JPS61118648A - Nuclear magnetic resonance apparatus - Google Patents

Nuclear magnetic resonance apparatus

Info

Publication number
JPS61118648A
JPS61118648A JP59239945A JP23994584A JPS61118648A JP S61118648 A JPS61118648 A JP S61118648A JP 59239945 A JP59239945 A JP 59239945A JP 23994584 A JP23994584 A JP 23994584A JP S61118648 A JPS61118648 A JP S61118648A
Authority
JP
Japan
Prior art keywords
pulse
pulse width
signal
gate
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59239945A
Other languages
Japanese (ja)
Other versions
JPH0324991B2 (en
Inventor
Yutaka Fukushima
裕 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP59239945A priority Critical patent/JPS61118648A/en
Publication of JPS61118648A publication Critical patent/JPS61118648A/en
Publication of JPH0324991B2 publication Critical patent/JPH0324991B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/58Calibration of imaging systems, e.g. using test probes, Phantoms; Calibration objects or fiducial markers such as active or passive RF coils surrounding an MR active material
    • G01R33/583Calibration of signal excitation or detection systems, e.g. for optimal RF excitation power or frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/46NMR spectroscopy
    • G01R33/4616NMR spectroscopy using specific RF pulses or specific modulation schemes, e.g. stochastic excitation, adiabatic RF pulses, composite pulses, binomial pulses, Shinnar-le-Roux pulses, spectrally selective pulses not being used for spatial selection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/483NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy

Abstract

PURPOSE:To make it possible to automatically set the pulse width of a 90 deg. pulse, by repeating the measurement of the pulse width of a high frequency pulse while timewise changing said pulse width and comparing the FID signal obtained by each measurement with a reference signal. CONSTITUTION:A control circuit 16 generates a pulse at an appropriate cycle from a pulse generator 15 and increases the pulse width there of by 1mus from an initial value (e.g., 1mus). The FID signal induced in a transmitting-receiving coil 3 is taken out through a gate 10 and a demodulator 11. A reference value Vn is set to the upper limit value of noise and, if the FID signal exceeds this level even instantaneously, a comparator 17 generates a pulse and the control circuit 16 increase the pulse width of the next high frequency pulse by one step. When this pulse width becomes equal to the width of a 180 deg. pulse, the amplitude of the FID signal comes to zero and the comparator 17 generates no pulse. The control circuit 16 stops the change in the pulse width on the basis of this state and set one half of the pulse width at this time as the pulse width of a 90 deg. pulse to start final measurement.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は核磁気共鳴装置(NMR装置)に関し、特に励
起用高周波パルスのパルス幅設定を自動的に行うことの
できるNMR装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a nuclear magnetic resonance apparatus (NMR apparatus), and particularly to an NMR apparatus that can automatically set the pulse width of a high-frequency pulse for excitation.

[従来の技術] 核磁気共鳴装置においては、静磁場中に配置された被測
定試料に送受信コイルを介して励起高周波パルス(Ii
場)を照射し、励起パルス照射後この送受信コイルに誘
起される自由誘導減衰信号(FID信号)を検出し、時
間領域の信号であるこのFID信号を周波数領域へフー
リエ変換し、核磁気共鳴スペクトルを得ている。
[Prior Art] In a nuclear magnetic resonance apparatus, an excitation high-frequency pulse (Ii
After irradiating the excitation pulse, the free induction decay signal (FID signal) induced in the transmitter/receiver coil is detected, and this FID signal, which is a signal in the time domain, is Fourier transformed into the frequency domain, and the nuclear magnetic resonance spectrum is obtained. I am getting .

