JPS6316705B2 - - Google Patents

Info

Publication number
JPS6316705B2
JPS6316705B2 JP54028907A JP2890779A JPS6316705B2 JP S6316705 B2 JPS6316705 B2 JP S6316705B2 JP 54028907 A JP54028907 A JP 54028907A JP 2890779 A JP2890779 A JP 2890779A JP S6316705 B2 JPS6316705 B2 JP S6316705B2
Authority
JP
Japan
Prior art keywords
high frequency
oscillator
sample
frequency
magnetic resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54028907A
Other languages
Japanese (ja)
Other versions
JPS55121142A (en
Inventor
Hiroshi Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP2890779A priority Critical patent/JPS55121142A/en
Publication of JPS55121142A publication Critical patent/JPS55121142A/en
Publication of JPS6316705B2 publication Critical patent/JPS6316705B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【発明の詳細な説明】 本発明はパルス核磁気共鳴装置(NMR装置)
を用いた核磁気共鳴測定方法に関し、特に単一の
高周波発振源のみでスピン結合の情報を得るため
の所謂ホモデカツプリング法及び特定のスペクト
ルピークを飽和させる所謂サチユレーシヨン法を
行うことのできる核磁気共鳴測定方法に関する。
[Detailed description of the invention] The present invention is a pulsed nuclear magnetic resonance apparatus (NMR apparatus)
Regarding the nuclear magnetic resonance measurement method using a single high-frequency oscillation source, in particular, a nucleus that can perform the so-called homodecoupling method to obtain information on spin coupling with only a single high-frequency oscillation source and the so-called saturation method to saturate a specific spectral peak. Related to magnetic resonance measurement method.

NMRにおけるホモデカツプリング法では、同
種核間のスピン−スピン結合(ホモカツプリン
グ)により生じた第1図aに示す様に分裂したス
ペクトルピークに相当する周波数例えば1の高周
波を観測用高周波とは別個の発振器で作成し、試
料に照射することが行われている。この様にすれ
ばカツプリングが切断される(デカツプリング)
ため、分裂していたピークを第1図bに示す様に
1本の鋭いピークにすることが可能である。
In the homodecoupling method in NMR, a high frequency, for example 1 , corresponding to the split spectral peak as shown in Figure 1a, generated by spin-spin coupling (homocoupling) between homogeneous nuclei, is used as the observational high frequency. is created using a separate oscillator and irradiated onto the sample. If you do this, the cut-off ring will be cut off (de-katsu ring).
Therefore, it is possible to transform the split peak into one sharp peak as shown in FIG. 1b.

更に例えば水を含んだ試料について水素核(H
核)の観測を行う際には、第2図aに示す様に水
に含まれるH核によるスペクトルピークが観測し
たい試料のスペクトルピークに比べ極めて大きな
強度で現われる。そして大強度のピークでダイナ
ミツクレンジが制限されるため、観測したい試料
のピークを感度よく検出することができない。そ
こでこの様な場合観測用高周波パルスを試料に照
射する前に、水に含まれるH核によるスペクトル
ピークに相当する周波数例えば2の高周波を照射
し、該ピークを飽和させてしまうサチユレーシヨ
ン法が用いられる。この様にすれば飽和により上
記大強度のピークが第2図bに示す様に消滅する
ため、観測したい試料のピークを感度よく検出す
ることができる。
Furthermore, for example, hydrogen nuclei (H
When observing H nuclei in water, as shown in Figure 2a, a spectral peak due to H nuclei contained in water appears with an extremely high intensity compared to the spectral peak of the sample to be observed. Since the dynamic range is limited by the high-intensity peak, the peak of the sample to be observed cannot be detected with high sensitivity. Therefore, in such cases, before irradiating the sample with observational high-frequency pulses, a saturation method is used in which a high-frequency wave with a frequency corresponding to the spectral peak due to H nuclei contained in water, for example 2 , is irradiated to saturate the peak. . In this way, the high-intensity peak disappears due to saturation as shown in FIG. 2b, so that the peak of the sample to be observed can be detected with high sensitivity.

