JPS612047A - Nuclear magnetic resonator device - Google Patents

Nuclear magnetic resonator device

Info

Publication number
JPS612047A
JPS612047A JP59123397A JP12339784A JPS612047A JP S612047 A JPS612047 A JP S612047A JP 59123397 A JP59123397 A JP 59123397A JP 12339784 A JP12339784 A JP 12339784A JP S612047 A JPS612047 A JP S612047A
Authority
JP
Japan
Prior art keywords
magnetic field
frequency
variation
observation
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59123397A
Other languages
Japanese (ja)
Inventor
Keiji Eguchi
江口 恵二
Soichi Nagai
荘一 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP59123397A priority Critical patent/JPS612047A/en
Publication of JPS612047A publication Critical patent/JPS612047A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/24Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To correct the variation of a magnetic field at a rapid response speed by measuring the variation of a static magnetic field and correcting high frequency for observation on the basis of the measured result so that a constant resonance condition is kept. CONSTITUTION:The high frequency generated in an oscillator 5 is supplied to a transmitting/receiving coil 2 as a high frequency pulse through a gate 6 and an amplifier 7 to irradiate an object to be observed as a high frequency pulse magnetic field through the coil 2. A resonance signal induced in the coil 2 is extracted through a gate 8 and an amplifier 9. Since the intensity of a static magnetic field corresponds to the frequency of the high frequency magnetic field at the rate of 1 to 1 in the nuclear magnetic resonance condition, the variation of the frequency of the high frequency magnetic field is found out by detecting the variation of the magnetic field intensity and the resonance condition can be kept always constant by correcting the frequency variation of the observing high frequency. Therefore, a conversion table from the variation of the magnetic field intensity to that of the frequency is previously stored in a correcting circuit 15, and at the variation of the magnetic field intensity, frequency variation corresponding to said variation is fed back to the oscillator 5. Consequently, the oscillation frequency is immediately corrected and the variation of the magnetic field is corrected.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、静磁場の変動による悪影響を除くことのでき
るNMR装置に関するものであり、特に超伝導磁石を用
いたNMR映像装置に用いて好適である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an NMR device that can eliminate the adverse effects of static magnetic field fluctuations, and is particularly suitable for use in an NMR imaging device using a superconducting magnet. It is.

し従来の技術] NMR装置に用いられる静磁場には高い磁場安定度が要
求され、磁場安定化手段が設けられるのが普通である。
[Prior Art] A static magnetic field used in an NMR apparatus is required to have high magnetic field stability, and a magnetic field stabilizing means is usually provided.

この磁場安定化手段としては、静磁場内に配置される磁
場安定化用の基準試料に核磁気共鳴を起こさせ、その共
鳴信号の変化によって静磁場の変動を検出し、検出信号
に基づいて静磁場強度を制御する所謂NMRロック技術
が広く用いられている。
This magnetic field stabilization means causes a reference sample for magnetic field stabilization placed in a static magnetic field to cause nuclear magnetic resonance, detects fluctuations in the static magnetic field based on changes in the resonance signal, and uses the detection signal to detect static magnetic resonance. The so-called NMR locking technique, which controls the magnetic field strength, is widely used.

[発明が解決しようとする問題点] このような従来技術では、静磁場の強度を制御するため
、応答速度に難がある。又、静磁場を発生する手段とし
て超伝導磁石を用いたNMR装置では、静磁場強度が時
間の経過に従って大幅にずれて静磁場の補正可能な範囲
から外れてしまい、安定化されないといった問題点もあ
る。
[Problems to be Solved by the Invention] In such conventional techniques, since the strength of the static magnetic field is controlled, there is a problem in response speed. In addition, NMR devices that use superconducting magnets as a means of generating a static magnetic field have the problem that the static magnetic field strength deviates significantly over time, leaving the range in which the static magnetic field can be corrected, and is not stabilized. be.