[発明が解決しようとする問題点] 測定に用いられる励起高周波パルスの基本として90°
パルス(観測核の磁化を90″倒すパルス幅を有する高
周波パルス)があり、このパルス幅の設定が測定の準備
手順の中でも重要な部分を占めている。従来、この設定
は例えばFID信号をCRTに表示し、その信号の大き
さや位相の変化を見ながらオペレータが手作業でパルス
幅を変えて測定を繰返し行い、最も信号強度の大きくな
るパルス幅を見つけ、それを90°パルスのパルス幅と
している。しかしながらこの作業は熟練が必要であり、
設定を誤ると十分な感度が得られないばかりでなく測定
精度も悪くなる等測定に重大な影響を与えてしまう。
[Problems to be solved by the invention] The basic excitation high-frequency pulse used for measurement is 90°.
There is a pulse (a high-frequency pulse with a pulse width that lowers the magnetization of the observation nucleus by 90"), and the setting of this pulse width is an important part of the measurement preparation procedure. Conventionally, this setting has been done, for example, by converting the FID signal to a CRT. The operator manually changes the pulse width and repeats the measurement while observing changes in the signal magnitude and phase, finds the pulse width with the highest signal strength, and uses that as the pulse width of the 90° pulse. However, this work requires skill,
If the settings are incorrect, not only will sufficient sensitivity not be obtained, but the measurement accuracy will also deteriorate, which will have a serious impact on the measurement.

そこで、本発明はこのパルス幅設定を自動的に行うこと
のできるNMR装置を提供することを目的としている。
Therefore, an object of the present invention is to provide an NMR apparatus that can automatically set this pulse width.

[問題点を解決するための手段] この目的を達成するため、本発明は、静磁場中に置かれ
る被測定試料の近傍に配置される送受信コイルと、観測
核の共鳴周波数を持つ高周波を発生する手段と、該高周
波をパルス変調し高周波パルスとして送受信コイルへ供
給するためのゲート手段と、該ゲート手段へ供給するゲ
ート信号を発生する手段と、上記高周波パルス照射に基
づいて送受信コイルに誘起される自由誘導減衰信号を検
出する手段と、該自由誘導減衰信号をフーリエ変換して
核磁気共鳴スペクトルを得るための手段とを備えた核磁
気共鳴装置において、前記送受信コイルへ繰返し供給さ
れる高周波パルスのパルス幅が段階的に長く又は短くな
るように前記ゲート信号発生手段を制御する手段と、該
高周波パルス照射により前記送受信コイルに誘起される
FID信号又はそれを処理した信号を基準信号と比較す
る手段とを設け、該比較手段の出力に基づいて前記制御
手段におけるパルス幅の変化を停止させると共に、停止
時のパルス幅に基づいてそれ以降発生する高周波パルス
のパルス幅を設定するようにしたことを特徴としている
[Means for Solving the Problems] In order to achieve this objective, the present invention uses a transmitter/receiver coil disposed near a sample to be measured placed in a static magnetic field and a high frequency wave having a resonant frequency of an observation nucleus. means for pulse modulating the high frequency wave and supplying it to the transmitting and receiving coil as a high frequency pulse; means for generating a gate signal to be supplied to the gate means; In a nuclear magnetic resonance apparatus, the radio frequency pulse is repeatedly supplied to the transmitting/receiving coil. means for controlling the gate signal generating means so that the pulse width of the signal becomes longer or shorter stepwise, and comparing the FID signal induced in the transmitter/receiver coil by the high-frequency pulse irradiation or a signal obtained by processing the FID signal with a reference signal. means for stopping the change in pulse width in the control means based on the output of the comparison means, and setting the pulse width of the high-frequency pulses generated thereafter based on the pulse width at the time of stopping. It is characterized by

