USRE32207E - Method for making integrated semiconductor circuit structure with formation of Ti or Ta silicide - Google Patents
Method for making integrated semiconductor circuit structure with formation of Ti or Ta silicide Download PDFInfo
- Publication number
- USRE32207E USRE32207E US06/429,299 US42929982A USRE32207E US RE32207 E USRE32207 E US RE32207E US 42929982 A US42929982 A US 42929982A US RE32207 E USRE32207 E US RE32207E
- Authority
- US
- United States
- Prior art keywords
- layer
- polysilicon
- sio
- degrees
- overlay
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 11
- 238000000034 method Methods 0.000 title claims description 9
- 229910052719 titanium Inorganic materials 0.000 title claims description 6
- 229910021332 silicide Inorganic materials 0.000 title claims description 5
- 230000015572 biosynthetic process Effects 0.000 title claims description 4
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 title claims description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 40
- 229920005591 polysilicon Polymers 0.000 claims abstract description 30
- 229910004217 TaSi2 Inorganic materials 0.000 claims abstract description 16
- 229910008479 TiSi2 Inorganic materials 0.000 claims abstract 2
- DFJQEGUNXWZVAH-UHFFFAOYSA-N bis($l^{2}-silanylidene)titanium Chemical compound [Si]=[Ti]=[Si] DFJQEGUNXWZVAH-UHFFFAOYSA-N 0.000 claims abstract 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 36
- 239000000377 silicon dioxide Substances 0.000 claims description 18
- 229910052681 coesite Inorganic materials 0.000 claims description 15
- 229910052906 cristobalite Inorganic materials 0.000 claims description 15
- 229910052682 stishovite Inorganic materials 0.000 claims description 15
- 229910052905 tridymite Inorganic materials 0.000 claims description 15
- 239000004020 conductor Substances 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 10
- 238000005530 etching Methods 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 238000005245 sintering Methods 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 239000000758 substrate Substances 0.000 abstract description 6
- 150000001875 compounds Chemical class 0.000 abstract 2
- 229910021341 titanium silicide Inorganic materials 0.000 description 13
- 235000012431 wafers Nutrition 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 239000010408 film Substances 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 229920002120 photoresistant polymer Polymers 0.000 description 5
- 241001354471 Pseudobahia Species 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 229910007277 Si3 N4 Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical group [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910007991 Si-N Inorganic materials 0.000 description 2
- 229910006294 Si—N Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 1
- 229910003944 H3 PO4 Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910020667 PBr3 Inorganic materials 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- -1 boron ions Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000006023 eutectic alloy Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000005247 gettering Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910021344 molybdenum silicide Inorganic materials 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- IPNPIHIZVLFAFP-UHFFFAOYSA-N phosphorus tribromide Chemical compound BrP(Br)Br IPNPIHIZVLFAFP-UHFFFAOYSA-N 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/53204—Conductive materials
- H01L23/53271—Conductive materials containing semiconductor material, e.g. polysilicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28026—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
- H01L21/28035—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
- H01L21/28044—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
- H01L21/28052—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a silicide layer formed by the silicidation reaction of silicon with a metal layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/32055—Deposition of semiconductive layers, e.g. poly - or amorphous silicon layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76886—Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
- H01L21/76889—Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances by forming silicides of refractory metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4916—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
- H01L29/4925—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
- H01L29/4933—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a silicide layer contacting the silicon layer, e.g. Polycide gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- This invention relates to semiconductor integrated circuits.
- polysilicon In the large scale integration (LSI)-MOS-FET technology, polysilicon has become the standard material for the conducting layer closest to the epitaxial film. Typically, the polysilicon layer is a first layer separated from a second electrically conducting overlay by an insulating layer typically of silicon dioxide. But polysilicon exhibits relatively high resistivity and the lengths of polysilicon paths is limited as a consequence. For example, various functional areas in an integrated circuit chip cannot be interconnected together directly by polysilicon. Rather, the connection from each area are brought out to aluminum bus bars formed from the second overlay. Similarly, LSI high speed circuits require high conductivity input-output lines. The requirement results in the exclusion of polysilicon as a material for such use. Aluminum power lines are needed and this often requires aluminum bonding pads within the chip. The additional aluminum areas are, essentially, wasted space and parallel aluminum conductors create yield problems.