[問題点を解決するための手段] 本発明は、この点に鑑みてなされたものであり、観測核
の共鳴周波数を持つ観測用高周波を静磁場中の観測対象
にパルス的に繰返し照射し、照射後に生じる自由誘導減
衰信号を繰返し検出するようにした核磁気共鳴装置にお
いて、前記観測対象近傍の静磁場内に配置される前記観
測核を含む基準試料と、該基準試料に近接して配置され
る基準試料用送信コイルと、自由誘導減衰信号検出接法
の高周波パルスが観測対象に照射されるまでの間に前記
観測用高周波を前記基準試料用送信コイルへ供給するた
めの手段と、基準試料からの共鳴信号を受信するための
基準試料用受信コイルと、該基準試料用受信コイルから
得られる共鳴信号に基づいて静磁場強度の変動を検出す
るための手段と、該検出手段から得られる検出信号に基
づいて前記観測用高周波の周波数を変化させるための手
段とを設けることにより上記問題点を解決している。
[Means for Solving the Problems] The present invention has been made in view of this point, and involves repeatedly irradiating an observation target in a static magnetic field in a pulsed manner with an observation high frequency wave having the resonance frequency of the observation nucleus. In a nuclear magnetic resonance apparatus configured to repeatedly detect a free induction decay signal generated after irradiation, a reference sample containing the observation nucleus is placed in a static magnetic field near the observation object, and a reference sample is placed close to the reference sample. a reference sample transmitting coil; a means for supplying the observation high frequency wave to the reference sample transmitting coil until the high frequency pulse of the free induction attenuation signal detection method is irradiated to the observation target; a reference sample receiving coil for receiving a resonance signal from the reference sample receiving coil, a means for detecting a variation in static magnetic field strength based on the resonance signal obtained from the reference sample receiving coil, and a detection obtained from the detecting means. The above problem is solved by providing means for changing the frequency of the observation high frequency wave based on the signal.

以下、図面を用いて本発明を詳説する。Hereinafter, the present invention will be explained in detail using the drawings.

[実施例] 第1図は本発明の一実施例の構成を示すブロック図であ
り、図において1は静磁場を発生するための超伝導磁石
である。その静磁場内には観測用送受信コイル2.小さ
な試料管内に封入された基準試料3.該基準試料の周囲
に巻回された補正用送受信コイル4が配置されている。
[Embodiment] FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention. In the figure, 1 is a superconducting magnet for generating a static magnetic field. Inside the static magnetic field is an observation transmitter/receiver coil 2. Reference sample enclosed in a small sample tube 3. A correction transmitting/receiving coil 4 wound around the reference sample is arranged.

5は観測核の共鳴周波数を持つ高周波を発生する発振器
で、該発振器5からの高周波はゲート6及び観測用電力
増幅器7を介して前記送受信コイル2へ高周波パルスと
して供給され、該送受信コイルを介して観測対象へ高周
波パルス磁場として照射される。該高周波パルス照射後
送受信コイル2に誘起された共鳴信号はゲート8を介し
て取出され、増幅器9を介して図示しない受信回路へ送
られる。
Reference numeral 5 denotes an oscillator that generates a high frequency wave having a resonant frequency of the observation nucleus.The high frequency wave from the oscillator 5 is supplied as a high frequency pulse to the transmitting/receiving coil 2 via a gate 6 and an observation power amplifier 7, and is then transmitted through the transmitting/receiving coil. A high-frequency pulsed magnetic field is irradiated onto the observation target. After the high-frequency pulse irradiation, the resonance signal induced in the transmitting/receiving coil 2 is extracted through a gate 8 and sent through an amplifier 9 to a receiving circuit (not shown).