[作用] 励起パルスが180°パルス(観測核の磁化を180°
倒す高周波パルス)になると、FTD信号は原理的には
全く現われない。そこで本発明においては、高周波パル
スのパルス幅を段階的に長く又は短くなるようにして測
定を繰返すと共に、夫々の測定で得られるFID信号を
モニタし、その強度が基準値(ノイズの上限値)と一致
又はそれより小さくなった時のパルス幅を180°パル
スのパルス幅として捉え、そのパルス幅を例えば1/2
することにより906パルスのパルス幅を求めている。
[Effect] The excitation pulse is a 180° pulse (the magnetization of the observation nucleus is changed by 180°).
When it comes to high-frequency pulses, the FTD signal does not appear at all in principle. Therefore, in the present invention, measurements are repeated by gradually increasing or decreasing the pulse width of the high-frequency pulse, and the FID signal obtained in each measurement is monitored, and its intensity is determined as a reference value (upper limit of noise). The pulse width when the pulse width is equal to or smaller than the 180° pulse is taken as the pulse width of the 180° pulse, and the pulse width is set to 1/2, for example.
By doing this, the pulse width of 906 pulses is obtained.

[実施例] 以下、図面を用いて本発明の一実施例を詳説する。[Example] Hereinafter, one embodiment of the present invention will be explained in detail using the drawings.

第1図は本発明を実施した核磁気共鳴装置の一例を示す
ブロック図である。図において1は静磁場を発生ずる磁
石、2は静磁場内に配置される試料管、3は試料管に近
接して配置される送受信コイル、4は送受信コイル3へ
供給する高周波を発生する発振器である。発振器4で生
成された高周波は、増幅器5、ゲート6、電力増幅器7
.ゲート8を介して前記送受信コイル3へ送られ、高周
波パルス磁場として試料へ照射される。この高層波パル
ス磁場照射後試料コイル3に誘起される共鳴信号は、ゲ
ート9及び増幅器10を介して取出され、復調器11へ
送られる。復調により得られた自由誘導減衰信号(FI
D信号)は、増幅器12、A−D変換器13を介してコ
ンピュータのようなデータ処理装置14へ送られる。
FIG. 1 is a block diagram showing an example of a nuclear magnetic resonance apparatus embodying the present invention. In the figure, 1 is a magnet that generates a static magnetic field, 2 is a sample tube placed in the static magnetic field, 3 is a transmitter/receiver coil placed close to the sample tube, and 4 is an oscillator that generates high frequency waves to be supplied to the transmitter/receiver coil 3. It is. The high frequency generated by the oscillator 4 is transmitted to an amplifier 5, a gate 6, and a power amplifier 7.
.. The signal is sent to the transmitting/receiving coil 3 via the gate 8, and is irradiated onto the sample as a high frequency pulsed magnetic field. A resonance signal induced in the sample coil 3 after irradiation with this high-frequency pulsed magnetic field is extracted via a gate 9 and an amplifier 10 and sent to a demodulator 11. Free induction decay signal (FI
D signal) is sent to a data processing device 14 such as a computer via an amplifier 12 and an A-D converter 13.

15は前記ゲート6.8を0N−OFFして高周波パル
スを作成するためのゲート信号を発生するパルス発生器
で、16はそのパルス幅を制御する制御回路である。
15 is a pulse generator that generates a gate signal for turning ON/OFF the gate 6.8 to create a high frequency pulse, and 16 is a control circuit that controls the pulse width.

17はFID信号を基準値vnと比較するための比較器
で、その比較出力は前記制御回路16へ供給される。
17 is a comparator for comparing the FID signal with a reference value vn, and its comparison output is supplied to the control circuit 16.

