JPH06222121A - Pulse fourier-transform electron spin-resonance device - Google Patents

Pulse fourier-transform electron spin-resonance device

Info

Publication number
JPH06222121A
JPH06222121A JP2984393A JP2984393A JPH06222121A JP H06222121 A JPH06222121 A JP H06222121A JP 2984393 A JP2984393 A JP 2984393A JP 2984393 A JP2984393 A JP 2984393A JP H06222121 A JPH06222121 A JP H06222121A
Authority
JP
Japan
Prior art keywords
signal
microwave
time
magnetic field
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2984393A
Other languages
Japanese (ja)
Inventor
Takaharu Kuwata
敬治 桑田
Kanae Fujii
金苗 藤井
Yukio Mizuta
幸男 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2984393A priority Critical patent/JPH06222121A/en
Publication of JPH06222121A publication Critical patent/JPH06222121A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To provide a pulse Fourier-transform ESR device which can provide high-resolution spectra by measuring FID signals at a sufficient level over a long period of time. CONSTITUTION:Microwaves generated from a microwave generator 3 are supplied as pulses via a microwave gate 5, a microwave amplifier 6 and a circulator 7 into a cavity resonator 2 disposed within a static magnetic field which a magnet 1 produces. The microwaves reflected from the cavity resonator because of the electron spin resonance of electrons are taken out via the circulator 7 and a gate 8 and are supplied to a quadrature phase wave detector 11. Two kinds of signal components obtained from the quadrature phase wave detector 11 are stored in a processor 14 via A-D converters 12, 13. A time function signal generated from a function generator 15 is supplied to an attenuator 9 as an attenuation factor control signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子スピン共鳴(ES
R)装置に関し、特にパルスフーリエ変換ESR装置に
関するものである。
The present invention relates to electron spin resonance (ES).
R) device, in particular, pulse Fourier transform ESR device.

【0002】[0002]

【従来の技術】パルスフーリエ変換ESR装置において
は、静磁場中に配置されるスピン系に観測用マイクロ波
パルス磁場を照射し、照射後該マイクロ波パルス磁場に
より励起されたスピン系からの応答を信号(自由誘導減
衰信号、FID信号)として検出し、得られたFID信
号をデジタル信号に変換した後フーリエ変換し、ESR
スペクトルを得ている。
2. Description of the Related Art In a pulse Fourier transform ESR apparatus, a spin system arranged in a static magnetic field is irradiated with a microwave pulse magnetic field for observation, and after irradiation, a response from the spin system excited by the microwave pulse magnetic field is measured. Signal (free induction decay signal, FID signal) is detected, and the obtained FID signal is converted into a digital signal and then Fourier-transformed to obtain ESR
I'm getting the spectrum.

【0003】図1(a)は、FID信号の一例を示して
おり、緩和時間と呼ばれるスピン系固有の特性時間にし
たがって指数関数的に振幅が減衰する。スピン系の共鳴
周波数ν1 は、必ずしも照射されたマイクロ波磁場の周
波数ν0 と一致しないので、差周波数Δν=ν1 −ν0
に相当する変調成分が上述した指数形減衰関数に現われ
る。そして、観測された指数形減衰関数をフーリエ変換
することにより、周波数領域に展開されたESRスペク
トルを得ることができる。
FIG. 1A shows an example of an FID signal, in which the amplitude is exponentially attenuated according to a characteristic time unique to the spin system called relaxation time. Since the resonance frequency ν 1 of the spin system does not necessarily match the frequency ν 0 of the irradiated microwave magnetic field, the difference frequency Δν = ν 1 −ν 0
A modulation component corresponding to the above appears in the above-described exponential decay function. Then, the ESR spectrum expanded in the frequency domain can be obtained by performing a Fourier transform on the observed exponential decay function.

【0004】[0004]

【発明が解決しようとする課題】ESRで扱われる電子
スピンの緩和時間は、一般的に非常に短い。減衰信号に
含まれる変調成分を抽出するためには、最低、1周期の
三角関数が観測されねばならない。しかしながら、実際
の装置では、図1(b)に示す様に、ともすれば、この
周期よりも早く信号が減衰するため、信号観測後フーリ
エ変換しても、広幅で分解能が低く情報量の少ないスペ
クトルしか得られないという問題がある。通常、時間領
域のデータ取得には、高速のデジタルオシロスコープな
どが用いられるが、信号の短時間の減衰により速やかに
ビット落ちのため信号強度が零とみなされるレベルに到
達してしまうので、積算しても改善はまったく見られな
かった。
The relaxation time of electron spin treated by ESR is generally very short. In order to extract the modulation component contained in the attenuated signal, at least one period trigonometric function must be observed. However, in an actual device, as shown in FIG. 1B, since the signal attenuates earlier than this period, even if the Fourier transform is performed after the signal observation, the width is wide and the resolution is low and the information amount is small. There is a problem that only spectra can be obtained. Normally, a high-speed digital oscilloscope is used to acquire data in the time domain, but the signal strength quickly reaches a level at which the signal strength is considered to be zero due to the short-term attenuation of the signal, so the integration is performed. But no improvement was seen.

