JPS618977A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS618977A
JPS618977A JP12968184A JP12968184A JPS618977A JP S618977 A JPS618977 A JP S618977A JP 12968184 A JP12968184 A JP 12968184A JP 12968184 A JP12968184 A JP 12968184A JP S618977 A JPS618977 A JP S618977A
Authority
JP
Japan
Prior art keywords
metal layer
substrate
silicon substrate
insulating film
silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12968184A
Other languages
Japanese (ja)
Inventor
Masahiko Hotta
堀田 正彦
Shingo Sakakibara
慎吾 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Gakki Co Ltd
Original Assignee
Nippon Gakki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Gakki Co Ltd filed Critical Nippon Gakki Co Ltd
Priority to JP12968184A priority Critical patent/JPS618977A/en
Priority to US06/747,175 priority patent/US4619035A/en
Publication of JPS618977A publication Critical patent/JPS618977A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28537Deposition of Schottky electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8222Bipolar technology

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To eliminate the problems such as increase in leak currents, decrease in withstanding voltage and deterioration of operating margin at a high temperature and to obtain stable diode characteristics, by forming a plurality of Schottky barrier diodes having different forward direction voltages on one semiconductor substrate by sequential siliciding treatments. CONSTITUTION:The surface of a silicon substrate 10 is thermally oxidized, and an insulating film 12 comprising SiO2 is formed. A hole is provided in the insulating film 12 so that the surface part of the substrate is exposed. A first metal layer (e.g., platinum) is deposited on the entire surface of the substrate. Heat treatment is performed and the first metal layer 14 is made to react with the silicon substrate 10. Thus a first silicide layer 16 is formed. The part of the first metal layer, which is not reacted, is etched away. Then the insulating film 12 is selectively etched. After a photoresist film 18 is removed, a second metal layer (e.g., titanium) 20 is deposited on the entire surface of the substrate. Heat treatment is performed, and the second metal layer 20 is made to react with the silicon substrate 10, and a second silicide layer 22 is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体基板上に順方向電圧(VF)の異な
る複数のショットキー・バリア・ダイオードを有する半
導体装置の製法に関し、シリサイド形成温度ケ異にする
複数種類の金属ン順次にシリサイド化することにより所
望の順方向電圧を有する安定した特性のショットキー・
バリア・ダイオードが得られるようにしたものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device having a plurality of Schottky barrier diodes having different forward voltages (VF) on a semiconductor substrate. By sequentially siliciding multiple types of different metals, a Schottky metal with stable characteristics and a desired forward voltage can be produced.
This allows a barrier diode to be obtained.

〔従来の技術〕[Conventional technology]

一般に、ショットキ−0バリア・ダイオードの順方向電
圧はバリア・ハイドによって決まり、このバリア・ハイ
ドは半導体表面の不純物濃度と、半導体表面に接触させ
るべき金属の材料とに依存することはよく知られている
In general, the forward voltage of a Schottky-0 barrier diode is determined by the barrier hide, and it is well known that this barrier hide depends on the impurity concentration of the semiconductor surface and the metal material that is to be in contact with the semiconductor surface. There is.

従来、シリコン基板上に順方向電圧を異にする複数のシ
ョットキー・バリア・ダイオード2作るにあたっては、
(alシリコン基板表面の不純物濃度を例えばイオン注
入法等により変える方法及び(b)シリコン基板表面に
接触はせるべき金属の材料を変える方法等が知られてい
る。
Conventionally, when creating multiple Schottky barrier diodes 2 with different forward voltages on a silicon substrate,
(b) A method of changing the impurity concentration on the surface of the silicon substrate by, for example, an ion implantation method, and (b) a method of changing the material of the metal to be brought into contact with the silicon substrate surface are known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記(a)の方法によると、順方向電圧を低下でせたシ
ョットキー・バリア・ダイオードでは、リーり電流の増
大、耐圧の低下、高温での動作マージン劣化等の問題点
があった。また、上記tblの方法によると、順方向電
圧の低いショットキー・−バリア嗜ダイオード乞形成す
るためにシリコン基板表面にタンタル(T、)、チタン
−タングステン(Ti−W)合金等の金属を接触させて
おシ、表面の不安定性がそのままダイオード特性の不安
定性につ゛ながること、単なる金属材料の選定では所望
の順方向電圧を得難いことなどの問題点があった。
According to the above method (a), the Schottky barrier diode with a reduced forward voltage has problems such as an increase in leakage current, a decrease in withstand voltage, and a deterioration in the operating margin at high temperatures. In addition, according to the TBL method described above, metals such as tantalum (T), titanium-tungsten (Ti-W) alloy, etc. are contacted on the silicon substrate surface to form a Schottky-barrier diode with a low forward voltage. Furthermore, there are other problems, such as the instability of the surface directly leading to instability of the diode characteristics, and the difficulty of obtaining a desired forward voltage simply by selecting a metal material.

