用NMR−CT
装置の操作性の点で多くの問題を生ずる。また、所要の
均一磁場領域が大きいので、上記基準の核種によって均
一に且つ正確に誤差を検出できるとは限らない。したが
って、このような基準の多種を用いない方式が直ましい
On the other hand, a diagnostic NMR-CT apparatus obtains a two-dimensional image, and since the subject to be measured is an indivisible living body, the required uniform magnetic field area is large. When the above-mentioned NMR locking method is applied to this diagnostic NMR-CT device, the required homogeneous magnetic field area is large, so special consideration must be given to the placement position of the reference nuclide. NMR-CT for position selection and diagnosis
This creates many problems in terms of device operability. Furthermore, since the required uniform magnetic field area is large, it is not always possible to detect errors uniformly and accurately depending on the reference nuclide described above. Therefore, it is preferable to use a method that does not use a variety of such standards.

さらに上記磁場ロック方式では被検体に印カロする一係
静@場を可変制御するようにしてふ・シ、強磁場を可変
しなければならず安定な制御を行うことが容易ではない
。特に静磁場発生装置に壁心超電導磁石を用いた場合に
は、超電導コイルに永久モード、すなわち磁場を発生す
るコイルに起電導状態でいわゆる永久電流を流した状態
で磁場を発生させることになるが、この状態では外部か
らこの電流の大きさを制御することができず、上記磁場
ロック方式を適用すること−ト、この場合には超電導コ
イル を流れる電σ1tが徐々に減少するため、それによる静
磁場の変動に対する対策が特に必要となる。
Furthermore, in the magnetic field locking method described above, it is not easy to perform stable control because the strong magnetic field must be varied by variably controlling the static field applied to the subject. In particular, when a wall-core superconducting magnet is used in a static magnetic field generator, a magnetic field is generated in the superconducting coil in a permanent mode, that is, in a state where a so-called permanent current is passed through the coil that generates the magnetic field in an electromotive conduction state. In this state, the magnitude of this current cannot be controlled externally, and the magnetic field lock method described above must be applied.In this case, the electric current σ1t flowing through the superconducting coil gradually decreases, so the static Measures against magnetic field fluctuations are especially required.

〔発明の目的〕[Purpose of the invention]

本発明の目的とするところは、計測対象と異なる核種を
用いることなくしかも静磁場を制御せずに、英際の共鳴
周改数と励起信号を作る基準周波数との偏差を補償し、
高柑度に且つ高効率でNMR映像を得ることを可能とす
る曳映像装置を提供することにある0 〔発明の仲5要〕 本発明は静磁場印加状態で計測対象核種の核磁気共鳴を
励起し被検体から得られる共鳴信号を周波数分析して共
鳴周波数と基準信号周波数との偏差を求め、その結果を
基準信号発生装置に誤差信号として帰還することを特徴
としている。
The purpose of the present invention is to compensate for the deviation between the resonant frequency and the reference frequency for generating the excitation signal without using a different nuclide from the measurement target and without controlling the static magnetic field.
An object of the present invention is to provide an imaging device that makes it possible to obtain NMR images with high accuracy and efficiency. It is characterized by frequency-analyzing the resonance signal obtained from the excited object to determine the deviation between the resonance frequency and the reference signal frequency, and feeding the result back to the reference signal generator as an error signal.

実施例 以下本発明の一実施例をその基本原理にもとづいて詳細
に説明する。
EXAMPLE Hereinafter, an example of the present invention will be explained in detail based on its basic principle.

NMR現象の理論的解析はBlochらによって確立さ
れておシ、その計測方法には大別して連続波法とパルス
法がある。診断用NMR−CT装置等においてはパルス
法が一般的であるため、ここではパルス法について説明
する。
Theoretical analysis of NMR phenomena has been established by Bloch et al., and measurement methods can be roughly divided into continuous wave methods and pulse methods. Since the pulse method is common in diagnostic NMR-CT apparatuses, etc., the pulse method will be explained here.

対象原子核について、静磁場(強度) Hoによp B
ohrの関係から導かれる次式で決定される角周波数ω
0の回転磁場を静磁場Hoと同時に加えると該回転磁場
に共鳴してLa rm o rの歳差運動と呼ばれる現
象を呈する。
For the target atomic nucleus, the static magnetic field (strength) Ho is p B
Angular frequency ω determined by the following equation derived from the relationship of ohr
When a rotating magnetic field of 0 is applied at the same time as a static magnetic field Ho, it resonates with the rotating magnetic field and exhibits a phenomenon called precession of Larm or r.

ω0=γHO・・・(1) (但し、ω0:共鳴共鳴波数+ Ho : m磁場強度
、γ:核種により決定される核 磁気回転比) この現象をNMR現象と称する。
ω0=γHO (1) (where ω0: resonant resonance wave number + Ho: m magnetic field strength; γ: nuclear gyromagnetic ratio determined by the nuclide) This phenomenon is called an NMR phenomenon.

第1図に本発明を診断用NMR−CT装置に適用した場
合の一笑施例の構成を示す。なお、第1図では本発明に
直接必要な構成であって、本発明を通用した診断用NM
R−C’T装匹におおむね共通な構成を示しており、図
示していない構成で診断用NMR−CT装置に必要な構
成は、本発明に直接関係がなく、また各種診断用NMI
t −CT装置によって異なる場合もある。
FIG. 1 shows the configuration of a simple embodiment in which the present invention is applied to a diagnostic NMR-CT apparatus. Note that FIG. 1 shows the configuration directly necessary for the present invention, and a diagnostic NM that can be used in the present invention.
This figure shows a configuration that is generally common to the R-C'T equipment, and the configuration that is not shown and that is necessary for a diagnostic NMR-CT device is not directly related to the present invention, and is compatible with various diagnostic NMR-CT devices.
It may differ depending on the t-CT device.