- a relatively high conductivity material leading to the elimination of aluminum from use in the above-mentioned applications in integrated circuits would lead to, for example, a semiconductor memory cell size reduction of from 30 to 50%.
- the invention thus comprises a semiconductor integrated circuit including a single crystal semiconductor layer coated by an SiO 2 layer and including a lamelate overlay comprising first and second electrically conducting layers separated by an electrically insulating layer.
- the structure is characterized in that the overlay comprises a substrate of a polysilicon layer and a layer of a material taken from a class consisting of TiSi 2 and TaSi 2 .
- FIG. 1 is a projection view of a semiconductor integrated circuit chip
- FIGS. 2 and 3 are cross-section views of portions of the chip shown packaged in FIG. 1;
- FIG. 4 is a block diagram of a process for making the chips of FIG. 1.
- FIG. 1 shows a projection view of a semiconductor chip assembly.
- the assembly includes a substrate 11.
- the substrate comprises layers 12 and 13 sandwiching a sunburst pattern 15 of electrical conductors therebetween.
- Layer 12 includes a centrally disposed square aperture 16 which exposes the inner ends of the conductors of the sunburst pattern.
- a semiconductor integrated circuit chip 20 is mounted on the portion of layer 13 exposed by the aperture 16.
- chip 20 includes electrical lands 22 at its periphery for external connection to the exposed inner ends of the electrical conductors of the sunburst.
- An integrated circuit chip has multiple functional areas defined therein. These areas are interconnected with one another and to lands 22 by conductors defined by patterned layers of electrically conducting material formed on the surfaces of chip 20. These layers are electrically insulated from one another and from the epitaxial layer of the chip typically by silicon dioxide layers. Of course, contact between portions of the conducting layers and various regions of opposite conductivity in the epitaxial layer require through connections.
- the term "through connection” herein refers to an electrically conducting path from one layer of conducting material through other layers separating it from the epitaxial layer. When through connections are made, electrical continuity is achieved between the areas of the chip and the externally exposed ends of the conductors of the sunburst pattern. The design permits external connection even with an enclosure (not shown) over opening 16 secured in place.
- Freeform area 30 of FIG. 1 is a representative area of chip 20 and it is to this area that we now turn our attention.
- FIGS. 2 and 3 show area 30 partially in cross section to expose the plurality of layers from which the chip is constituted.
- the bottom layer 40 as shown, illustratively, comprises silicon on which an electrically insulating layer of silicon dioxide is formed typically by growing the layer by heating in an oxidizing atmosphere. This step is represented by the top block in FIG. 4.
- Layer 40 conveniently comprises an epitaxially grown layer 10-20 microns thick and the oxide layer has a thickness of 500-9000 Angstroms.
- the insulating layer is designated 41 in FIG. 1.
- the next layer 42 comprises polysilicon formed by chemical vapor deposition (CVD) and has a thickness of about 5000 Angstroms.
- a layer of titanium of about 1000 Angstroms is deposited on the polysilicon and is then sintered at a temperature of about 900 degrees C. as indicated by the next block in FIG. 4. This step forms approximately 2500 Angstroms of titanium silicide (TiSi 2 ) which is represented at 43 in each of FIGS. 2 and 3.
- the titanium silicide layer next is heated in an oxygen atmosphere at 1000 degrees C. for 40 minutes to form an SiO 2 layer 44 as indicated by the fourth block from the top in FIG. 4.
- the next step is to etch a pattern in SiO 2 layer as indicated by the fifth block in FIG. 4.
- Etching is carried out through a mask by exposure to, for example, a glow-discharge plasma containing C 2 F 6 (55%) and CHF 3 (45%) now a commonly used etchant for SiO 2 to form apertures in the layer as represented at 45 in FIG. 3.
- a layer of aluminum 0.5% Cu, 2% Si alloy, 1 ⁇ thick is deposited by sputter gun deposition and etched, for example, in a plasma of CCl 4 , Bcl 3 and He.
- the polysilicon layer provides the silicon source for the reaction of Ti to TiSi 2 .
- Another purpose is as a source of silicon for subsequent oxidation of the composite TiSi 2 and polysilicon to form SiO 2 .
- it is necessary therefore to retain the high conductivity through subsequent device processing steps which involve exposure to oxidizing ambients and high temperature to ensure the presence of "excess" polysilicon where "excess" is defined as a layer greater than 1000 Angstroms.