〔問題点ケ解決するための手段〕[Means for solving problems]

この発明は、上記した問題点を解決するためになされた
ものであって、シリコン基板の第1の表面部分にシリサ
イド形成温度が比較的高い第1の金属層を被着してシリ
サイド化することにより第1のショットキーΦバリア・
ダイオードを形成した後、シリコン基板の第1の表面部
分とは異なる第2の表面部分にシリサイド形成温度が比
較的低l        い第2の金属層を被着してシ
リサイド化することにより第2のショットキー−バリア
・ダイオードを形成するようにしたことを特徴とするも
のである。
The present invention has been made to solve the above-mentioned problems, and involves depositing a first metal layer having a relatively high silicide formation temperature on the first surface portion of a silicon substrate to form a silicide. The first Schottky Φ barrier is
After forming the diode, a second metal layer having a relatively low silicide formation temperature is deposited on a second surface portion of the silicon substrate different from the first surface portion, and the second metal layer is silicided. The device is characterized in that a Schottky barrier diode is formed.

〔作用〕[Effect]

上記のようにj1迫次のシリサイド化処理によって複数
のショットキー・バリア・ダイオードχ形成すると、基
板の不純物濃度を変えるのでけないためリーク電流、耐
圧、高温での動作マージン等に関して何等問題を生ずる
ことがない、、寸だ、整流接合はシリサイド層とシリコ
ン基板との界面に形成されるため、金属−シリコン接触
の場合のように表面の不安定性の影響を受けることが少
なく、安定したダイオード特性が得られる。その上、順
方向電圧は、金属材料の選定によってシリサイド−シリ
コン界面の深さを制御することができるので、所望の順
方向電圧乞簡単に得ることができ、回路設計上の要求に
きめ細かに対応することかできる。
As mentioned above, if multiple Schottky barrier diodes are formed by the subsequent silicidation process, the impurity concentration of the substrate will change, causing problems with leakage current, withstand voltage, operating margin at high temperatures, etc. Since the rectifying junction is formed at the interface between the silicide layer and the silicon substrate, it is less affected by surface instability as in the case of metal-silicon contact, resulting in stable diode characteristics. is obtained. Furthermore, the forward voltage can be controlled by the depth of the silicide-silicon interface by selecting the metal material, so the desired forward voltage can be easily obtained, allowing fine-grained response to circuit design requirements. I can do something.

〔実施例〕〔Example〕

第1図(at〜+flは、この発明の一実施例による半
      。
FIG. 1 (at~+fl is a half according to an embodiment of the present invention.

4よ□。ゎ工、。?4(7)ア、ワ□、13.(8) 
    □′i〜(f)の工程’& 111t次に説明
するりIalシリコン基板10の表面暑熱酸化して8i
02からなる絶縁膜12Y形成した後、この絶縁膜12
に通常のフォトエッチ技術により基板表面部分を露呈さ
せるような孔を設ける。そして、スパッタリング法又は
真空蒸着法Z用いて基板上全面に比較的シリサイド形成
温度の高い第1の金属層(例えば白金)14を被着する
4, □. Wow,. ? 4 (7) A, W □, 13. (8)
□'Steps i to (f)'& 111t As will be explained next, the surface of the Ial silicon substrate 10 is heated and oxidized to 8i.
After forming the insulating film 12Y made of 0.02, this insulating film 12
A hole is formed in the substrate by a conventional photoetching technique to expose the surface portion of the substrate. Then, a first metal layer (for example, platinum) 14 having a relatively high silicide formation temperature is deposited on the entire surface of the substrate using a sputtering method or a vacuum evaporation method Z.