上述の様に従来ホモデカツプリング法及びサチ
ユレーシヨン法を実施する場合、観測用高周波を
発生するための発振器と、ホモデカツプリング用
又はサチユレート用の高周波を発生するための発
振器の2つの発振器を備えたNMR装置が必要で
あつた。
As mentioned above, when implementing the conventional homodecoupling method and saturation method, two oscillators are used: one for generating the high frequency for observation, and the other for generating the high frequency for homodecoupling or saturation. A equipped NMR device was required.

本発明はこの点に鑑みてなされたものであり、
単一の発振周波数可変型発振器を備えたNMR装
置を用いて両法を実施することのできる核磁気共
鳴測定方法を提供することを目的とするものであ
る。以下図面を用いて本発明を詳述する。
The present invention has been made in view of this point,
The object of the present invention is to provide a nuclear magnetic resonance measurement method that can perform both methods using an NMR apparatus equipped with a single oscillation frequency variable oscillator. The present invention will be explained in detail below using the drawings.

第3図は本発明の一実施例を示すQD型NMR
装置の構成図であり、同図において1は直流磁場
内に置かれたNMRプローブである。該NMRプ
ローブ1には単一の高周波発振器2から発生した
高周波がゲート回路3、駆動回路4を介して供給
されるが、そのレベルは切換回路5により切換え
て回路中にアツテネータ6を挿入することによつ
て2段階に変化させることが、できる。
Figure 3 is a QD type NMR showing one embodiment of the present invention.
This is a configuration diagram of the apparatus, and in the figure, 1 is an NMR probe placed in a DC magnetic field. A high frequency generated from a single high frequency oscillator 2 is supplied to the NMR probe 1 via a gate circuit 3 and a drive circuit 4, but its level is switched by a switching circuit 5 and an attenuator 6 is inserted into the circuit. It can be changed in two stages by

高周波の照射に伴ないNMRプローブ1から得
られた検出信号は増巾器7を介して2つの位相敏
感検出器(PSD)8,9に送られる。該PSD8,
9には試料に照射された高周波と同一周波数で
90゜位相の異なる2つの高周波が参照信号として
前記発振器2から供給されており、該PSD8,
9から得られた2つのFID信号はA−D変換器1
0,11を介してコンピユータ12に送られ記憶
される。該コンピユータ12は上記2つのFID信
号に基づいてフーリエ変換を行い、NMRスペク
トルを得る。得られたNMRスペクトルは表示手
段13により適宜表示される。尚上記コンピユー
タ12は予め定められたプログラムに従つて前記
ゲート回路3及び切換回路5を制御する。
A detection signal obtained from the NMR probe 1 due to high frequency irradiation is sent to two phase sensitive detectors (PSD) 8 and 9 via an amplifier 7. The PSD8,
9 is the same frequency as the high frequency irradiated to the sample.
Two high frequencies having a phase difference of 90° are supplied from the oscillator 2 as reference signals, and the PSD 8,
The two FID signals obtained from 9 are sent to A-D converter 1.
0,11 to the computer 12 for storage. The computer 12 performs Fourier transform based on the two FID signals to obtain an NMR spectrum. The obtained NMR spectrum is appropriately displayed on the display means 13. Incidentally, the computer 12 controls the gate circuit 3 and the switching circuit 5 according to a predetermined program.

上述の如き構成において、はじめにホモデカツ
プリング法を行う場合について述べる。
In the above-described configuration, the case where the homodecoupling method is performed will first be described.

オペレータは先ず通常の測定法によりホモカツ
プリングの生じた例えば第1図aに示す様な
NMRスペクトルを測定する。即ち、発振器2の
周波数を適宜な値例えば0に設定すると共に切換
回路5をQ1側に倒し、更にゲート回路3を第4
図aに示す様なゲート信号で開き、試料に第4図
bに示す様な適宜な巾の観測用高周波パルスを印
加する。そして該高周波パルスの照射後次の照射
までの適宜な期間PSD8,9による検波が行わ
れる。得られたFID信号に基づいてフーリエ変換
を行うことにより第1図aに示す様なNMRスペ
クトルを得ることができる。
The operator first uses the usual measurement method to detect homocoupling, such as the one shown in Figure 1a.
Measure the NMR spectrum. That is, the frequency of the oscillator 2 is set to an appropriate value, for example 0 , the switching circuit 5 is set to the Q1 side, and the gate circuit 3 is set to the fourth
It is opened by a gate signal as shown in Figure a, and a high frequency pulse for observation of an appropriate width as shown in Figure 4b is applied to the sample. Then, detection is performed by the PSDs 8 and 9 for an appropriate period after the irradiation of the high-frequency pulse until the next irradiation. By performing Fourier transformation based on the obtained FID signal, an NMR spectrum as shown in FIG. 1a can be obtained.