第1図において、1は撮像対象領域について均一な一様
静磁場Hoを発生する静磁場発生装置、2は被検体(模
式化して示す)、3は対称核種の静磁場Ho中における
共鳴角周波数ω0に対応の場合周波数可変の基準信号発
生装置(以下「SSG」と称する)、4はSSG 7で
発生した基準信号をもとにパルス状の高周波(角周波数
ωr)信号からなる励起ノセルスH1を形成し且つ電力
増幅する励起パルス発生部、5は励起パルス発生部4で
生成された励起パルスH1をNMR励起用回転磁場とし
て被検体2に印加する$ トランスミツタコイル、6被検体2に生じだNMft信
号を受信するレシーバコイル、7はレシーバコイル6で
受信されたNMR信号を増幅する低雑音増幅器、8は増
幅されたNMR信号を5SG3で発生した基準角周波数
ωrの基準46号で位相検波する位相検波装置、9は位
相検波装置8で検波されたNMR信号を周波数分析して
基準角周波数ωrに対する共鳴角周波数ω0の偏差Δω
を求める周波数分析装置、10は周波数分析装置9で検
出された周波数偏差ΔωをSSG 3に帰還すなわち該
周波数偏差Δωに応じてSSG 30周波数を制御し該
周波数偏差Δωを補正するとともに、SSG 3 、勃
起・母ルス発生部4.増幅七悌7、位相検波装置8およ
び周波数分析装置9の動作制御などを行なうシステム制
御装置である。
In Fig. 1, 1 is a static magnetic field generator that generates a uniform static magnetic field Ho for the imaging target region, 2 is the object to be examined (shown schematically), and 3 is the resonance angular frequency of the symmetric nuclide in the static magnetic field Ho. When compatible with ω0, a variable frequency reference signal generator (hereinafter referred to as "SSG"), 4 generates an excitation nocellus H1 consisting of a pulsed high frequency (angular frequency ωr) signal based on the reference signal generated by SSG 7. an excitation pulse generator 5 that generates and amplifies the power; 5 a transmitter coil that applies the excitation pulse H1 generated by the excitation pulse generator 4 to the subject 2 as a rotating magnetic field for NMR excitation; A receiver coil receives the NMft signal, 7 is a low-noise amplifier that amplifies the NMR signal received by the receiver coil 6, and 8 phase-detects the amplified NMR signal with reference No. 46 having a reference angular frequency ωr generated by 5SG3. A phase detection device 9 frequency-analyzes the NMR signal detected by the phase detection device 8 to determine the deviation Δω of the resonance angular frequency ω0 from the reference angular frequency ωr.
A frequency analyzer 10 returns the frequency deviation Δω detected by the frequency analyzer 9 to the SSG 3, that is, controls the frequency of the SSG 30 according to the frequency deviation Δω to correct the frequency deviation Δω, and the SSG 3, Erection/Motherus generation area 4. This is a system control device that controls the operation of the amplification device 7, phase detection device 8, and frequency analysis device 9.

この場合、トランスミツタコイル5とレシーバコイル6
とを分離した構成としているが、これらを一体化し共通
のコイルによp励起ノ9ルスH,の印加とNMR信号の
受信を行ういわゆるシングルコイル方式の構成を採用す
る場合もある。
In this case, transmitter coil 5 and receiver coil 6
However, in some cases, a so-called single-coil type configuration is adopted in which these are integrated and a common coil is used to apply the p-excitation pulse H and receive the NMR signal.

このような構成において、上記(1)式にて決定される
パルス状の高周波回転磁場すなわち励起パルスH1i)
ランスミツタコイル5よυ印加することにより対象原子
核に生ずる磁気モーメントμが平衡状態へ復帰する隙に
誘導される自由訪導減g (FID : free 1
nduction decay 〜以下1’−FID 
Jと称する)信号をSSG 3で発生した基準角周波数
ωrの基準信号を用いて位相検波装置8で位相検波する
と高周波のNMR信号(この場合FID信号)を処理の
容易な周波数に変換することができ且つ理端的な解析が
容易となる(以下、このような状態を考えることを「回
転座標系でみる」と称する)。ここで、一般的に第2図
に示すような磁化Mが回転する角度θは共鳴周阪故ωO
の回転座標系においては次式で示される。
In such a configuration, the pulsed high-frequency rotating magnetic field determined by the above equation (1), that is, the excitation pulse H1i)
When the magnetic moment μ generated in the target atomic nucleus by applying υ to the Ransmitsuta coil 5 returns to an equilibrium state, the free visiting conduction decrease g (FID: free 1
duction decay ~hereinafter 1'-FID
When the phase detection device 8 detects the phase of the signal (referred to as J) using the reference signal of the reference angular frequency ωr generated by the SSG 3, it is possible to convert the high frequency NMR signal (FID signal in this case) to a frequency that is easy to process. (Hereinafter, considering such a state will be referred to as ``viewing in a rotating coordinate system''). Here, in general, the angle θ at which the magnetization M rotates as shown in Figure 2 is ωO due to the resonance circumference.
In the rotating coordinate system, it is expressed by the following equation.

θ=γH,t   ・・・(2) (但し、t、:HtO印加時間) 検出系としてはθ=π/2 (rad )の場合に最も
感度が艮くなる。本実施fluにおいては正確にθ=π
/2とする必要はないが、以下においてはNMR−CT
装置の感度を満足する程度にθがπ力に近いものとする
。このような条件において、位相検波装置8で基準角周
波数ωrで検波されたFID信号V□0は次式で表され
る。
θ=γH,t (2) (However, t: HtO application time) As a detection system, the sensitivity is the lowest when θ=π/2 (rad). In this implementation flu, exactly θ=π
/2, but in the following, NMR-CT
Let θ be close to the π force to the extent that the sensitivity of the device is satisfied. Under such conditions, the FID signal V□0 detected at the reference angular frequency ωr by the phase detection device 8 is expressed by the following equation.