【0005】本発明は、上述した点に鑑みてなされたも
のであり、高速に減衰する信号を従来よりも長時間にわ
たって十分なレベルで観測することを可能にし、それに
より、高分解能のスペクトルが得られるパルスフーリエ
変換ESR装置を提供することを目的としている。
The present invention has been made in view of the above-mentioned points, and makes it possible to observe a signal that attenuates at a high speed at a sufficient level for a longer period of time than in the past, and thereby a high-resolution spectrum can be obtained. It is an object of the present invention to provide a pulse Fourier transform ESR device obtained.

【0006】[0006]

【課題を解決するための手段】この目的を達成するた
め、本発明は、静磁場中に配置されるスピン系に観測用
マイクロ波パルス磁場を照射し、照射後該マイクロ波パ
ルス磁場により励起されたスピン系からの応答を信号と
して検出し、得られた検出信号をデジタル信号に変換し
た後フーリエ変換するパルスフーリエ変換電子スピン共
鳴装置において、検出信号をデジタル信号に変換する前
の信号系に利得可変手段を配置すると共に、該利得可変
手段の利得が時間経過と共に増大するように前記マイク
ロ波パルス磁場照射に同期して前記利得可変手段を制御
する手段を設けたことを特徴としている。
In order to achieve this object, the present invention irradiates a spin system arranged in a static magnetic field with a microwave pulse magnetic field for observation, and is excited by the microwave pulse magnetic field after irradiation. The response from the spin system is detected as a signal, and the obtained detection signal is converted to a digital signal and then Fourier-transformed.In a pulse Fourier transform electron spin resonance device, the gain is obtained in the signal system before the detection signal is converted to a digital signal. It is characterized in that variable means is arranged and means for controlling the gain variable means is provided in synchronization with the microwave pulsed magnetic field irradiation so that the gain of the gain variable means increases with time.

【0007】[0007]

【作用】本発明では、検出信号をデジタル信号に変換す
る前の信号系に利得可変手段を配置すると共に、該利得
可変手段の利得が時間経過と共に増大するように前記マ
イクロ波パルス磁場照射に同期して前記利得可変手段を
制御する手段を設けたため、信号の減衰を打ち消すよう
に利得が増加する。そのため、従来よりも長時間にわた
って十分なレベルで信号を観測することができる。以
下、図面に基づいて本発明の一実施例を詳説する。
According to the present invention, the gain varying means is arranged in the signal system before the detection signal is converted into the digital signal, and the gain varying means is synchronized with the microwave pulse magnetic field irradiation so that the gain increases with time. Since the means for controlling the gain varying means is provided, the gain increases so as to cancel the attenuation of the signal. Therefore, the signal can be observed at a sufficient level for a longer period of time than before. An embodiment of the present invention will be described below in detail with reference to the drawings.

【0008】[0008]

【実施例】図2は本発明の一実施例を示しており、図に
おいて1は静磁場を発生する磁石である。この静磁場内
には、試料が挿入された空胴共振器2が配置されてい
る。この空胴共振器2には、マイクロ波発振器3から発
生したマイクロ波が、方向性結合器4,マイクロ波ゲー
ト5,マイクロ波増幅器6,サーキュレータ7を介して
パルス的に供給される。試料の電子スピン共鳴によるマ
イクロ波エネルギーの吸収に基づいて発生する空胴共振
器からの反射マイクロ波は、サーキュレータ7及びゲー
ト8を介して取り出され、アッテネータ9,マイクロ波
増幅器10を介してクォドラチャ検波器11へ供給され
る。このクォドラチャ検波器11は、前記方向性結合器
から分岐されたマイクロ波を参照信号としてクォドラチ
ャ検波を行い、得られた2種の信号成分は、A−D変換
器12,13を介して処理装置14へ格納された後、フ
ーリエ変換などの処理を受ける。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 shows an embodiment of the present invention, in which 1 is a magnet for generating a static magnetic field. In this static magnetic field, the cavity resonator 2 in which the sample is inserted is arranged. The microwave generated from the microwave oscillator 3 is supplied to the cavity resonator 2 in a pulsed manner through the directional coupler 4, the microwave gate 5, the microwave amplifier 6, and the circulator 7. The reflected microwave from the cavity resonator, which is generated based on the absorption of microwave energy by the electron spin resonance of the sample, is taken out through the circulator 7 and the gate 8, and is detected by the quadrature detection through the attenuator 9 and the microwave amplifier 10. Is supplied to the container 11. The quadrature detector 11 performs quadrature detection using the microwave branched from the directional coupler as a reference signal, and the obtained two kinds of signal components are processed by the A / D converters 12 and 13 as processing devices. After being stored in 14, it is subjected to processing such as Fourier transform.