Ibl熱処理ン実施して第1の金属層14’lシリコン
基板10と反応させることにより第1のシリサイド層1
6ケ形成する。そして、第1の金属層14の未反応部分
をエッチ除去する。
The first silicide layer 1 is formed by performing an Ibl heat treatment to react with the first metal layer 14'l silicon substrate 10.
Form 6 pieces. Then, the unreacted portions of the first metal layer 14 are removed by etching.

telフォトレジスト膜18ヲマスクとして絶縁膜12
を選択的にエッチすることにより前述の(a)の場合と
は異なる基板表面部分ン露呈させるような孔を絶縁膜1
2に設ける。
The insulating film 12 is used as a mask for the tel photoresist film 18.
By selectively etching the insulating film 1, holes are formed that expose a different part of the substrate surface than in the case of (a) above.
Provided in 2.

tdlフオトレクスト膜18ヲ除去した後、前述のIa
lの場合と同様にして基板上全面に比較的シリサイド形
成温度の低い第2の金属層(例えばチタン)20を被着
する。
After removing the tdl photorect film 18, the above-mentioned Ia
A second metal layer (for example, titanium) 20 having a relatively low silicide formation temperature is deposited on the entire surface of the substrate in the same manner as in case 1.

tel熱処理乞実施して第2の金g/%12ovシ2ノ
コン基板10と反応でせることにより第2のシリサイド
層22を形成する。この場合、第1のシリティド層16
上には第2の金属層加との反応による第3のシリサイド
層Uが形成でれるが、矛lのシリサイドJ@16の界面
深さdl  より第2のシリサイド層加の界面深さdz
 を小きくするように処理すれば第3のシリ丈イド層列
が第1のシリサイド層16の最深部にまで到達するのを
防ぐことができる。なお、第2の金属層加の未反応部分
はエッチ除去する。
A second silicide layer 22 is formed by performing a tel heat treatment to react with the second gold g/% 12 ov silicon substrate 10. In this case, the first silicided layer 16
A third silicide layer U is formed on top by reaction with the second metal layer, but the interface depth dz of the second silicide layer is determined from the interface depth dl of the silicide J@16.
By processing to reduce the silicide layer, it is possible to prevent the third silicide layer sequence from reaching the deepest part of the first silicide layer 16. Note that the unreacted portions of the second metal layer are removed by etching.

上記ノ結果、第1のシリサイド層16とシリコン基板1
0との間には第1のショットキー・バリアーダイオード
が、また第2のシリサイド層nとシリコン基板10との
間には第2のショットキーΦバリア・ダイオードがそれ
ぞれ形成され、これら第1及び第2のショットキー・バ
リア・ダイオードは互いに異なる順方向電圧を有するも
のである。
As a result of the above, the first silicide layer 16 and the silicon substrate 1
A first Schottky barrier diode is formed between the first silicide layer n and the silicon substrate 10, and a second Schottky Φ barrier diode is formed between the second silicide layer n and the silicon substrate 10. The second Schottky barrier diodes have different forward voltages.

げ)この後は、例えId、A1等の配線用金属ヶ蒸着し
てパターニングすることにより配線層あ及び公を形成す
る。
(g) After this, wiring metals such as Id and A1 are deposited and patterned to form wiring layers.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、+ll[次のシリサ
イド化処理により順方向電圧の異なる複数のショットキ
ー・バリア・ダイオードを一半導体基板上に形成するよ
うにしたので、次のような曖れた作用効果が得られる。
As described above, according to the present invention, a plurality of Schottky barrier diodes with different forward voltages are formed on one semiconductor substrate by the following silicidation process, so that the following ambiguity is avoided. You can get the desired effect.

(1)各ダイオード毎に基板表面の不純物首席を変える
のではないため、リーク電流の増大、耐圧の低下、高温
での動作マージン劣イ〔等の問題が彦い。
(1) Since the main impurity on the substrate surface is not changed for each diode, problems such as increased leakage current, decreased breakdown voltage, and poor operating margin at high temperatures occur.

(2)各ダイオード毎にシリサイド−シリコン界面に整
流接合が形成されるので、安定したダイオード特性が得
られるつ (3)各ダイオード毎に金属材料の選定と、シリサイド
−シリコン界面の深さ制御とによって順方向電圧を決定
できるので、所望の順方向電圧乞簡単に得ることができ
る。
(2) Since a rectifying junction is formed at the silicide-silicon interface for each diode, stable diode characteristics can be obtained. (3) Selection of metal material for each diode and depth control of the silicide-silicon interface Since the forward voltage can be determined by , the desired forward voltage can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al〜tflは、この発明の一実施例による半
導体装置の製造工程を示す基板断面図である。 10・・・シリコン基板、12・・・絶縁膜、14・・
・第1の金属層、16・・・第1のシリサイド層、加・
・・第2の金属層、22・・・第2のシリサイド層。 出願人   日本楽器製造株式会社 代理人   弁理士 伊沢敏 昭 ・デ 第1図 第1図
FIG. 1 (al to tfl are cross-sectional views of substrates showing the manufacturing process of a semiconductor device according to an embodiment of the present invention. 10... silicon substrate, 12... insulating film, 14...
・First metal layer, 16...first silicide layer,
...Second metal layer, 22...Second silicide layer. Applicant Nippon Musical Instruments Manufacturing Co., Ltd. Agent Patent Attorney Satoshi Izawa Akira De Figure 1 Figure 1