72、。へ。。(、+y+Z)。−(+/T2 + j
 ((7JO−(77・)゛)=。。(1,y+z)e
 ””  j(lo−(IJ・)t=−(3)(但し、
”O(X+y+Z ) : (X+y+Z )における
対象核種の密度、T2  、対象核種のスピン−スピン
緩和時間と磁場の不均一性による時定数) この(3)式において、周波数偏差ΔωをΔω=1ω0
−ωrl とすると、周波数分析装置9で■、□Dを周波数分析す
ることによシ周波数偏差Δωの値を知ることができるこ
とがわかる。
72,. fart. . (, +y+Z). −(+/T2 + j
((7JO-(77・)゛)=..(1,y+z)e
"" j(lo-(IJ・)t=-(3) (However,
”O(X+y+Z): density of the target nuclide at (X+y+Z), T2, time constant due to the spin-spin relaxation time of the target nuclide and the inhomogeneity of the magnetic field) In this equation (3), the frequency deviation Δω is expressed as Δω=1ω0
-ωrl, it can be seen that the value of the frequency deviation Δω can be found by frequency-analyzing ■ and □D using the frequency analyzer 9.

ここで、従来のNMRロック式のように周波数偏差Δω
を静磁場発生装置1に電流として帰還する場合を考える
。上記(1)式よシ静磁場強度HOの誤差ΔHOは、 ΔHo−Δω/γ   ・・・(4) となる。したがって、帰還すべき電流源iは次式よシ求
められる。
Here, as in the conventional NMR locking method, the frequency deviation Δω
Let us consider the case where the current is fed back to the static magnetic field generator 1 as a current. According to the above equation (1), the error ΔHO in the static magnetic field strength HO is ΔHo−Δω/γ (4). Therefore, the current source i to be fed back can be found by the following equation.

1=fcΔHo)=f(Δω/ r )  −= (5
)(但し、f(I(O) :常電導磁石の静磁場強度H
oと電流iとの関係) 従来の曳ロック方式においては、本来の対象核種とは異
なるサンプルとなる核種を用いているため、常に誤差信
号を検出することが可能であり、常時、帰還回路による
制御が行なえる。
1=fcΔHo)=f(Δω/r) −= (5
) (However, f(I(O): Static magnetic field strength H of the normally conducting magnet
(relationship between o and current i) In the conventional tow-lock method, since a sample nuclide different from the original target nuclide is used, it is possible to always detect an error signal, and the feedback circuit is always used to detect the error signal. Can be controlled.

そして、上記(5)式による計算には静磁場発生装置1
の磁石の形状やコイルの巻き方等に起因する誤差の発生
が考えられる。そこで、周波数個差Δωを検出し静磁場
発生装置1に上記(5)式に基づいて電流として帰還さ
せる場合には、上記誤差要因による精度の低下を避ける
ため連続した帰還動作が必要となシ、上記サンプル核種
の存在が重要となる。しかし、NMR−CT装置として
の操作性等を考慮すると上記サンプル核種の存在は、そ
の核種の保守や被検体2との位置関係等の点で好ましく
ない問題を発生する。
In the calculation using the above equation (5), the static magnetic field generator 1
Errors may be caused by the shape of the magnet, the way the coil is wound, etc. Therefore, when detecting the individual frequency difference Δω and feeding it back to the static magnetic field generator 1 as a current based on the above equation (5), continuous feedback operation is required to avoid a decrease in accuracy due to the above error factors. , the presence of the sample nuclide mentioned above is important. However, considering the operability of the NMR-CT apparatus, the presence of the sample nuclide causes undesirable problems in terms of maintenance of the nuclide, positional relationship with the subject 2, and the like.

これに対して、本実施例では上記(5)式による誤差要
因を無視するため、周阪数偏差Δωを誤差信号としてS
SG 3に直接帰還する。これが本発明の第1の%徴で
ある。このようにすれば、上記(51式による過程を避
けることになシ、誤差要因の混入がないので、常に誤差
信号を検出し帰還することなしに充分な精度を得ること
が可能となる。そこで、本実施し0では上記サンプル核
種を必要とせず、誤差信号を得る対象を被検体2の診断
部位そのものとする。これが本発明の第2の特徴である
。しだがって、例えば撮影直前の静磁’JA )(Oが
印加された状態において周波数個差Δωを検出しそれに
応じてSSG 3を補正制御すればよく、撮影中にΔω
を検出する必要がなく上記サンプル核種も不要であるの
で、NMR−e T装置としてのシーケンス時間には影
響を及ぼすことはない。
On the other hand, in this embodiment, in order to ignore the error factor based on the above equation (5), S
Return directly to SG 3. This is the first % characteristic of the present invention. In this way, since the process according to Equation 51 described above is avoided and no error factors are mixed in, it is possible to obtain sufficient accuracy without constantly detecting and feeding back the error signal. In this embodiment, the sample nuclide described above is not required, and the target for obtaining the error signal is the diagnostic site itself of the subject 2. This is the second feature of the present invention. It is sufficient to detect the frequency individual difference Δω in the state where magnetostatic 'JA) (O is applied and to correct the SSG 3 accordingly.
Since it is not necessary to detect the sample nuclide and the sample nuclide mentioned above is not necessary, the sequence time as an NMR-e T apparatus is not affected.