次にオペレータは得られたNMRスペクトルに
基づいてデカツプリングすべきスペクトルピーク
に相当する周波数、例えば第1図aでは1を求め
る。QD型NMR装置では試料に照射した観測用
高周波の周波数0を中心(OH2)としてその両隣
に(正側、負側に)NMRスペクトルが得られる
ことに注意すれば、容易に1に求めることができ
る。
Next, the operator determines the frequency corresponding to the spectral peak to be decoupled, for example 1 in FIG. 1a, based on the obtained NMR spectrum. If you keep in mind that in a QD NMR device, NMR spectra are obtained on both sides (on the positive side and negative side) with the frequency 0 of the observation high frequency irradiated on the sample as the center (OH 2 ), it is easy to obtain 1 . Can be done.

そして次にオペレータは発振器2の周波数を1
に設定し、再度測定を行う。即ち、ゲート回路3
は第4図cに示す様なゲート信号に従つて観測用
高周波パルス照射期間以外の期間に断続的に開閉
される。又切換回路5は第4図fに示すような切
換信号に従つて切換えられるため、ゲート回路3
に供給される高周波は第4図dに示す様に観測用
高周波パルス照射期間中は高レベルとなり、それ
以外の期間中はホモデカツプリングに適した低レ
ベルとなる。従つて該ゲート回路3から取り出さ
れる高周波は第4図eに示す様になり、試料には
観測用高周波パルスP1の照射後のFID信号取得期
間中、同一周波数で低レベルのホモデカツプリン
グ用高周波パルスP2が断続的に照射されること
になる。そのためその期間中第1図aにおける1
に相当する結合が切断され、得られるNMRスペ
クトルは第1図bに示す様に1本の鋭いピークを
持つたものとなる。ただし、この時得られるスペ
クトルは厳密に言うと第1図bに示すものと若干
異なり、スペクトルの中心周波数は1となること
は言うまでもない。
Then the operator sets the frequency of oscillator 2 to 1
, and perform the measurement again. That is, gate circuit 3
is intermittently opened and closed during periods other than the observation high-frequency pulse irradiation period according to a gate signal as shown in FIG. 4c. Furthermore, since the switching circuit 5 is switched in accordance with the switching signal shown in FIG. 4f, the gate circuit 3
As shown in FIG. 4d, the high frequency supplied to the oscilloscope is at a high level during the observation high frequency pulse irradiation period, and at a low level suitable for homodecoupling during other periods. Therefore, the high frequency taken out from the gate circuit 3 becomes as shown in FIG. The high frequency pulse P 2 will be intermittently irradiated. Therefore, during that period, 1 in Figure 1a
The bond corresponding to is cleaved, and the resulting NMR spectrum has one sharp peak, as shown in Figure 1b. However, strictly speaking, the spectrum obtained at this time is slightly different from that shown in FIG. 1b, and it goes without saying that the center frequency of the spectrum is 1 .

次にサチユレーシヨン法を実施する場合につい
て述べる。
Next, the case of implementing the saturation method will be described.

オペレータは先に述べたホモデカツプリング法
と全く同様に先ず通常の測定法により試料中に含
まれる例えば水に起因する強大なピークが現われ
た第2図aに示す様なNMRスペクトルを得る。
The operator first obtains an NMR spectrum as shown in FIG. 2a, in which a strong peak due to, for example, water contained in the sample appears, using a normal measurement method, just as in the homodecoupling method described above.