- a layer of less than 1000 Angstroms results in undesirable defects in the polysilicon.
- For a 1000 Angstrom layer of titanium a TiSi 2 layer of over 2000 Angstroms is formed with 1 ohm/square resistivity.
- the TiSi 2 layer has a thickness of less than 5000 Angstroms to avoid stress cracking.
- Embodiments employing TaSi 2 instead of TiSi 2 are similar in that TaSi 2 is formed by sintering at 900 or 1000 degrees C. or above in H 2 or A r . But the attainable resistivity decreases as the temperature of formation increases above 900 degrees C. Moreover, oxidation is carried out in steam rather than in dry oxygen as is the case with TiSi 2 . These differences related to the use of TaSi 2 are shown in the appropriate blocks of FIG. 4. TaSi 2 on polysilicon does not oxidize in dry ambient at temperature up to 1100 degrees C.
- molybdenum and Tungsten silicides cannot be used because they form MoO 3 and WO 3 which are volatile at high temperatures commonly used for processing integrated circuits.
- the following is a specific example of an IGFET fabricated with the above-described TaSi 2 system.
- the starting material is a substrate of single crystal Si, having a (100) orientation and doped with boron to a resistivity of 7 ohm cm.
- the Si-substrate is thermally oxidized at 1000 degrees C. for 30 minutes in a dry oxygen ambient to grow an oxide, 350 Angstroms thick. Over this oxide, a thin film of Si 3 N 4 is deposited by chemical vapor deposition from a mixture of silane and ammonia at 680 degrees C.
- a layer of photoresist is defined into a pattern using standard photolithographic techniques so as to leave the resist over active device areas of the wafer.
- the Si 3 N 4 is etched from the nonactive "field" areas thus defined, using an rf-glow discharge in a mixture of CF 4 and O 2 .
- the etched areas are implanted with boron ions accelerated to a voltage of 30 kV and up to a total dose of 1.5 ⁇ 10 13 ions/cm 2 .
- This step leads to the formation of a heavily p-doped channel stop with a high threshold voltage in the nonactive field areas.
- the resist is then stripped in an oxygen plasma and the exposed areas of thin oxide in the field region are etched in a solution of buffered HF down to bare Si. With the active areas masked by the Si 3 N 4 film, the wafer is subjected to a mixture of 10 percent O 2 +90 percent N 2 at 1100 degrees C. for 20 minutes, to drive in the implanted B ions and then to a steam ambient at 1000 degrees C.
- a field oxide 10,000 Angstroms thick.
- the masked areas are cleaned by successively etching in buffered HF, hot H 3 PO 4 (180 degrees C.) and buffered HF down to Si in the active gate area.
- a thickness of 550 Angstroms of gate oxide is then grown at 1000 degrees C. in a mixture of O 2 +3% HCl for 42 min.
- the oxide is annealed, insitu, for 1/2 hour in Ar also at 1000 degrees C. to provide optimum electrical characteristics of the Si/Si--O 2 interface.
- the Si in the gate areas is implanted with B at 3 keV to a dose of 5 ⁇ 10 11 cm -2 .
- a layer of poly-Si, 5000 Angstroms thick is deposited by low pressure CVD from SiH 4 at 650 degrees C., after which the poly-Si is diffused with phosphorous at 1000 degrees C. for 60 min. using PBr 3 as the diffusion source. During this step, a thin layer of SiO 2 containing phosphorus forms over the poly-Si; this oxide is removed by etching in a mixture of 50 parts H 2 O and 1 part HF for 10 min.
- a thin film of Ta, 1000 Angstroms thick is deposited over the poly-Si using a magnetron sputter source. The film is then annealed at 1000 degrees C. for 30 min. in pure Ar or H 2 to form approximately 2500 Angstroms of TaSi 2 .
- the sheet resistance of this composite structure is less than 2 ohms per sq. It is important that the annealing ambient be free of oxygen or moisture; otherwise an oxide of Ta is formed and the sintering reaction does not go to completion.
- a desired pattern of a masking layer consisting of photoresist is formed over the TaSi 2 by using standard lithographic techniques.
- the TaSi 2 and poly-Si layers are next etched in a plasma of CF 4 +8% O 2 at a pressure of 150 millitorr, and at a power of 200 watts.