又、前記発振器5から発生する高周波は、1回の観測が
終了し、次の観測が開始されるまでの期間にゲート10
及び電力増幅器11を介して前記送受信コイル4へ供給
され、該送受信コイル4を介して基準試料3へ照射され
る。該高周波照射に伴って送受信コイル4に誘起された
共鳴信号は、ゲート12.増幅器13.復調回路14を
介して分散波形信号として取出され、補正回路15へ送
られる。該補正回路15は該共鳴信号に基づいて周波数
オフセット信号を発生し、前記発振器5へ送る。16は
前記ゲート6.8.10.12の0N−OFFを制御す
る制御回路である。
Furthermore, the high frequency generated from the oscillator 5 is transmitted to the gate 10 during the period from the end of one observation to the start of the next observation.
The light is supplied to the transmitter/receiver coil 4 via the power amplifier 11, and is irradiated onto the reference sample 3 via the transmitter/receiver coil 4. The resonance signal induced in the transmitter/receiver coil 4 due to the high frequency irradiation is transmitted to the gate 12 . Amplifier 13. It is extracted as a dispersed waveform signal via the demodulation circuit 14 and sent to the correction circuit 15. The correction circuit 15 generates a frequency offset signal based on the resonance signal and sends it to the oscillator 5. 16 is a control circuit that controls ON-OFF of the gates 6.8.10.12.

上述の如き構成において、制御回路16はゲート6を第
2図(a)に示すタイミングで0N−OFFするため、
短いパルス幅を持った観測パルスが例えば2秒程度の間
隔で取出され、観測対象に照射される。そして、該観測
パルス照射後に送受信コイル2に誘起されるFID信号
は第2図(b)のタイミングでONになるゲート8を介
して取出され、受信回路へ送られる。
In the above configuration, the control circuit 16 turns the gate 6 ON-OFF at the timing shown in FIG. 2(a).
Observation pulses with a short pulse width are taken out at intervals of, for example, about 2 seconds, and are irradiated onto the observation target. After the observation pulse is irradiated, the FID signal induced in the transmitting/receiving coil 2 is taken out via the gate 8 which is turned on at the timing shown in FIG. 2(b) and sent to the receiving circuit.

そして、該ゲート8がOFFになって観測期間TSが終
了し、次の観測が始まるまでの期間TLに磁場強痘の変
動が以下のようにして測定される。
Then, during the period TL from when the gate 8 is turned OFF and the observation period TS ends to when the next observation starts, the fluctuation of the magnetic field strength is measured as follows.

即ら、該期間TL内にゲート10は第2図(C)のタイ
ミングで短い周期でO’1l−OFFされ、一方、ゲー
ト12はそれと反対に第2図(d)のタイミングでON
 −0’F Fされる。従って、ゲート10がONの期
間には高周波パルスが基準試料3へ照射され、ゲート1
2がONの期間には送受信コイル4に誘起された共鳴信
号が該ゲート12を介して取出され、高周波の照射と共
鳴信号の検出がタイムシェアリングで行われることにな
る。
That is, during the period TL, the gate 10 is turned OFF in a short cycle at the timing shown in FIG. 2(C), and on the other hand, the gate 12 is turned ON at the timing shown in FIG. 2(d).
-0'FF F is applied. Therefore, during the period when the gate 10 is ON, a high frequency pulse is irradiated to the reference sample 3, and the gate 1
2 is ON, a resonance signal induced in the transmitting/receiving coil 4 is extracted through the gate 12, and high frequency irradiation and detection of the resonance signal are performed by time sharing.

このようにしてタイムシェアリング的に検出された共鳴
信号は、第3図に示す分散波形上のどこに現在の共鳴点
があるかを示す直流信号であり、静磁場の強度が何等か
の原因で変動すると、その磁場強度に応じて信号強度が
変わるため、磁場強度の変動を検出することができる。
The resonance signal detected in a time-sharing manner in this way is a DC signal that indicates where the current resonance point is on the dispersion waveform shown in Figure 3, and it is determined that the strength of the static magnetic field is due to some reason. When the magnetic field strength fluctuates, the signal strength changes depending on the magnetic field strength, so it is possible to detect fluctuations in the magnetic field strength.