すなわち、第1図の構成においては、システム制御袈I
t10が周波数分析装置9で得られた周波数偏差Δωの
情報をSSG 3に与え、その結果NMR−CT装置と
しては上記(3)式で決定される角周波数ω0に固定さ
れる。周波数編差Δωが正か負かの判定は位相検波装置
8における検波方式として例えばいわゆる(直交)二位
相検波方式(QD : quadruture det
ecNon )を用いるなどすれば容易に行える。
That is, in the configuration shown in FIG.
At t10, information on the frequency deviation Δω obtained by the frequency analyzer 9 is given to the SSG 3, and as a result, the NMR-CT apparatus is fixed at the angular frequency ω0 determined by the above equation (3). To determine whether the frequency difference Δω is positive or negative, the detection method in the phase detection device 8 is, for example, a so-called (quadrature) two-phase detection method (QD: quadrature detection method).
This can be easily done by using ecNon).

ここで、SSG 3について詳述する。本実施列におい
ては周波数偏差Δωの情報が誤差信号としてSSG 3
に与えられる。この信号は周波数分析(高速フーリエ変
換と考えてもよい)の結果であるので、NMR−CT装
置の効率を考えるとディジタル信号として取扱うことが
有利である。
Here, SSG 3 will be explained in detail. In this implementation, information on the frequency deviation Δω is used as an error signal in SSG 3
given to. Since this signal is the result of frequency analysis (which may be considered as fast Fourier transform), it is advantageous to treat it as a digital signal when considering the efficiency of the NMR-CT apparatus.

これらの点を考慮するとSSG 3としてはいわゆるP
LL (phase 1ocked 1oop )を用
いた周波数シンセサイザによる構成が適している。
Considering these points, the so-called P
A configuration using a frequency synthesizer using LL (phase 1ocked 1oop) is suitable.

PLL周波数シ/セサイザを用いてSSG 3を構成し
た場合の原理構成を第3図に示す。
FIG. 3 shows the basic configuration of the SSG 3 using a PLL frequency synthesizer.

第3図において、31は周波数fcのPLL基準信号を
発生する高安定発振器、32は位相比較器、33はルー
プフィルタとしてのローパスフィルタ、34は入力電圧
Viに応じた周波数f、で発振する電圧制御発振器(以
下1− VCOJと称する)、35は周波数f。の入力
信号を入力情報Δωに応じた1/nなる分周比で分周し
位相比較器32に入力するプログラマブル分周器である
In FIG. 3, 31 is a highly stable oscillator that generates a PLL reference signal of frequency fc, 32 is a phase comparator, 33 is a low-pass filter as a loop filter, and 34 is a voltage that oscillates at a frequency f that corresponds to the input voltage Vi. A controlled oscillator (hereinafter referred to as 1-VCOJ), 35 is the frequency f. This is a programmable frequency divider that frequency-divides the input signal of 1/n at a frequency division ratio of 1/n according to the input information Δω and inputs the result to the phase comparator 32.

動作を簡単に説明すると、位相比較器32に尚安定発振
器3ノおよびプログラマブル分周器35の出力が入力さ
れ、これら両人力の周波数f; 、j’o/nが常に一
致するようにこの閉回路は動作する。したがって、この
回路の出力すなわちVCO34の出力の周波数f。とP
LL基準基準信号周波数表1関係は次式のようになる。
Briefly explaining the operation, the outputs of the stable oscillator 3 and the programmable frequency divider 35 are input to the phase comparator 32, and this closing is performed so that the frequencies f; and j'o/n of these two always match. The circuit works. Therefore, the frequency f of the output of this circuit, that is, the output of the VCO 34. and P
The LL standard reference signal frequency table 1 relationship is as shown in the following equation.

fi = fo/n −’−fo ”’ n−fi    −(6)すなわち
、プログラマブル分周器350分周比1/n 、!: 
PLL基準信号周波数fiによ多出力周波数f。は自由
に設定可能となる。また、出力周波数f。の周波数安定
度は各部の回路定数にもよるが、PLL基準信号を発生
する高安定発振器31の安定度とほぼ同程度まで高める
ことができ、該発振器31として恒温化された水晶発振
器等を用いれば、NMR−CT装置として充分対応でき
る。そこで、周波数分析の結果である周波数偏差Δωに
対応するディジタル誤差信号によってプログラマブル分
周器35の分周設定値nを変化させ静磁場強度Hoの変
動に対応した周波数を出力させる。
fi = fo/n -'-fo ''' n-fi - (6) That is, programmable frequency divider 350 frequency division ratio 1/n,!:
Multiple output frequency f depending on PLL reference signal frequency fi. can be set freely. Also, the output frequency f. Although the frequency stability depends on the circuit constants of each part, it can be increased to almost the same level as the stability of the highly stable oscillator 31 that generates the PLL reference signal, and by using a constant temperature crystal oscillator or the like as the oscillator 31. For example, it can be fully used as an NMR-CT device. Therefore, the frequency division setting value n of the programmable frequency divider 35 is changed by the digital error signal corresponding to the frequency deviation Δω which is the result of frequency analysis, and a frequency corresponding to the fluctuation of the static magnetic field strength Ho is outputted.

第3図の構成は最も基本的なもので、周波数の可変ステ
ップや周波数安定度の要求によ多若千の構成の変形があ
るが、PLLシンセサイデを用いた構成は基本的にはこ
れと同様である。この場合、SSG 3の周波数可変ス
テップは周波数分析の分解能と同程度のステップが必要
である。
The configuration shown in Figure 3 is the most basic one, and although there are variations of the configuration depending on frequency variable steps and frequency stability requirements, configurations using PLL synthesizers are basically the same. It is. In this case, the frequency variable step of SSG 3 requires a step comparable to the resolution of frequency analysis.