そして、次に強大なピークに相当する周波数2
を求め、発振器の周波数を2に設定し、再度測定
を行う。即ちゲート回路3は第4図gに示すよう
なゲート信号に従つて開閉される。又切換回路5
は第4図fに示すような切換信号に従つて切換え
られるためゲート回路3に供給される高周波は第
4図dに示す様に観測用高周波パルス照射期間中
は高レベルとなり、それ以外の期間は強大なピー
クを飽和させるのに適したレベルとなる。従つて
該ゲート回路3から取り出される高周波は第4図
hに示す様になり、試料には観測用高周波パルス
P1の照射前の所定期間、同一周波数で低レベル
のサチユレーシヨン用高周波P3が照射されるこ
とになる。この様にすれば、予めサチユレーシヨ
ン用高周波によつて水に含まれるH核を飽和させ
た後観測用高周波パルスを照射して測定が行われ
るため、得られるNMRスペクトルは第2図bに
示す様に強大なピークが消滅したものとなる。た
だし、この時得られるスペクトルも厳密に言うと
第2図bに示すものと若干異なり、スペクトルの
中心周波数は2となることは言うまでもない。
Then, frequency 2 corresponding to the next strongest peak
Find , set the oscillator frequency to 2 , and measure again. That is, the gate circuit 3 is opened and closed according to a gate signal as shown in FIG. 4g. Also, switching circuit 5
is switched in accordance with the switching signal shown in FIG. 4f, so the high frequency supplied to the gate circuit 3 is at a high level during the observation high frequency pulse irradiation period, as shown in FIG. 4d, and during other periods. is a level suitable for saturating strong peaks. Therefore, the high frequency wave taken out from the gate circuit 3 becomes as shown in Fig. 4h, and the high frequency pulse for observation is applied to the sample.
For a predetermined period before the irradiation of P 1 , a low level saturation high frequency P 3 is irradiated at the same frequency. In this way, measurement is performed by irradiating the observation high-frequency pulse after saturating the H nuclei contained in water with the saturation high-frequency wave, so the obtained NMR spectrum is as shown in Figure 2b. The strong peak disappears. However, strictly speaking, the spectrum obtained at this time is slightly different from that shown in FIG. 2b, and it goes without saying that the center frequency of the spectrum is 2 .

以上詳述した如く本発明によれば、単一の発振
周波数可変型発振器を備えたNMR装置を用いて
ホモデカツプリング法及びサチユレーシヨン法を
行うことのできる核磁気共鳴測定方法が実現され
る。
As described in detail above, according to the present invention, a nuclear magnetic resonance measurement method is realized in which a homodecoupling method and a saturation method can be performed using an NMR apparatus equipped with a single oscillation frequency variable oscillator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はホモデカツプリング法を説明するため
のスペクトル図、第2図はサチユレーシヨン法を
説明するためのスペクトル図、第3図は本発明の
一実施例を示すQD型NMR装置の構成図、第4
図はその動作を説明するための波形図である。 2:高周波発振器、3:ゲート回路、5:切換
回路、6:アツテネータ、8,9:PSD、1
2:コンピユータ。
Figure 1 is a spectrum diagram for explaining the homodecoupling method, Figure 2 is a spectrum diagram for explaining the saturation method, and Figure 3 is a configuration diagram of a QD type NMR apparatus showing an embodiment of the present invention. , 4th
The figure is a waveform diagram for explaining the operation. 2: High frequency oscillator, 3: Gate circuit, 5: Switching circuit, 6: Attenuator, 8, 9: PSD, 1
2: Computer.

Claims (1)