- the etch-rate of the TaSi 2 layer is about 500 Angstroms/min and that of the poly-Si layer is approximately 1000 Angstroms/min. The etching, the photoresist is removed and then the water is cleaned.
- Source and drain areas of the MOSFET are formed by Ion-implanting Arsenic at 30 kV and a dose of 7 ⁇ 10 15 cm -2 through the thin oxide layers.
- the previously defined areas of TaSi 2 /poly-Si and thick oxide in the field region act as a mask against Arsenic implantation.
- a thin layer of oxide is grown over the silicide areas in steam at 1000 degrees C. for 10 min.
- the top of the wafer is coated with photoresist and various layers are etched off the back of the wafer in the following sequence: SiO 2 (buffered HF, 2 min.), poly-Si (1% Cr O 3 in 25:1 H 2 O:HF 5 min.) and SiO 2 (buffered HF, 10 min).
- a layer of 1 ⁇ thick phosphorus doped SiO 2 (7% P-glass) is deposited using a reaction of SiH 4 , O 2 and PH 3 at 480 degrees C. This oxide is flowed at 1100 degrees C. for 15 min. in nitrogen to achieve a smooth topology.
- Windows (apertures) are opened in the P-glass down to the diffused Si in the source and drain areas and to the TaSi 2 gate.
- the wafers are gettered at 1000 degrees C. in PB 3 for 30 min. This step helps remove unwanted heavy metal impurities from the active surface regions of the wafer to the back of the wafer.
- the windows are cleaned in 30:1 H 2 O:BHF for 1 to 3 min., after which the wafers are annealed at 700 C. in H 2 for 30 min. to reduce the slow-trapping instability in the gate oxide.
- a top metallization layer consisting of Al 0.5% Cu, 0.7 ⁇ thick, is deposited using the sputter gun.
- the metal is defined using photolithography and standard chemical etching to form contacts, interconnections, and bonding pads.
- the top of the wafer is coated with photoresist, and then the phosphorus-doped Si-layer, which formed in the back of the wafer during gettering, is removed by plasma etching in a mixture of CF 4 +8%O 2 at 50 watts for 20 min., following which the resist is stripped in an O 2 plasma at 100 watts for 10 min.
- the wafers are annealed in H 2 at 450 degrees C. for 1/2 hour to assure ohmic contacts and to anneal out surface states in the gate oxide.
- a final passivation layer of 1 ⁇ thick Si-N is deposited by plasma enhanced chemical vapor deposition from a mixture of SiH 4 , NH 3 and Ar at 330 degrees C. Bonding pad areas are opened up by etching Si-N in a CF 4 /O 2 plasma.
- the back of the wafer is cleaned and a film of Ti followed by Au is deposited by sequential evaporation.
- the devices are tested, separated into chips and packaged by bonding the back of the chip to a metallized mini ceramic with a Au, Si eutectic alloy, and by bonding Au-wires to the Al bonding pads and to metallized interconnections on the package leading to dual-in-line pins.
- the hermetic packaging is completed by soldering a top cover plate (not shown in the Figures in a dry N 2 ambient.
- the polysilicon layer is doped N or P depending on the desired threshold voltage of the gate to be formed. Undoped polysilicon cannot be so used because it adds effectively to the thickness (capacitance) of the gate oxide due to its high resistivity.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/429,299 USRE32207E (en) | 1978-12-29 | 1982-09-30 | Method for making integrated semiconductor circuit structure with formation of Ti or Ta silicide |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US05/974,378 US4276557A (en) | 1978-12-29 | 1978-12-29 | Integrated semiconductor circuit structure and method for making it |
US06/227,133 US4332839A (en) | 1978-12-29 | 1981-01-22 | Method for making integrated semiconductor circuit structure with formation of Ti or Ta silicide |
US06/429,299 USRE32207E (en) | 1978-12-29 | 1982-09-30 | Method for making integrated semiconductor circuit structure with formation of Ti or Ta silicide |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/974,378 Division US4276557A (en) | 1978-12-29 | 1978-12-29 | Integrated semiconductor circuit structure and method for making it |
US06/227,133 Reissue US4332839A (en) | 1978-12-29 | 1981-01-22 | Method for making integrated semiconductor circuit structure with formation of Ti or Ta silicide |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE32207E true USRE32207E (en) | 1986-07-15 |