Claims (1)

【特許請求の範囲】 (a)シリコン基板の第1の表面部分にシリサイド形成
温度が比較的高い第1の金属層を被着してシリサイド化
することにより第1のショットキー・バリア・ダイオー
ドを形成する工程と、 (b)前記シリコン基板の前記第1の表面部分とは異な
る第2の表面部分にシリサイド形成温度が比較的低い第
2の金属層を被着してシリサイド化することにより第2
のショットキー・バリア・ダイオードを形成する工程と を含む半導体装置の製法。
[Claims] (a) A first Schottky barrier diode is formed by depositing a first metal layer having a relatively high silicide formation temperature on a first surface portion of a silicon substrate and siliciding the first metal layer. (b) depositing a second metal layer having a relatively low silicide formation temperature on a second surface portion of the silicon substrate different from the first surface portion and silicidating the second metal layer; 2
A method for manufacturing a semiconductor device, comprising a step of forming a Schottky barrier diode.
JP12968184A 1984-06-23 1984-06-23 Manufacture of semiconductor device Pending JPS618977A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12968184A JPS618977A (en) 1984-06-23 1984-06-23 Manufacture of semiconductor device
US06/747,175 US4619035A (en) 1984-06-23 1985-06-21 Method of manufacturing a semiconductor device including Schottky barrier diodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12968184A JPS618977A (en) 1984-06-23 1984-06-23 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS618977A true JPS618977A (en) 1986-01-16

Family

ID=15015539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12968184A Pending JPS618977A (en) 1984-06-23 1984-06-23 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS618977A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582772A (en) * 1991-09-20 1993-04-02 Mitsubishi Electric Corp Semiconductor device and its manufacture
KR100407369B1 (en) * 2000-12-25 2003-11-28 샤프 가부시키가이샤 Semiconductor device and manufacturing method therefor
JP2007288082A (en) * 2006-04-20 2007-11-01 Renesas Technology Corp Semiconductor device and its manufacturing method
JP2008305599A (en) * 2007-06-06 2008-12-18 Yazaki Corp Connector housing and connector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582772A (en) * 1991-09-20 1993-04-02 Mitsubishi Electric Corp Semiconductor device and its manufacture
KR100407369B1 (en) * 2000-12-25 2003-11-28 샤프 가부시키가이샤 Semiconductor device and manufacturing method therefor
JP2007288082A (en) * 2006-04-20 2007-11-01 Renesas Technology Corp Semiconductor device and its manufacturing method
JP2008305599A (en) * 2007-06-06 2008-12-18 Yazaki Corp Connector housing and connector

Similar Documents

Publication Publication Date Title
US4551908A (en) Process of forming electrodes and interconnections on silicon semiconductor devices
JP2915828B2 (en) Semiconductor wiring structure and method of manufacturing the same
US4102733A (en) Two and three mask process for IGFET fabrication
US4332839A (en) Method for making integrated semiconductor circuit structure with formation of Ti or Ta silicide
US4337476A (en) Silicon rich refractory silicides as gate metal
JP2596962B2 (en) Semiconductor device and manufacturing method thereof
JPS58175846A (en) Manufacture of semicondutor device
JPS61142739A (en) Manufacture of semiconductor device
GB2077993A (en) Low sheet resistivity composite conductor gate MOS device
US5225360A (en) Manufacturing method of self-aligned GaAs FET using refractory gate of dual structure
USRE32207E (en) Method for making integrated semiconductor circuit structure with formation of Ti or Ta silicide
JPS618977A (en) Manufacture of semiconductor device
US5698468A (en) Silicidation process with etch stop
JPS62113421A (en) Manufacture of semiconductor device
JPS6119179A (en) Manufacture of semiconductor device
US5350711A (en) Method of fabricating high temperature refractory metal nitride contact and interconnect structure
JPS63120419A (en) Manufacture of semiconductor device
US5661079A (en) Contacting process using O-SIPOS layer
KR100431309B1 (en) Method for forming metal interconnection in semiconductor device
JPH08124877A (en) Manufacture of semiconductor integrated circuit
JPH02170424A (en) Manufacture of semiconductor device
JPS5856459A (en) Manufacture of semiconductor device
KR20010003579A (en) Method of forming a metal wiring in a semiconductor device
JP3238804B2 (en) Method for manufacturing semiconductor device
JPS6068656A (en) Manufacture of semiconductor device