ところで、核磁気共鳴の条件は、静磁場強度を1」、高
周波磁場の周波数をf、観測核の磁気回転比をγとした
時、2πf−γHと表わされ、静磁場強度と高周波磁場
の周波数とは1対1で対応している。そのため、このよ
うにして磁場強度の変動ΔHが検出できれば、2π(f
+八へ)−γ(H+八へ)を成立させるΔfがΔf=γ
ΔH/2πとして即座に求めることができ、観測用の高
周波の周波数をその八fだけ補正してやれば、共鳴条件
は常に一定に維持されることになる。
By the way, the conditions for nuclear magnetic resonance are expressed as 2πf-γH, where the static magnetic field strength is 1'', the frequency of the high-frequency magnetic field is f, and the gyromagnetic ratio of the observed nucleus is γ, which is the relationship between the static magnetic field strength and the high-frequency magnetic field. There is a one-to-one correspondence with the frequency. Therefore, if the fluctuation ΔH of the magnetic field strength can be detected in this way, 2π(f
Δf that establishes -γ (to H+8) is Δf=γ
It can be immediately obtained as ΔH/2π, and by correcting the frequency of the high frequency for observation by 8f, the resonance condition will always be maintained constant.

そこで、補正回路15にはΔH(実際には共鳴信号強度
)からΔfへの予め求めた変換テーブルが記憶されてお
り、該補正回路15はタイムシェアリング的に検出され
た最後の時点の共鳴信号強度に着目し、その共鳴信号強
度に対応した補正量Δfを変換テーブルから求め、求め
たΔfを指定する信号を次の観測が行われる直前の第2
図(e)に示すタイミングで前記発振器5へ送る。該発
振器5はそれに基づき発振周波数を即座に八fだけ変化
させるため、磁場強度が変動した場合であっても、次の
観測は補正された周波数の高周波を用いて行われること
になる。
Therefore, the correction circuit 15 stores a predetermined conversion table from ΔH (actually resonance signal intensity) to Δf, and the correction circuit 15 stores the resonance signal at the last point detected in a time-sharing manner. Focusing on the intensity, the correction amount Δf corresponding to the resonance signal intensity is determined from the conversion table, and the signal specifying the determined Δf is used as the second signal immediately before the next observation.
The signal is sent to the oscillator 5 at the timing shown in FIG. Since the oscillator 5 immediately changes the oscillation frequency by 8 f based on this, even if the magnetic field strength fluctuates, the next observation will be performed using the corrected high frequency.

尚、上述した実施例では基準試料に対する高周波の照射
と共鳴信号の検出をタイムシェアリング的に繰返し行っ
たが、必ずしもその必要はなく、例えば第2図(f)、
(Q)に示すようなタイミングでゲート10.12を夫
々0N−OFFL、、でも良い。この場合には基準試料
に対する高周波パルスの照射が1回行われ、その直後に
共鳴信号の検出も1回行われる。この時得られる共鳴信
号は、自由誘導減衰信号となるため、補正回路15内に
おいてフーリエ変換を行い、周波数領域の信号に変換す
ることが必要となる。
Incidentally, in the above-mentioned embodiment, the irradiation of the reference sample with high frequency and the detection of the resonance signal were repeated in a time-sharing manner, but this is not necessarily necessary; for example, as shown in FIG. 2(f),
The gates 10 and 12 may be turned ON-OFF at the timing shown in (Q). In this case, the reference sample is irradiated with the high-frequency pulse once, and immediately after that, the resonance signal is detected once. Since the resonance signal obtained at this time becomes a free induction attenuation signal, it is necessary to perform Fourier transformation in the correction circuit 15 to convert it into a frequency domain signal.

[効果] 以上群)ホした如く本発明によれば、基準試料を用いて
観−測期間以外に静磁場の変動を測定し、その結果に基
づいて観測用高周波の周波数を補正して共鳴条件を一定
に保っているため、極めて速い応答速度で磁場変動によ
る悪影響を補正することができる。
[Effects] As mentioned above, according to the present invention, fluctuations in the static magnetic field are measured using a reference sample during periods other than the observation period, and based on the results, the frequency of the observation high frequency is corrected to adjust the resonance condition. Since it is kept constant, it is possible to correct the adverse effects of magnetic field fluctuations with an extremely fast response speed.