【0009】15は関数発生器で、発生された時間関数
信号は前記アッテネータ9へ減衰率制御信号として供給
される。16は関数発生器で発生し得る各種の時間関数
を記憶したメモリで、その中の一つを選択して前記関数
発生器15にセットすることにより、所望の時間関数信
号を発生することができる。17は装置全体のタイミン
グ制御を行う制御部で、ゲート5,8のON−OFFを
制御するゲート信号、増幅器6を制御する制御信号、及
びA−D変換器12,13の信号取り込みを制御するタ
イミング信号を発生する。
Reference numeral 15 is a function generator, and the generated time function signal is supplied to the attenuator 9 as an attenuation rate control signal. A memory 16 stores various time functions that can be generated by the function generator. By selecting one of the memories and setting it in the function generator 15, a desired time function signal can be generated. . Reference numeral 17 denotes a control unit that controls the timing of the entire apparatus, and controls a gate signal that controls ON / OFF of the gates 5 and 8, a control signal that controls the amplifier 6, and signal acquisition of the AD converters 12 and 13. Generates timing signals.

【0010】上記構成において、発振器3から発生した
マイクロ波は、図1(c)のタイミングで短時間開かれ
るゲート5によってマイクロ波パルスとして取り出さ
れ、増幅器6を介して十分な電力まで増幅されてサーキ
ュレータ7を介して空胴共振器2へ供給される。このマ
イクロ波パルス磁場により励起されたスピン系からのF
ID信号を検出するため、ゲート8が図1(d)に示す
ようにパルス後開かれる。アッテネータ9の減衰率が一
定の場合、検波器11から得られるFID信号は、図1
(b)に示されるように短時間で減衰してしまうこと
は、先に述べた通りである。このような信号をA−D変
換器に導入しても、信号はすぐにビット落ちにより値が
0となってしまう。
In the above structure, the microwave generated from the oscillator 3 is taken out as a microwave pulse by the gate 5 opened for a short time at the timing of FIG. 1 (c), and is amplified to a sufficient electric power via the amplifier 6. It is supplied to the cavity resonator 2 via the circulator 7. F from a spin system excited by this microwave pulse magnetic field
To detect the ID signal, the gate 8 is opened after the pulse as shown in FIG. 1 (d). When the attenuation rate of the attenuator 9 is constant, the FID signal obtained from the detector 11 is as shown in FIG.
As described in (b), it is attenuated in a short time as described above. Even if such a signal is introduced into the AD converter, the value of the signal immediately becomes 0 due to bit loss.

【0011】この時、本発明では、アッテネータ9の減
衰率を関数発生器16からの時間関数信号にしたがって
時間と共に変化させている。図1(e)は関数発生器1
6が発生する時間関数信号を示し、この信号に基づい
て、アッテネータ9の減衰率は図1(f)に示すよう
に、最初は減衰率が大きく、時間と共に減衰率が減少す
るように変化する。このため、検波器11から得られる
FID信号は、図1(g)に示すように、緩やかな減衰
を示すようになり、A−D変換器12、13を介して共
鳴周波数の情報を十分に含んだFID信号を取り込むこ
とが可能となる。
At this time, in the present invention, the attenuation factor of the attenuator 9 is changed with time according to the time function signal from the function generator 16. FIG. 1E shows the function generator 1.
6 shows a time function signal generated, and based on this signal, the attenuation rate of the attenuator 9 changes so that the attenuation rate is large at first and decreases with time as shown in FIG. 1 (f). . Therefore, the FID signal obtained from the detector 11 exhibits a gradual attenuation as shown in FIG. 1 (g), and the resonance frequency information is sufficiently transmitted through the AD converters 12 and 13. It is possible to capture the FID signal that includes it.