Family
ID=27397691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/429,299 Expired - Lifetime USRE32207E (en) | 1978-12-29 | 1982-09-30 | Method for making integrated semiconductor circuit structure with formation of Ti or Ta silicide |
Country Status (1)
Country | Link |
---|---|
US (1) | USRE32207E (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5225358A (en) * | 1991-06-06 | 1993-07-06 | Lsi Logic Corporation | Method of forming late isolation with polishing |
US5248384A (en) * | 1991-12-09 | 1993-09-28 | Taiwan Semiconductor Manufacturing Company | Rapid thermal treatment to eliminate metal void formation in VLSI manufacturing process |
US5248625A (en) * | 1991-06-06 | 1993-09-28 | Lsi Logic Corporation | Techniques for forming isolation structures |
US5252503A (en) * | 1991-06-06 | 1993-10-12 | Lsi Logic Corporation | Techniques for forming isolation structures |
US5288666A (en) * | 1990-03-21 | 1994-02-22 | Ncr Corporation | Process for forming self-aligned titanium silicide by heating in an oxygen rich environment |
US5298110A (en) * | 1991-06-06 | 1994-03-29 | Lsi Logic Corporation | Trench planarization techniques |
US5413966A (en) * | 1990-12-20 | 1995-05-09 | Lsi Logic Corporation | Shallow trench etch |
US5474619A (en) * | 1994-05-04 | 1995-12-12 | The United States Of America As Represented By The Secretary Of Commerce | Thin film high temperature silicide thermocouples |
US5521118A (en) * | 1994-12-22 | 1996-05-28 | International Business Machines Corporation | Sidewall strap |
US5908659A (en) * | 1997-01-03 | 1999-06-01 | Mosel Vitelic Inc. | Method for reducing the reflectivity of a silicide layer |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4128670A (en) * | 1977-11-11 | 1978-12-05 | International Business Machines Corporation | Fabrication method for integrated circuits with polysilicon lines having low sheet resistance |
US4180596A (en) * | 1977-06-30 | 1979-12-25 | International Business Machines Corporation | Method for providing a metal silicide layer on a substrate |
US4276557A (en) * | 1978-12-29 | 1981-06-30 | Bell Telephone Laboratories, Incorporated | Integrated semiconductor circuit structure and method for making it |
US4332839A (en) * | 1978-12-29 | 1982-06-01 | Bell Telephone Laboratories, Incorporated | Method for making integrated semiconductor circuit structure with formation of Ti or Ta silicide |
-
1982
- 1982-09-30 US US06/429,299 patent/USRE32207E/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4180596A (en) * | 1977-06-30 | 1979-12-25 | International Business Machines Corporation | Method for providing a metal silicide layer on a substrate |
US4128670A (en) * | 1977-11-11 | 1978-12-05 | International Business Machines Corporation | Fabrication method for integrated circuits with polysilicon lines having low sheet resistance |
US4276557A (en) * | 1978-12-29 | 1981-06-30 | Bell Telephone Laboratories, Incorporated | Integrated semiconductor circuit structure and method for making it |
US4332839A (en) * | 1978-12-29 | 1982-06-01 | Bell Telephone Laboratories, Incorporated | Method for making integrated semiconductor circuit structure with formation of Ti or Ta silicide |
Non-Patent Citations (4)
Title |
---|
Holland, "Vacuum Deposition of Thin Films", John Wiley & Sons Inc., p. 462, ©1956. |
Holland, Vacuum Deposition of Thin Films , John Wiley & Sons Inc., p. 462, 1956. * |
Sinha et al, "Generic Reliability of the High-Conductivity TaSi2 /n+ Poly-Si Gate MOS Structure" 18th Annual Proceedings Reliability Physics 1980, Las Vegas, Nevada, Apr. 8-10, 1980. |
Sinha et al, Generic Reliability of the High Conductivity TaSi 2 /n Poly Si Gate MOS Structure 18th Annual Proceedings Reliability Physics 1980, Las Vegas, Nevada, Apr. 8 10, 1980. * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5288666A (en) * | 1990-03-21 | 1994-02-22 | Ncr Corporation | Process for forming self-aligned titanium silicide by heating in an oxygen rich environment |
US5413966A (en) * | 1990-12-20 | 1995-05-09 | Lsi Logic Corporation | Shallow trench etch |
US5312770A (en) * | 1991-06-06 | 1994-05-17 | Lsi Logic Corporation | Techniques for forming isolation structures |