又、静磁場の調整可変範囲は極めて狭いが、周波数の可
変範囲は大きくとることができるので、静磁場が大幅に
変動する場合であっても広い範囲にわたって補正を行う
ことが可能である。
Further, although the adjustable range of the static magnetic field is extremely narrow, the variable range of the frequency can be set wide, so even if the static magnetic field fluctuates significantly, it is possible to perform correction over a wide range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
その動作を説明するためのタイミング図、第3図は分散
波形を説明するための図である。 1:磁石、2,4:送受信コイル、 3:基準試料、5:高周波発振器、 6.8,10.12:ゲート、15:補正回路、16:
制御回路。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a timing diagram for explaining its operation, and FIG. 3 is a diagram for explaining dispersion waveforms. 1: Magnet, 2, 4: Transmitting/receiving coil, 3: Reference sample, 5: High frequency oscillator, 6.8, 10.12: Gate, 15: Correction circuit, 16:
control circuit.

Claims (2)

【特許請求の範囲】[Claims] (1)観測核の共鳴周波数を持つ観測用高周波を静磁場
中の観測対象にパルス的に繰返し照射し、照射後に生じ
る自由誘導減衰信号を繰返し検出するようにした核磁気
共鳴装置において、前記観測対象近傍の静磁場内に配置
される前記観測核を含む基準試料と、該基準試料に近接
して配置される基準試料用送信コイルと、自由誘導減衰
信号検出後次の高周波パルスが観測対象に照射されるま
での間に前記観測用高周波を前記基準試料用送信コイル
へ供給するための手段と、基準試料からの共鳴信号を受
信するための基準試料用受信コイルと、該基準試料用受
信コイルから得られる共鳴信号に基づいて静磁場強度の
変動を検出するための手段と、該検出手段から得られる
検出信号に基づいて前記観測用高周波の周波数を変化さ
せるための手段とを備えたことを特徴とする核磁気共鳴
装置。
(1) In a nuclear magnetic resonance apparatus that repeatedly irradiates an observation target in a static magnetic field in a pulsed manner with an observation radio frequency having a resonance frequency of the observation nucleus, and repeatedly detects a free induction decay signal generated after irradiation, the observation A reference sample including the observation nucleus placed in a static magnetic field near the target, a reference sample transmitting coil placed close to the reference sample, and the next high-frequency pulse sent to the observation target after the free induction decay signal is detected. means for supplying the observation high frequency wave to the reference sample transmitting coil until it is irradiated; a reference sample receiving coil for receiving a resonance signal from the reference sample; and the reference sample receiving coil. and means for changing the frequency of the observation high frequency wave based on the detection signal obtained from the detection means. Features of nuclear magnetic resonance equipment.
(2)前記基準試料用送信コイルと受信コイルを1つの
コイルで兼用するようにした特許請求の範囲第1項記載
の核磁気共鳴装置。
(2) The nuclear magnetic resonance apparatus according to claim 1, wherein one coil serves as the reference sample transmitting coil and the receiving coil.
JP59123397A 1984-06-15 1984-06-15 Nuclear magnetic resonator device Pending JPS612047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59123397A JPS612047A (en) 1984-06-15 1984-06-15 Nuclear magnetic resonator device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59123397A JPS612047A (en) 1984-06-15 1984-06-15 Nuclear magnetic resonator device

Publications (1)

Publication Number Publication Date
JPS612047A true JPS612047A (en) 1986-01-08

Family

ID=14859547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59123397A Pending JPS612047A (en) 1984-06-15 1984-06-15 Nuclear magnetic resonator device

Country Status (1)