上述の如き構成において、制御回路16はパルス発生器
15から適宜な周期でパルスを発生させると共に、その
パルス幅を初期値(例えば1μs)から1μsステツプ
で増して行く。従って、送受信コイル3から試料に照射
される励起高周波パルスのパルス幅も1μsから1μs
ステツプで長くなって行く。高周波パルス照射後送受信
コイル3に誘起されるIID信号はゲート10.復調器
11を介して取出されるが、前記基準値Vnはノイズの
上限値に設定されており、FID信号が瞬時でもこのレ
ベルを超えれば比較器17はパルスを発生して制御回路
16へ送り、制御回路16は次の高周波パルスのパルス
幅を1ステップ増す。これが繰返されてパルス幅は徐々
に長くなって行くが、FTD信号は第2図(a)に示す
ようにパルス幅が180°パルスに近付いて行くにつれ
て第2図(b)に示すように振幅が減少し、パルス幅が
180°パルスの幅PW180になると振幅が零となり
ノイズ成分のみとなる。
In the above configuration, the control circuit 16 causes the pulse generator 15 to generate pulses at appropriate intervals, and increases the pulse width from an initial value (for example, 1 μs) in 1 μs steps. Therefore, the pulse width of the excitation high-frequency pulse irradiated to the sample from the transmitting/receiving coil 3 is also 1 μs to 1 μs.
It gets longer in steps. After the high-frequency pulse irradiation, the IID signal induced in the transmitting/receiving coil 3 is transmitted to the gate 10. The reference value Vn is taken out via the demodulator 11, but the reference value Vn is set to the upper limit of noise, and if the FID signal exceeds this level even momentarily, the comparator 17 generates a pulse and sends it to the control circuit 16. , the control circuit 16 increases the pulse width of the next high frequency pulse by one step. This is repeated and the pulse width gradually becomes longer, but as the pulse width approaches the 180° pulse as shown in Figure 2 (a), the amplitude of the FTD signal increases as shown in Figure 2 (b). decreases, and when the pulse width reaches the 180° pulse width PW180, the amplitude becomes zero and there is only a noise component.

そのため、M2図(C)に示すように、その時点で比較
器17からはパルスが送られて来ず、それに基づいて制
御回路16はパルス幅の変化を停止させる。それと共に
、制御回路16はその時のパルス幅PW180を1/2
したPW180/2として906パルスのパルス幅PW
90を求め、その後パルス発生器15が発生するパルス
幅を求めたPW90に設定し、本測定を開始する。
Therefore, as shown in FIG. M2 (C), no pulse is sent from the comparator 17 at that point, and based on this, the control circuit 16 stops changing the pulse width. At the same time, the control circuit 16 reduces the pulse width PW180 at that time to 1/2.
Pulse width PW of 906 pulses as PW180/2
90 is determined, and then the pulse width generated by the pulse generator 15 is set to the determined PW90, and the main measurement is started.

尚、60°パルスや45°パルスなどを望むのであれば
、PW180/3あるいはPW180/4を求めてその
値にパルス幅を設定すれば良いことは言うまでもない。
It goes without saying that if a 60° pulse or a 45° pulse is desired, it is sufficient to find PW180/3 or PW180/4 and set the pulse width to that value.

又、FID信号をA−D変換した後に基準信号と比較す
るようにしても良いし、更にはそれを高速フーリエ変換
して得たスペクトルの大きさをノイズの上限値と比較し
ても良い。
Further, the FID signal may be A-D converted and then compared with a reference signal, or the magnitude of the spectrum obtained by performing fast Fourier transform on the FID signal may be compared with the upper limit value of noise.

上記実施例ではパルス幅を段階的に長くして行ったが、
逆に短くして行って求めるようにしても良い。特に、長
くして行って求めた180°パルスのパルス幅PW18
0と、短くして行って求めた180°パルスのパルス幅
PW 180’ との平均値(PW180 + PW 
180’ ) / 2を求めれば、より精度高く180
″パルスのパルス幅を求めることができる。
In the above example, the pulse width was lengthened stepwise, but
On the other hand, you can shorten it and find it. In particular, the pulse width PW18 of the 180° pulse obtained by increasing the length
0 and the pulse width PW 180' of the 180° pulse obtained by shortening it (PW180 + PW
If you calculate 180') / 2, you will get 180 with higher accuracy.
``The pulse width of the pulse can be determined.