【0012】この様に、減衰率の時間的変化がもたらす
FID信号の振幅変化は、従来A−D変換した後にデジ
タル的に処理されていたフィルタ処理を、アナログ的に
実行していることに相当するが、本発明では、A−D変
換器でサンプリングする前にフィルタ処理しているた
め、小信号に対するA−D変換時のビット落ちを防ぐこ
とができる。又、積算による大幅なSN比の改善が期待
できる。
As described above, the change in the amplitude of the FID signal caused by the change in the attenuation rate with time is equivalent to that the filter processing, which has been digitally processed after the A / D conversion in the related art, is analogically executed. However, in the present invention, since filter processing is performed before sampling by the AD converter, it is possible to prevent bit loss during AD conversion for a small signal. In addition, a significant improvement in the SN ratio due to integration can be expected.

【0013】また、FID信号の減衰速度(緩和速度)
を見掛上緩やかにすることは、周波数スペクトルの線幅
を狭くすることに対応し、それにより、スペクトルの分
解能の向上を図ることができる。さらに、FID信号の
減衰速度(緩和速度)を見掛上緩やかにすることは、時
間領域の信号の長周期の変化をより明瞭に抽出させるた
め、非常に小さな磁気相互作用をスペクトル上に浮かび
上がらせることができる。
Also, the attenuation speed (relaxation speed) of the FID signal
Apparently grading corresponds to narrowing the line width of the frequency spectrum, which can improve the resolution of the spectrum. Further, the apparently gentle decay rate (relaxation rate) of the FID signal allows a change in the long period of the signal in the time domain to be more clearly extracted, so that a very small magnetic interaction appears on the spectrum. be able to.

【0014】なお、減衰率を変化させる関数は、時間と
共に減衰率が減少すれば、指数関数でも良いし、一次関
数、二次関数などその他の関数を用いても良い。各種の
時間関数を記憶したメモリ16を用い、その中の一つを
選択して前記関数発生器15にセットすることにより、
所望の時間関数信号を発生することができる。
The function for changing the attenuation rate may be an exponential function or another function such as a linear function or a quadratic function as long as the attenuation rate decreases with time. By using the memory 16 in which various time functions are stored and selecting one of them and setting it in the function generator 15,
The desired time function signal can be generated.

【0015】また、上記実施例ではアッテネータにより
減衰率を変化させたが、減衰を負の利得と考えれば、要
するに利得が時間と共に増大するような利得可変手段を
設ければ良い。
Although the attenuation rate is changed by the attenuator in the above embodiment, if the attenuation is considered to be a negative gain, it is sufficient to provide a gain varying means so that the gain increases with time.

【0016】[0016]

【発明の効果】以上詳述したごとく、本発明によれば、
検出信号をデジタル信号に変換する前の信号系に利得可
変手段を配置すると共に、該利得可変手段の利得が時間
経過と共に増大するように前記マイクロ波パルス磁場照
射に同期して前記利得可変手段を制御する手段を設けた
ため、高速に減衰する信号を従来よりも長時間にわたっ
て十分なレベルで観測することが可能になり、それによ
り、高分解能のスペクトルが得られるパルスフーリエ変
換ESR装置が実現される。
As described in detail above, according to the present invention,
Gain varying means is arranged in the signal system before the detection signal is converted into a digital signal, and the gain varying means is synchronized with the microwave pulse magnetic field irradiation so that the gain of the gain varying means increases with time. Since the control means is provided, it becomes possible to observe a signal that attenuates at a high speed at a sufficient level for a longer time than in the past, and thereby a pulse Fourier transform ESR device that can obtain a spectrum with high resolution is realized. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の動作を説明するための波形
図である。
FIG. 1 is a waveform diagram for explaining the operation of an embodiment of the present invention.