【特許請求の範囲】[Claims] 1 発振周波数可変型発振器と、該発振器から発
生した高周波をパルス的に取出し観測用高周波パ
ルスとして試料に照射するためのゲート回路と、
該発振器から発生する高周波のレベルを減少させ
るレベル変化手段とを備え、該レベル変化手段に
よつてレベルが減少した高周波を観測用高周波パ
ルス照射期間以外の期間に試料に照射し得るよう
に構成した核磁気共鳴装置を用いる核磁気共鳴測
定方法であつて、デカツプリングすべきスペクト
ルピークに相当する周波数を求める第1の段階
と、前記発振器の発振周波数を該第1の段階で求
めた周波数に設定する第2の段階と、該発振器か
ら発生した高周波を前記ゲート回路を介してパル
ス的に取出し観測用高周波パルスとして試料に照
射すると共に、前記レベル変化手段によつてレベ
ルが減少した高周波を該高周波パルス照射期間以
外の期間に試料にデカツプリング用高周波として
照射して核磁気共鳴測定を行う第3の段階とから
成ることを特徴とする核磁気共鳴測定方法。
1. A variable oscillation frequency oscillator, a gate circuit for extracting the high frequency generated from the oscillator in a pulsed manner and irradiating the sample as a high frequency pulse for observation;
and level changing means for reducing the level of high frequency waves generated from the oscillator, and configured to be able to irradiate the sample with the high frequency waves whose level has been reduced by the level changing means during a period other than the observation high frequency pulse irradiation period. A nuclear magnetic resonance measurement method using a nuclear magnetic resonance apparatus, which includes a first step of determining a frequency corresponding to a spectral peak to be decoupled, and setting the oscillation frequency of the oscillator to the frequency determined in the first step. In a second step, the high frequency wave generated from the oscillator is taken out in a pulsed manner through the gate circuit and irradiated onto the sample as a high frequency pulse for observation, and the high frequency wave whose level has been decreased by the level changing means is applied to the high frequency pulse. A nuclear magnetic resonance measurement method comprising: a third step of irradiating the sample as a decoupling high frequency wave during a period other than the irradiation period to perform nuclear magnetic resonance measurement.
JP2890779A 1979-03-13 1979-03-13 Pulse nuclear magnetic resonator Granted JPS55121142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2890779A JPS55121142A (en) 1979-03-13 1979-03-13 Pulse nuclear magnetic resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2890779A JPS55121142A (en) 1979-03-13 1979-03-13 Pulse nuclear magnetic resonator

Publications (2)

Publication Number Publication Date
JPS55121142A JPS55121142A (en) 1980-09-18
JPS6316705B2 true JPS6316705B2 (en) 1988-04-11

Family

ID=12261467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2890779A Granted JPS55121142A (en) 1979-03-13 1979-03-13 Pulse nuclear magnetic resonator

Country Status (1)

Country Link
JP (1) JPS55121142A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101590572B1 (en) * 2013-10-18 2016-02-01 주식회사 엘지화학 A analyzing Method for Branch of Poly-Olefin and the System using The Same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5068371A (en) * 1973-10-20 1975-06-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5068371A (en) * 1973-10-20 1975-06-07

Also Published As

Publication number Publication date
JPS55121142A (en) 1980-09-18

Similar Documents

Publication Publication Date Title
CA2172487C (en) Apparatus for and method of nuclear resonance testing
JPH0350535B2 (en)
US3879653A (en) Microwave spectrometer employing a bimodal cavity resonator
JP3808601B2 (en) Magnetic resonance diagnostic equipment
JPH0225140B2 (en)
JPS6316705B2 (en)
US3886439A (en) Method of separating broad and narrow lines of a frequency spectrum
US4689561A (en) Nuclear magnetic resonance spectroscopy
US3771054A (en) Method and apparatus for observing transient gyromagnetic resonance
JPS61186843A (en) Nmr-esr simultaneous measuring instrument
JPH01153949A (en) Method of acquiring and processing spin echo nuclear magnetic resonance spectrum
JPH0324991B2 (en)
SU750354A1 (en) Method of investigating electron paramagnetic resonance saturation line
SU968719A1 (en) Method of measuring interaction parameters between paramagnetic centers
SU1539698A1 (en) Method of local measurement of saturation magnetization of ferrite film
JPH09257900A (en) Method for setting resonance frequency in measurement of pulse esr
JPH031828Y2 (en)
JPS6013463B2 (en) Magnetic field control device in nuclear magnetic resonance equipment
SU873080A2 (en) Method of signal deactivation in electron paramagnetic resonance (epr) spectrometer
JP2895611B2 (en) Semi-selective decoupling method by jump return pulse
SU1735750A1 (en) Method of measuring electric field gradient asymmetry parameter in polycrystals
JPS6193940A (en) Nuclear magnetic resonator
SU807783A1 (en) Method of studying electron-nuclear interaction and relaxation characteristics of nuclear spin systems
RU2103697C1 (en) Method of spectral analysis of pulse radiation
SU930382A1 (en) Method of determining collapse field intensity of magnetic bubbles lattice