さらに信号伝達の効率を考慮すると出力波形は正弦波と
するのが適当であると考えられる。
Furthermore, considering the efficiency of signal transmission, it is considered appropriate that the output waveform be a sine wave.

次に、周波数偏差Δωの求め方について説明する。Next, how to obtain the frequency deviation Δω will be explained.

第4図に周波数偏差Δωを求めるだめのタイミングシー
ケンスを示す。
FIG. 4 shows a timing sequence for determining the frequency deviation Δω.

第4図に示すように励起パルスH1として90°パルス
(θ=π/2となるような高周波励起パルス)を静磁場
Ho中の被検体2に印力財すれば、直後にFID 1ま
たはFID2のようなFID信号を観測できる。FID
lはωr’6ω0の場合のFID信号の一例であシ、F
ID2はωr−ω0の場合のFID信号である。これら
FID信号信号D、およびFID2の周波数スペクトラ
ムはそれぞれ第5図に示すようになシ、FIDlの周波
数スペクトラムには原点から周波数偏差Δωだけずれた
位置にスペクトルがあられれ、FID2の周波数スペク
トラムではス被りトル位置が原点に一致している。
As shown in Fig. 4, if a 90° pulse (high frequency excitation pulse such that θ = π/2) is applied as the excitation pulse H1 to the subject 2 in the static magnetic field Ho, immediately FID 1 or FID 2 FID signals like this can be observed. F.I.D.
l is an example of the FID signal in the case of ωr'6ω0, and F
ID2 is the FID signal in the case of ωr-ω0. The frequency spectra of these FID signals D and FID2 are as shown in FIG. The overlap torque position matches the origin.

これよシ、上述した本実施例の原理が容易に理解できる
Thus, the principle of this embodiment described above can be easily understood.

FID信号の検出の際、900パルスによる検出系の増
幅器の飽和による誤差および平均加算法によるS/N 
(信号対雑音比)の向上、さらには磁場の不均一性によ
る信号減衰の影響を避けるために、多くのNMR装置で
はNMRエコーと呼ばれる信号を計測する。本実節レリ
においてもエコー信号を利用することはできる。この場
合のタイミングシーケンスを第6図に示す。
When detecting FID signals, errors due to saturation of the detection system amplifier due to 900 pulses and S/N due to the average addition method
In order to improve the signal-to-noise ratio (signal-to-noise ratio) and to avoid the effects of signal attenuation due to magnetic field inhomogeneity, many NMR devices measure signals called NMR echoes. The echo signal can also be used in this actual model. The timing sequence in this case is shown in FIG.

静磁場Ho中の被検体2に、第6図に示すように90°
Aルスを印加した後、180°/(’ルス(θ=πとな
るような高周阪励起パルス)を印加し、その後に得られ
るエコー信号をFID信号の場合と同様に周波数分析を
行うことにより、周波数偏差Δωを決定することができ
る。この場合、第1エコーと第2エコーを平均加算する
ことによ、? S/Nは向上する。
The object 2 in the static magnetic field Ho is placed at 90° as shown in Fig. 6.
After applying the A pulse, apply the 180°/(' pulse (high frequency excitation pulse such that θ = π), and perform frequency analysis on the echo signal obtained after that in the same way as for the FID signal. Accordingly, the frequency deviation Δω can be determined. In this case, by averaging the first echo and the second echo, the S/N can be improved.

また、第4図、第6図において、時刻t8から始まる一
連のシーケンスを第1シーケンス、時刻tbから始まる
シーケンスを第2シーケンスすれば、第1シーケンスで
充分なS/Nが得られない場合には第2シーケンス以降
のシーケンスを逐次線シ返し平均加算することによps
/Nが改善され、周波数偏差Δωの検定、周波数制御の
精度が向上する。
In addition, in FIGS. 4 and 6, if a series of sequences starting from time t8 is used as the first sequence, and a sequence starting from time tb is used as the second sequence, it is possible to solve the problem when a sufficient S/N cannot be obtained with the first sequence. ps is calculated by sequentially repeating and averaging the sequences after the second sequence.
/N is improved, and the accuracy of frequency deviation Δω verification and frequency control is improved.

なお、FID信号を検出するか、エコー信号を検出する
かについては、本発明についても一般のパルス沃と同様
に、各方式にょるS/Nや、上記(2)式におけるθの
π/2とのずれをΔθとすると180°パルスを用いる
場合はその誤差が31θとなることなどを考慮して決定
すべきであり、本発明において特に制限するものではな
い。
Note that whether to detect the FID signal or the echo signal depends on the S/N of each method and π/2 of θ in the above equation (2), as in the case of general pulse detection. If the deviation from Δθ is Δθ, the error should be determined in consideration of the fact that when a 180° pulse is used, the error will be 31θ, and this is not particularly limited in the present invention.

次に、静磁場発生装置1について詳述する。Next, the static magnetic field generator 1 will be explained in detail.

静磁場発生装置1としては空心超電導磁石を用いてもよ
いのはもちろんであるが、空心超電導磁石を用いるのも
有効である。
Of course, an air-core superconducting magnet may be used as the static magnetic field generator 1, but it is also effective to use an air-core superconducting magnet.