Country Link
JP (1) JPS612047A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222757A (en) * 1987-03-13 1988-09-16 株式会社 日立メデイコ Nuclear magnetic resonance imaging apparatus
JPS63296737A (en) * 1987-05-29 1988-12-02 Yokogawa Medical Syst Ltd High frequency power supply apparatus
JPH01299543A (en) * 1988-05-27 1989-12-04 Hitachi Ltd Inspecting method and device using nuclear magnetic resonance
JP2007121037A (en) * 2005-10-26 2007-05-17 Keio Gijuku Measuring instrument for measuring distribution of behavior of protonic solvent in sample using magnetic resonance method, measuring method and program
JP2010281812A (en) * 2009-04-27 2010-12-16 Bruker Biospin Ag Device for extremely precise synchronization of nmr transmission frequency to resonance frequency of nmr line taking into consideration non-constant rf phase, and synchronization system of the same
WO2011002098A1 (en) * 2009-07-03 2011-01-06 独立行政法人物質・材料研究機構 Shimming device for superconducting magnet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5356086A (en) * 1976-11-01 1978-05-22 Hitachi Ltd Magnetic field controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5356086A (en) * 1976-11-01 1978-05-22 Hitachi Ltd Magnetic field controller

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222757A (en) * 1987-03-13 1988-09-16 株式会社 日立メデイコ Nuclear magnetic resonance imaging apparatus
JPH0376133B2 (en) * 1987-03-13 1991-12-04 Hitachi Medical Corp
JPS63296737A (en) * 1987-05-29 1988-12-02 Yokogawa Medical Syst Ltd High frequency power supply apparatus
JPH0376137B2 (en) * 1987-05-29 1991-12-04 Yokokawa Medeikaru Shisutemu Kk
JPH01299543A (en) * 1988-05-27 1989-12-04 Hitachi Ltd Inspecting method and device using nuclear magnetic resonance
JP2007121037A (en) * 2005-10-26 2007-05-17 Keio Gijuku Measuring instrument for measuring distribution of behavior of protonic solvent in sample using magnetic resonance method, measuring method and program
JP2010281812A (en) * 2009-04-27 2010-12-16 Bruker Biospin Ag Device for extremely precise synchronization of nmr transmission frequency to resonance frequency of nmr line taking into consideration non-constant rf phase, and synchronization system of the same
WO2011002098A1 (en) * 2009-07-03 2011-01-06 独立行政法人物質・材料研究機構 Shimming device for superconducting magnet
JP5594632B2 (en) * 2009-07-03 2014-09-24 独立行政法人物質・材料研究機構 Shimming device for superconducting magnet

Similar Documents

Publication Publication Date Title
KR950704696A (en) Removing the Effects of Acoustic Ringing and Reducing Temperature Effects in the Detection of Explosives by NQR
US3358222A (en) Gyromagnetic resonance apparatus utilizing pulsed rf excitation
JP2003180655A (en) Method for measuring location of object in mr system, and catheter and mr system for performing the method
JPH0316554A (en) Method/apparatus for measuring magnetic field and vortex electric current
JP2664071B2 (en) Nuclear spin tomography equipment
US4931733A (en) Method and apparatus for determining shim coil current in nuclear magnetic resonance imaging
JPS612047A (en) Nuclear magnetic resonator device
US4171511A (en) Automatic field-frequency lock in an NMR spectrometer
US4327425A (en) Method for the recording of spin resonance spectra and an apparatus for the implementation of such method
JPS6123953A (en) Nuclear magnetic resonance device
JPS61118648A (en) Nuclear magnetic resonance apparatus
JPS61118649A (en) Nuclear magnetic resonance apparatus
US3638104A (en) Methods and apparatus for examination and measurement by means of nuclear magnetic resonance phenomena
GB1241843A (en) Spectrometer apparatus
JPS61235741A (en) Nuclear magnetic resonance device
JP2824765B2 (en) Nuclear magnetic resonance equipment
SU750354A1 (en) Method of investigating electron paramagnetic resonance saturation line
JPS6013463B2 (en) Magnetic field control device in nuclear magnetic resonance equipment
SU918829A1 (en) Method of registering electron paramagnetic resonance spectrum (its versions)
JP3589564B2 (en) Magnetic field fixing device for nuclear magnetic resonance
JPH0694820A (en) Pulse adjusting method of nuclear magnetism resonator device
SU873162A1 (en) Method of measuring electric field intensity
JPH03176683A (en) Nuclear magnetic resonance device
JP2597098B2 (en) Magnetic resonance imaging equipment
JPS61233348A (en) Magnetic field lock circuit of nuclear magnetic resonance device