[発明の効果コ 以上詳述した如く、本発明によれば、パルス幅ト の設定を自動的に行うことのできるNMR装置が   
 ・実現される。
[Effects of the Invention] As detailed above, the present invention provides an NMR apparatus that can automatically set the pulse width.
・It will be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施した核磁気共鳴装置の一例を示す
ブロック図、第2図は第1図の実施例の動作を説明する
ための図である。 1・・・磁石      2・・・試料管3・・・送受
信コイル  4川発振器 6.8.9・・・ゲート 11・・・復調器13・・・
A−D変換器 14・・・データ処理装置15・・・パ
ルス発生器 16・・・制御回路17・・・比較器
FIG. 1 is a block diagram showing an example of a nuclear magnetic resonance apparatus embodying the present invention, and FIG. 2 is a diagram for explaining the operation of the embodiment of FIG. 1. 1...Magnet 2...Sample tube 3...Transmitting/receiving coil 4-channel oscillator 6.8.9...Gate 11...Demodulator 13...
A-D converter 14... Data processing device 15... Pulse generator 16... Control circuit 17... Comparator

Claims (1)

【特許請求の範囲】[Claims] 静磁場中に置かれる被測定試料の近傍に配置される送受
信コイルと、観測核の共鳴周波数を持つ高周波を発生す
る手段と、該高周波をパルス変調し高周波パルスとして
送受信コイルへ供給するためのゲート手段と、該ゲート
手段へ供給するゲート信号を発生する手段と、上記高周
波パルス照射に基づいて送受信コイルに誘起される自由
誘導減衰信号を検出する手段と、該自由誘導減衰信号を
フーリエ変換して核磁気共鳴スペクトルを得るための手
段とを備えた核磁気共鳴装置において、前記送受信コイ
ルへ繰返し供給される高周波パルスのパルス幅が段階的
に長く又は短くなるように前記ゲート信号発生手段を制
御する手段と、該高周波パルス照射により前記送受信コ
イルに誘起されるFID信号又はそれを処理した信号を
基準信号と比較する手段とを設け、該比較手段の出力に
基づいて前記制御手段におけるパルス幅の変化を停止さ
せると共に、停止時のパルス幅に基づいてそれ以降発生
する高周波パルスのパルス幅を設定する様にしたことを
特徴とする核磁気共鳴装置。
A transmitter/receiver coil placed near a sample to be measured placed in a static magnetic field, a means for generating a high frequency wave having the resonant frequency of the observation nucleus, and a gate for pulse modulating the high frequency wave and supplying it as a high frequency pulse to the transmitter/receiver coil. means for generating a gate signal to be supplied to the gate means; means for detecting a free induction attenuation signal induced in the transmitter/receiver coil based on the high frequency pulse irradiation; and means for Fourier transforming the free induction attenuation signal. In a nuclear magnetic resonance apparatus comprising means for obtaining a nuclear magnetic resonance spectrum, the gate signal generating means is controlled so that the pulse width of the high-frequency pulse repeatedly supplied to the transmitting/receiving coil becomes longer or shorter in steps. and means for comparing an FID signal induced in the transmitting/receiving coil by the high-frequency pulse irradiation or a signal obtained by processing the FID signal with a reference signal, and changing the pulse width in the control means based on the output of the comparing means. What is claimed is: 1. A nuclear magnetic resonance apparatus characterized in that the pulse width of high-frequency pulses generated thereafter is set based on the pulse width at the time of stopping.
JP59239945A 1984-11-14 1984-11-14 Nuclear magnetic resonance apparatus Granted JPS61118648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59239945A JPS61118648A (en) 1984-11-14 1984-11-14 Nuclear magnetic resonance apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59239945A JPS61118648A (en) 1984-11-14 1984-11-14 Nuclear magnetic resonance apparatus

Publications (2)

Publication Number Publication Date
JPS61118648A true JPS61118648A (en) 1986-06-05
JPH0324991B2 JPH0324991B2 (en) 1991-04-04

Family

ID=17052158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59239945A Granted JPS61118648A (en) 1984-11-14 1984-11-14 Nuclear magnetic resonance apparatus