空心超電導磁石を用いた場合、先に述べたように永久モ
ード(永久電流状態)での動作中は、電流を制御しよう
とするならば一旦永久モードを解除して電流の調整を行
わねばならず、空心超電導磁石の特徴を活かすことかで
きなくなるので、亀流唾を誤差信号によシ調整すること
は望ましくない。また、静磁場発生装置1に空心超電導
磁石を用いた場合の静磁場強度noを制御する他の方法
としては、空心超電導磁石のまわりに補償用コイルを巻
き、そのコイルの電流値を調整するようにするととも考
えられる。しかし、この場合は補償用コイル、さらにコ
イル駆動のだめの定電流源が別途に必要となシ、構成が
複雑化する。
When using an air-core superconducting magnet, as mentioned earlier, while operating in permanent mode (persistent current state), if you want to control the current, you must cancel the permanent mode and adjust the current. It is not desirable to adjust the flow rate using an error signal, since the characteristics of the air-core superconducting magnet cannot be fully utilized. Another method for controlling the static magnetic field strength no when an air-core superconducting magnet is used in the static magnetic field generator 1 is to wind a compensation coil around the air-core superconducting magnet and adjust the current value of the coil. It is also possible to make it . However, in this case, a compensating coil and a constant current source for driving the coil are separately required, and the configuration becomes complicated.

これに対し、本実施例のようにすれば、上述のような外
部装置を必要とせず、さらに補正制呻のシーケンスも空
心常電導磁石を用いる場合と全く同様でよいので、超電
導磁石の特徴を活かしながら装置の構成を複雑化するこ
となく撮像の精度ひいては診断の精度を一層向上させる
ことが可能であAへ とのように空心超伝導磁石を用いた場合の効果r概算に
よシ説明すると次のようになる。   ′5000 G
aussの磁場を発生し得る超電導磁石を考え、永久モ
ードでの磁場の変化を0.lppm/hとし、さらにM
侃−CT装置の稼動時間を8h/dayとすると、磁場
の変動は4mGauss/dayとなる。計測対象核種
をプロトンと仮定すれば、周波数の変動は約17.0 
Hz/dayとなシ、周波数分析の分解能を20.0 
Hzとすると、超電導磁石の永久モードを解除して調整
を行なう方式では毎日永久モードを解除して電流値を調
整しなければならない。とれに対して本実施例方式を適
用した場合、信号増幅部における同調部の半値幅を14
1.9kHz(Q=150)とし、許容可変範囲を約7
1 kHzとすると、(71X10’/17−)約41
76 dayは永久モードの解除が不要となる。この場
合励起パルスH。
On the other hand, if this embodiment is used, the above-mentioned external device is not required, and the corrective damping sequence can be exactly the same as when using an air-core normal-conducting magnet. It is possible to further improve the accuracy of imaging and, in turn, the accuracy of diagnosis, without complicating the configuration of the device. It will look like this: '5000 G
Considering a superconducting magnet that can generate an auss magnetic field, we assume that the change in the magnetic field in the permanent mode is 0. lppm/h, and further M
If the operating time of the CT apparatus is 8 h/day, the fluctuation of the magnetic field will be 4 mGauss/day. Assuming that the nuclide to be measured is a proton, the frequency fluctuation is approximately 17.0
Hz/day, frequency analysis resolution 20.0
If it is Hz, then in the method of canceling the permanent mode of the superconducting magnet and making adjustments, the permanent mode must be canceled every day to adjust the current value. When the method of this embodiment is applied to this problem, the half width of the tuning section in the signal amplification section is
1.9kHz (Q=150), and the allowable variable range is approximately 7
If it is 1 kHz, (71X10'/17-) approximately 41
After 76 days, it is not necessary to cancel the permanent mode. In this case the excitation pulse H.

のノ々ルス幅による周波数スイクトラムの広がシや冷却
液の蒸発等の影響を考慮すると上述の永久モードの解除
不要期間は短くなるととが考えられる。しかしながら、
それらの影響を考慮しても本実施例方式を超電導磁石に
適用すれば、超電導磁石の特徴の一つである[永久モー
ドでの動作中は静磁場強度が安定し且つ電流値の補償が
不要である」という利点を光分に活かせるということは
明らかである。
It is thought that the above-mentioned period during which the permanent mode does not need to be released will be shortened, considering the spread of the frequency sic trams due to the nollus width and the effects of evaporation of the coolant. however,
Even if these effects are considered, if the method of this embodiment is applied to a superconducting magnet, one of the characteristics of a superconducting magnet [during permanent mode operation, the static magnetic field strength is stable and there is no need to compensate for the current value] It is clear that this advantage can be utilized for light.

上述のように、従来のNMI七ロック方式をNMR−C
T装置に通用した場合は、被検体とは異なる位置に計測
対象とは別のサンプル核種等を設ける必要カニあシ、操
作性が制限される。また、計測対象(被検体)からの信
号を何らかの方法によって誤差信号として静磁場発生装
置に帰還する方式では操作性は改碧されるが常に帰還を
かけることはできないので、その調整にかかわる。A差
要因による誤差が生じる。さらに静tS揚発生装置にを
6超電導磁石を用いる場合は、これに対し、本実施例に
よれば、仮検体(計測対象)からのNMR信号を撮像直
前などの都合の艮いタイミングで周波数分析しその結果
を誤差信号としてSSGに直接的に帰還することによシ
、静磁場強度等の変動にSSGの周波数をイ青度よく追
従させることができる。したがって、NMR−CT装置
の操作性を損なうことなく、誤差の要因を少くすること
ができ、撮像鞘就ひいては診断積置の向上が実現できる
。また、従来のNMR−CT装置の制御シーケンス等を
充分に活用でき大きな変更なくオロ用することができる
As mentioned above, the conventional NMI seven-lock system can be replaced with NMR-C.
If it is applicable to the T device, it is necessary to provide a sample nuclide other than the measurement target at a position different from the subject, and operability is limited. Further, in a method in which the signal from the measurement target (subject) is returned to the static magnetic field generator as an error signal by some method, the operability is improved, but feedback cannot always be applied, so adjustment is involved. An error occurs due to the A difference factor. Furthermore, when a 6 superconducting magnet is used in the static tS lift generator, in contrast, according to this embodiment, the NMR signal from the temporary specimen (measurement target) is frequency-analyzed at a convenient timing, such as immediately before imaging. By directly feeding back the result to the SSG as an error signal, the frequency of the SSG can be made to closely follow fluctuations in the static magnetic field strength, etc. Therefore, it is possible to reduce the causes of errors without impairing the operability of the NMR-CT apparatus, and it is possible to improve the imaging efficiency and, in turn, the diagnostic stacking. Further, the control sequence of the conventional NMR-CT apparatus can be fully utilized and can be used without major changes.