US5252503A (en) * | 1991-06-06 | 1993-10-12 | Lsi Logic Corporation | Techniques for forming isolation structures |
US5248625A (en) * | 1991-06-06 | 1993-09-28 | Lsi Logic Corporation | Techniques for forming isolation structures |
US5298110A (en) * | 1991-06-06 | 1994-03-29 | Lsi Logic Corporation | Trench planarization techniques |
US5225358A (en) * | 1991-06-06 | 1993-07-06 | Lsi Logic Corporation | Method of forming late isolation with polishing |
US5441094A (en) | 1991-06-06 | 1995-08-15 | Lsi Logic Corporation | Trench planarization techniques |
US5248384A (en) * | 1991-12-09 | 1993-09-28 | Taiwan Semiconductor Manufacturing Company | Rapid thermal treatment to eliminate metal void formation in VLSI manufacturing process |
US5474619A (en) * | 1994-05-04 | 1995-12-12 | The United States Of America As Represented By The Secretary Of Commerce | Thin film high temperature silicide thermocouples |
US5521118A (en) * | 1994-12-22 | 1996-05-28 | International Business Machines Corporation | Sidewall strap |
US5691549A (en) * | 1994-12-22 | 1997-11-25 | International Business Machines Corporation | Sidewall strap |
US5908659A (en) * | 1997-01-03 | 1999-06-01 | Mosel Vitelic Inc. | Method for reducing the reflectivity of a silicide layer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4276557A (en) | Integrated semiconductor circuit structure and method for making it | |
US4332839A (en) | Method for making integrated semiconductor circuit structure with formation of Ti or Ta silicide | |
US4337476A (en) | Silicon rich refractory silicides as gate metal | |
EP0126424B1 (en) | Process for making polycide structures | |
JPS6173370A (en) | Semiconductor device and method of producing same | |
JPH06302542A (en) | Low-resistance contact structure for semiconductor device and forming method therefor | |
GB2077993A (en) | Low sheet resistivity composite conductor gate MOS device | |
EP0076105A2 (en) | Method of producing a bipolar transistor | |
JP3626773B2 (en) | Conductive layer of semiconductor device, MOSFET, and manufacturing method thereof | |
EP0018175A2 (en) | Process for producing an electrode on a semiconductor device | |
JPH04233230A (en) | Interconnection method for silicon region isolated on semiconductor substrate | |
EP0183995B1 (en) | Semiconductor device having a polycrystalline silicon interconnection layer and method for its manufacture | |
USRE32207E (en) | Method for making integrated semiconductor circuit structure with formation of Ti or Ta silicide | |
US4525733A (en) | Patterning method for reducing hillock density in thin metal films and a structure produced thereby | |
EP0113522B1 (en) | The manufacture of semiconductor devices | |
US5322815A (en) | Method for producing semiconductor device with multilayer leads | |
US5521416A (en) | Semiconductor device having gate electrode and impurity diffusion layer different in conductivity type and method of manufacturing the same | |
US5946595A (en) | Method of forming a local interconnect between electronic devices on a semiconductor substrate | |
JP4730993B2 (en) | Method for forming conductive line of semiconductor element | |
JPH0831931A (en) | Semiconductor device and its manufacture | |
JPH1064898A (en) | Manufacturing method of semiconductor device | |
JPH09102469A (en) | Manufacture of semiconductor device | |
KR0172263B1 (en) | Method of manufacturing semiconductor device | |
JPH0577175B2 (en) | ||
JPH02106971A (en) | Semiconductor integrated circuit device and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: CHASE MANHATTAN BANK, AS ADMINISTRATIVE AGENT, THE Free format text: CONDITIONAL ASSIGNMENT OF AND SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:AGERE SYSTEMS GUARDIAN CORP. (DE CORPORATION);REEL/FRAME:011667/0148 Effective date: 20010402 |
|
AS | Assignment |
Owner name: AGERE SYSTEMS GUARDIAN CORP., FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LUCENT TECHNOLOGIES INC.;REEL/FRAME:011796/0615 Effective date: 20010131 |
|
AS | Assignment |
Owner name: AGERE SYSTEMS GUARDIAN CORP., FLORIDA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:JPMORGAN CHASE BANK (F/K/A THE CHASE MANHATTAN BANK);REEL/FRAME:013372/0662 Effective date: 20020930 |