Country Status (1)

Country Link
JP (1) JPS61118648A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988009928A1 (en) * 1986-04-15 1988-12-15 Thomson-Cgr Process for calibrating high-frequency excitation in nmr testing
JPH01503361A (en) * 1987-06-02 1989-11-16 ジエネラル エレクトリツク セージェーエール エス.アー. Calibration device for radio frequency excitation in NMR measurements
US6812699B2 (en) * 2002-03-12 2004-11-02 Ge Medical Systems Global Technology Company, Llc Systems and methods for tuning an RF pulse by changing a pulse width of the RF pulse
CN107561113A (en) * 2017-09-27 2018-01-09 中国科学院电工研究所无锡分所 The method that nuclear magnetic resonance core analyzer searches for 90 degree of RF pulse widths automatically

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126829A (en) * 1974-05-06 1976-03-05 Burmah Oil Trading Ltd
JPS58196447A (en) * 1982-05-12 1983-11-15 Hitachi Ltd Nuclear magnetic resonator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126829A (en) * 1974-05-06 1976-03-05 Burmah Oil Trading Ltd
JPS58196447A (en) * 1982-05-12 1983-11-15 Hitachi Ltd Nuclear magnetic resonator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988009928A1 (en) * 1986-04-15 1988-12-15 Thomson-Cgr Process for calibrating high-frequency excitation in nmr testing
JPH01503361A (en) * 1987-06-02 1989-11-16 ジエネラル エレクトリツク セージェーエール エス.アー. Calibration device for radio frequency excitation in NMR measurements
US6812699B2 (en) * 2002-03-12 2004-11-02 Ge Medical Systems Global Technology Company, Llc Systems and methods for tuning an RF pulse by changing a pulse width of the RF pulse
CN107561113A (en) * 2017-09-27 2018-01-09 中国科学院电工研究所无锡分所 The method that nuclear magnetic resonance core analyzer searches for 90 degree of RF pulse widths automatically

Also Published As

Publication number Publication date
JPH0324991B2 (en) 1991-04-04

Similar Documents

Publication Publication Date Title
US5049819A (en) Magnetic resonance analysis in real time, industrial usage mode
US5302897A (en) NMR analysis of polypropylene in real time
JPS61118648A (en) Nuclear magnetic resonance apparatus
US5596275A (en) NMR analysis of polypropylene in real time
JP2006153461A (en) Nuclear magnetic resonance measuring device
JPH0838447A (en) Nuclear magnetic resonance inspecting device
CA2121027A1 (en) Improved magnetic resonance analysis in real time, industrial usage mode
JPS612047A (en) Nuclear magnetic resonator device
US4543529A (en) Method of tuning an NMR apparatus
CA2184770C (en) Method and apparatus for correcting drift in the response of analog receiver components in induction well logging instruments
JPS61118649A (en) Nuclear magnetic resonance apparatus
JPS55112556A (en) Correction method of level in fourier spectrum unit
JPS6123953A (en) Nuclear magnetic resonance device
CN117129920B (en) Weak magnetic measurement device and method with high signal-to-noise ratio and broadband excitation
JP2824765B2 (en) Nuclear magnetic resonance equipment
SU845079A1 (en) Method of non-destructive inspection of magnetostriction materials
JP3523701B2 (en) Magnetic resonance imaging apparatus and adjustment method thereof
JPH09192116A (en) Nuclear magnetic resonance inspection device
JPS625652Y2 (en)
JPS6193940A (en) Nuclear magnetic resonator
JPH0694820A (en) Pulse adjusting method of nuclear magnetism resonator device
JPH0795971A (en) Mr imaging apparatus
SU381018A1 (en) SPECTRL1ETR. ACOUSTIC NUCLEAR L1 / FERTILIZER
JPH09206286A (en) Nuclear magnetic resonance imaging system
JPS606881A (en) Checking method of nuclear magnetic material