さらに空に超電導磁石をNR4R−CT装置に用いる場
合には、SSGによシ靜磁場変動を補償するので永久モ
ードを解除する必要がなく、しかも補償コイル等の外部
装置をわざわざ設ける必要もない。
Furthermore, when a superconducting magnet is used in an NR4R-CT device, there is no need to cancel the permanent mode because the SSG compensates for static magnetic field fluctuations, and there is no need to take the trouble to provide an external device such as a compensation coil.

なお、本発明は上述し且つ図面に示す実施例にのみ限定
されることなく、その費旨tv史しl+/′1純囲内に
おいて種々変形して夾施することができる。
It should be noted that the present invention is not limited to the embodiments described above and shown in the drawings, but can be implemented with various modifications within the scope of the invention.

向えば周波数分析装置9、システム制御装備10等の愼
n目を画像再構成用の電子計初、様でソフトウエア処理
によシ実現するようにしてもよい0 さらに、有磁場に傾斜磁場を重畳することによシ、7#
磁場中の領域を限定し堝・定頑域における周波数偏差を
補償するようにしてもよい。
For example, the components of the frequency analyzer 9, system control equipment 10, etc. may be implemented using an electronic instrument for image reconstruction, and may also be realized by software processing. It is good to superimpose, 7#
It is also possible to limit the region in the magnetic field and compensate for frequency deviations in the stable and stable regions.

まだ、補正制御を行なうタイミングも本来のNMR映像
の撮像前に限らず、撮像後や撮像中等に必要に応じて行
なってもよい。
However, the timing for performing the correction control is not limited to before the original NMR image is taken, but may be performed after the image is taken or during the image taking as necessary.

〔発明の効果〕 本発明によれば、計測対象と異なる核種を用いることな
くしかも静磁場を制御せずに静磁場変動等による共鳴周
波数と基準周波数との偏差を補償し、高84を朋に且つ
高効率でNMR映像を得ることの可能な曳映像装置を提
供することができる。
[Effects of the Invention] According to the present invention, it is possible to compensate for the deviation between the resonance frequency and the reference frequency due to fluctuations in the static magnetic field, etc., without using a nuclide different from that of the measurement target, and without controlling the static magnetic field. In addition, it is possible to provide an image capture device that can obtain NMR images with high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示すブロック図、第
2図は同実施例を説明するだめの回転座標系における励
起パルスH1による磁化ベクトルの動きを示す図、第3
図は同実施夕uにおける基準信号発生装置にPLLシン
セサイザ方式を採用した場合の構成の一クリを示すブロ
ック図、第4図は同笑施IZIJにおける励起−Δω検
出のシーケンスの一列(FID信号を利用する場合)を
示すタイミングチャート、第5図は同列における周波数
スペクトラムの列を示す図、第6図は同実施列における
励起−Δω検出のシーケンスの他の一列(エコー信号を
利用する場合)を示すタイミングチャートである。 1・・・静磁場発生装置、3・・・基準信号発生装置(
SSG)、4・・・励起パルス発生部、5・・・トラン
スミツタコイル、6・・・レシーバコイル、7・・・低
雑音増幅器、8・・・位相検波装置、9・・・周波数分
析装置、10・・・システム制御装置。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a diagram showing the movement of the magnetization vector due to the excitation pulse H1 in a rotating coordinate system for explaining the embodiment, and FIG.
The figure is a block diagram showing the configuration when the PLL synthesizer method is adopted as the reference signal generation device in the same implementation, and Figure 4 is a sequence of excitation-Δω detection sequences (FID signal Fig. 5 is a timing chart showing the sequence of frequency spectra in the same column, and Fig. 6 is a timing chart showing the sequence of excitation-Δω detection in the same column (in the case of using an echo signal). FIG. 1... Static magnetic field generator, 3... Reference signal generator (
SSG), 4... Excitation pulse generator, 5... Transmitter coil, 6... Receiver coil, 7... Low noise amplifier, 8... Phase detector, 9... Frequency analyzer , 10... system control device.

Claims (2)