【図2】本発明の一実施例を示す図である。FIG. 2 is a diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 磁石 2 空胴共振器 3 マイクロ波発振器 4 方向性結合器 5,8 マイクロ波ゲート 6 マイクロ波増幅器 7 サーキュレータ 9 アッテネータ 10 マイクロ波増幅器 11 クォドラチャ検波器 12,13 A−D変換器 14 処理装置 15 関数発生器 16 メモリ 17 制御部 1 Magnet 2 Cavity Resonator 3 Microwave Oscillator 4 Directional Coupler 5,8 Microwave Gate 6 Microwave Amplifier 7 Circulator 9 Attenuator 10 Microwave Amplifier 11 Quadrature Detector 12, 13 A-D Converter 14 Processor 15 Function generator 16 Memory 17 Control unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 静磁場中に配置されるスピン系に観測用
マイクロ波パルス磁場を照射し、照射後該マイクロ波パ
ルス磁場により励起されたスピン系からの応答を信号と
して検出し、得られた検出信号をデジタル信号に変換し
た後フーリエ変換するパルスフーリエ変換電子スピン共
鳴装置において、検出信号をデジタル信号に変換する前
の信号系に利得可変手段を配置すると共に、該利得可変
手段の利得が時間経過と共に増大するように前記マイク
ロ波パルス磁場照射に同期して前記利得可変手段を制御
する手段を設けたことを特徴とするパルスフーリエ変換
電子スピン共鳴装置。
1. A spin system arranged in a static magnetic field is irradiated with a microwave pulse magnetic field for observation, and after irradiation, a response from the spin system excited by the microwave pulse magnetic field is detected as a signal and obtained. In a pulse Fourier transform electron spin resonance apparatus that performs a Fourier transform after converting a detection signal into a digital signal, a gain varying means is arranged in a signal system before converting the detection signal into a digital signal, and the gain of the gain varying means is time-dependent. A pulse Fourier transform electron spin resonance apparatus, characterized in that means for controlling the gain varying means is provided in synchronization with the microwave pulse magnetic field irradiation so as to increase with the passage of time.
JP2984393A 1993-01-26 1993-01-26 Pulse fourier-transform electron spin-resonance device Pending JPH06222121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2984393A JPH06222121A (en) 1993-01-26 1993-01-26 Pulse fourier-transform electron spin-resonance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2984393A JPH06222121A (en) 1993-01-26 1993-01-26 Pulse fourier-transform electron spin-resonance device

Publications (1)

Publication Number Publication Date
JPH06222121A true JPH06222121A (en) 1994-08-12

Family

ID=12287290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2984393A Pending JPH06222121A (en) 1993-01-26 1993-01-26 Pulse fourier-transform electron spin-resonance device

Country Status (1)

Country Link
JP (1) JPH06222121A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064028A1 (en) * 2002-01-30 2003-08-07 Honda Giken Kogyo Kabushiki Kaisha Substance activating method and device therefor
JP2017067546A (en) * 2015-09-29 2017-04-06 株式会社Kyoto Future Medical Instruments Current measuring device and magnetic resonance measuring system equipped therewith

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064028A1 (en) * 2002-01-30 2003-08-07 Honda Giken Kogyo Kabushiki Kaisha Substance activating method and device therefor
JP2017067546A (en) * 2015-09-29 2017-04-06 株式会社Kyoto Future Medical Instruments Current measuring device and magnetic resonance measuring system equipped therewith

Similar Documents

Publication Publication Date Title
Tomlinson et al. Fourier synthesized excitation of nuclear magnetic resonance with application to homonuclear decoupling and solvent line suppression
US4034191A (en) Spectrometer means employing linear synthesized RF excitation
Kaufmann et al. DAC-board based X-band EPR spectrometer with arbitrary waveform control
JPS6012574B2 (en) nuclear magnetic resonance apparatus
US4065714A (en) Pulsed RF excited spectrometer having improved pulse width control
EP2375259A1 (en) Electric potential sensor for use in the detection of nuclear magnetic resonance signals
US3810001A (en) Nuclear magnetic resonance spectroscopy employing difference frequency measurements
US4193024A (en) Pulsed nuclear magnetic resonance spectrometers
US3975675A (en) Impulse response magnetic resonance spectrometer
Keller et al. Quantum harmonic oscillator spectrum analyzers
JPH06222121A (en) Pulse fourier-transform electron spin-resonance device
US3681680A (en) Rf spectrometer employing modulation of a dc magnetic field to excite resonance
US4327425A (en) Method for the recording of spin resonance spectra and an apparatus for the implementation of such method
EP0148362B1 (en) Method of obtaining pseudofiltering effect in process of accumulation and nuclear magnetic resonance spectrometry utilizing same
US4689561A (en) Nuclear magnetic resonance spectroscopy
Ichikawa Microcomputer-controlled pulse generator for an electron spin-echo spectrometer
US3771054A (en) Method and apparatus for observing transient gyromagnetic resonance
EP0583260B1 (en) Method and apparatus for obtaining an nmr signal having a preselected frequency domain
Froncisz et al. Pulse saturation recovery, pulse ELDOR, and free induction decay electron paramagnetic resonance detection using time-locked subsampling
del Río Portilla et al. Accurate determination of small nuclear magnetic resonance coupling constants from decoupling experiments
JPH0324991B2 (en)
Palmer et al. Excitation of ion resonances by the ISIS 2 HF transmitter
Forrer et al. Direct EPR detection of transient and continuous wave signals at 2.5 GHz
Dietrich et al. Broadband FFT method for betatron tune measurements in the acceleration ramp at COSY-Jülich
KR100282700B1 (en) Signal processing circuit of moisture measuring device using hydrogen nuclear magnetic resonance.

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010116