【特許請求の範囲】[Claims] (1)被検体に核磁気共鳴現象を生ぜしめ、誘起された
核磁気共鳴信号を検出して、被検体中の成る特定の原子
核のスピン密度および緩和時間定数の少なくとも一方の
反映された画像情報を得る核磁気共鳴映像装置において
、被検体に印加するためほぼ撮像領域全域にわたって均
一な一様静磁場を発生する静磁場発生装置と、対象原子
核種に応じた周波数の基準信号を発生し且つ、該発生周
波数の調整制御を可能とした基準信号発生器と、この基
準信号発生器の基準信号出力に基づいて核磁気共鳴励起
用の高周波励起信号を形成し被検体に印加する励起信号
印加装置と、被検体に誘起された核磁気共鳴信号を受信
検波する受信検波装置と、上記静磁場発生装置を動作さ
せておいて上記励起信号印加装置を付勢する第1の制御
手段と、上記受信検波装置で検波された核磁気共鳴信号
を周波数分析し上記第1の制御手段によシ上記一様静磁
場中の被検体に上記励起信号を印加させた際の上記基準
周波数と共鳴周波数との周波数偏差を求める周波数分析
手段と、この手段で得た上記周波数偏差に応じて上記基
準信号発生器を制御し該周波数偏差を補正する第2の制
御手段とを具備したことを特徴とする核磁気共鳴映像装
置。
(1) Generate a nuclear magnetic resonance phenomenon in the specimen, detect the induced nuclear magnetic resonance signal, and obtain image information that reflects at least one of the spin density and relaxation time constant of a specific atomic nucleus in the specimen. A nuclear magnetic resonance imaging apparatus for obtaining a magnetic resonance imaging apparatus includes a static magnetic field generator that generates a uniform static magnetic field over substantially the entire imaging area to be applied to a subject, a reference signal having a frequency corresponding to the target atomic nuclide, and a reference signal generator capable of adjusting and controlling the generated frequency; and an excitation signal applying device that forms a high-frequency excitation signal for nuclear magnetic resonance excitation based on the reference signal output of the reference signal generator and applies it to a subject. , a receiving and detecting device that receives and detects nuclear magnetic resonance signals induced in the subject; a first control means that operates the static magnetic field generator and energizes the excitation signal applying device; and the receiving and detecting device. The frequency between the reference frequency and the resonance frequency when the nuclear magnetic resonance signal detected by the device is frequency-analyzed and the excitation signal is applied to the subject in the uniform static magnetic field by the first control means. Nuclear magnetic resonance characterized by comprising a frequency analysis means for determining the deviation, and a second control means for controlling the reference signal generator according to the frequency deviation obtained by this means and correcting the frequency deviation. Video equipment.
(2)静磁場発生装置は空心超電導磁石を用いて構成し
たことを特徴とする特許請求の範囲第1項記載の核磁気
共鳴映像装置。
(2) The nuclear magnetic resonance imaging apparatus according to claim 1, wherein the static magnetic field generator is constructed using an air-core superconducting magnet.
JP58076427A 1983-04-30 1983-04-30 Nuclear magnetic resonance video apparatus Granted JPS59202050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58076427A JPS59202050A (en) 1983-04-30 1983-04-30 Nuclear magnetic resonance video apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58076427A JPS59202050A (en) 1983-04-30 1983-04-30 Nuclear magnetic resonance video apparatus

Publications (2)

Publication Number Publication Date
JPS59202050A true JPS59202050A (en) 1984-11-15
JPH0250730B2 JPH0250730B2 (en) 1990-11-05

Family

ID=13604868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58076427A Granted JPS59202050A (en) 1983-04-30 1983-04-30 Nuclear magnetic resonance video apparatus

Country Status (1)

Country Link
JP (1) JPS59202050A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63109849A (en) * 1986-10-29 1988-05-14 株式会社日立メディコ Nmr imaging apparatus
EP0337588A2 (en) * 1988-04-14 1989-10-18 The Regents Of The University Of California MRI compensated for spurious NMR frequency/phase shifts caused by spurious changes in magnetic fields during NMR data measurement processes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117692A (en) * 1975-03-18 1976-10-15 Varian Associates Gyromagnetic resonance fourie transform zeugmatography

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117692A (en) * 1975-03-18 1976-10-15 Varian Associates Gyromagnetic resonance fourie transform zeugmatography

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63109849A (en) * 1986-10-29 1988-05-14 株式会社日立メディコ Nmr imaging apparatus
JPH0580904B2 (en) * 1986-10-29 1993-11-10 Hitachi Medical Corp
EP0337588A2 (en) * 1988-04-14 1989-10-18 The Regents Of The University Of California MRI compensated for spurious NMR frequency/phase shifts caused by spurious changes in magnetic fields during NMR data measurement processes

Also Published As

Publication number Publication date
JPH0250730B2 (en) 1990-11-05

Similar Documents

Publication Publication Date Title
JP4544443B2 (en) Field frequency lock system for magnetic resonance systems
US4297637A (en) Method and apparatus for mapping lines of nuclear density within an object using nuclear magnetic resonance
US4623844A (en) NMR inhomogeneity compensation system
US7689262B2 (en) Method and magnetic resonance tomography apparatus for correcting changes in the basic magnetic field
JPH0616756B2 (en) Decomposition method of NMR image by chemical species
JPH03182231A (en) Method and instrument for deciding spatial change of magnetic field strength
JPS60222044A (en) Diagnostic method and apparatus by nuclear magnetic resonance
JP2007517571A (en) Magnetic resonance imaging method and apparatus using real-time magnetic field mapping
JPH1176193A (en) Magnetic resonance imaging
US10989778B1 (en) Method for measuring NMR-data of a target sample in an NMR spectrometer and NMR spectrometer
US4644473A (en) Correction circuit for a static magnetic field of an NMR apparatus and NMR apparatus for utilizing the same
JPH03218733A (en) Magnetic resonance imaging device
JPS59202050A (en) Nuclear magnetic resonance video apparatus
JPH0687845B2 (en) Method and apparatus for phase correction of magnetic resonance inversion recovery image
JPH02171645A (en) Magnetoresonance spectral analysis method and apparatus
JPH01141656A (en) Method for correcting magnetic field drift of nmr imaging apparatus
JP3167038B2 (en) Magnetic resonance imaging equipment
JPS6123953A (en) Nuclear magnetic resonance device
JPS60146140A (en) Method and apparatus of inspection using nuclear magnetic resonance
JP2677063B2 (en) MR device
JPH03289939A (en) Rf automatic adjusting method for mri
JPH0436813Y2 (en)
JPS6363441A (en) Nuclear magnetic resonance image pickup apparatus
JPH11235324A (en) Magnetic resonance imaging device
JPS59160443A (en) Nuclear magnetic resonance ct apparatus