JPS618950A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS618950A
JPS618950A JP12980384A JP12980384A JPS618950A JP S618950 A JPS618950 A JP S618950A JP 12980384 A JP12980384 A JP 12980384A JP 12980384 A JP12980384 A JP 12980384A JP S618950 A JPS618950 A JP S618950A
Authority
JP
Japan
Prior art keywords
film
wiring
oxide film
sio2
interlayer insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12980384A
Other languages
Japanese (ja)
Inventor
Hitoshi Kudo
均 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12980384A priority Critical patent/JPS618950A/en
Publication of JPS618950A publication Critical patent/JPS618950A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To implement high density, by constituting interlayer insulating films for the first aluminum wiring and the second aluminum wiring by a silicon oxide film and an upper silicon nitride film. CONSTITUTION:Under the state the first Al wiring pattern is formed, the device is constituted of a semiconductor substrate 31, a field oxide film 32, a gate oxide film 33, a poly-Si gate electrode 34, an interlayer insulating film 35 and a first Al wiring 36. A flat film 37 comprises P-SiO2 having a thickness of 1.2- 2.4mum. Thereafter resist is applied to a thickness of 1-4mum. The entire surface is etched by oxygen plasma. Resist 37' after the etching is embedded in the recess part of a step. Under the state etching is performed at the same time with the P-SiO2, a part of the P-SiO2 is embedded in the recess part of the step of the first Al wiring 36. Then the process called ''etch-back'' is performed. After the etch back, P-SiO2 38a and P-SiN 38b are deposited as interlayer insulating films. The thicknesses of the films of the P-SiO2 and the P-SiN are combined so as not to cause cracks.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体集積回路、特に高密度化を目的として
多層配線構造を有する集積回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor integrated circuit, and particularly to an integrated circuit having a multilayer wiring structure for the purpose of increasing density.

従来例の構成とその問題点 半導体素子の高密度化、微細化に伴いマイクロプロセッ
サ、メモリー、ゲートアレイ等をはじめとして多層配線
構造が多く用いられる様になってきた。高融点金属や多
結晶シリコン(以下Po1y−8i  と略記する。)
を下層配線として用いれば、1000℃程度の熱処理が
可能ではあるが、シート抵抗がアルミニウム(以下Aj
2と略記する。)に比べて1ケタから3ケタ程度大きく
、配線遅延が問題となる。しかしながら下層配線として
A2 を用いれば、460℃程度以上の熱処理はできな
くなシ層間絶縁膜のステップカバレジ、膜質をはじめヒ
ロック、エレクトロマイグレーション等モ考慮せねばな
らない。
Conventional Structures and Problems With the increasing density and miniaturization of semiconductor devices, multilayer wiring structures have come into widespread use in microprocessors, memories, gate arrays, and the like. High melting point metal and polycrystalline silicon (hereinafter abbreviated as Poly-8i)
If aluminum is used as the lower layer wiring, heat treatment at about 1000°C is possible, but the sheet resistance is lower than that of aluminum (hereinafter referred to as Aj).
It is abbreviated as 2. ), which is about 1 to 3 orders of magnitude larger, and wiring delay becomes a problem. However, if A2 is used as the lower layer wiring, heat treatment above about 460° C. cannot be performed, and the step coverage and film quality of the interlayer insulating film, as well as hillocks, electromigration, etc., must be taken into consideration.

次に、従来例を図を用いて説明する。第1図に示すのは
、へ2二層配線を用いてプラズマシリコン酸化膜(以下
P 8102 と略記する)を層間絶縁膜としてMOS
 )ランジスタを構成した場合であ不。
Next, a conventional example will be explained using figures. Figure 1 shows a MOS using two-layer wiring and a plasma silicon oxide film (hereinafter abbreviated as P8102) as an interlayer insulating film.
) Not applicable when a transistor is configured.

第1図において、基板11上にフィールド酸化膜12と
ゲート酸化膜13が形成され、Po1y−8iゲート電
極14がそれらの酸化膜の上にパターン形成されている
。その後層間絶縁膜としてCVD5 h O2(化学的
気相成長で形成されたシリコン酸化膜)15を堆積しコ
ンタクトホールを形成すも次に第1 An配線16をパ
ターン形成し、Afi配線間の凹部を平坦にするために
平坦化膜17を埋め込んだ後、層間絶縁膜18を堆積し
パターン形成した後、第2AIt配M19を形成してい
る。平坦化膜17と層間絶縁膜18はP−8102であ
ム第1図で問題点を説明する。
In FIG. 1, a field oxide 12 and a gate oxide 13 are formed on a substrate 11, and a Po1y-8i gate electrode 14 is patterned on these oxides. After that, a CVD5hO2 (silicon oxide film formed by chemical vapor deposition) 15 is deposited as an interlayer insulating film to form a contact hole.Next, a first An interconnect 16 is patterned, and a recess between the AFi interconnects is formed. After a planarizing film 17 is buried for flattening, an interlayer insulating film 18 is deposited and patterned, and then a second AIt interconnect M19 is formed. The planarizing film 17 and the interlayer insulating film 18 are made of P-8102.The problem will be explained with reference to FIG.

■ 第1 Aj7配線の膜厚が0.6〜1.0μmと厚
いため、そのままで第2A4配線を形成すると、短絡や
断線を生じるので、何らかの方法で平坦化する必要があ
る。ここで用いる平坦化用の絶縁膜は、ステップカバレ
ジ(断差被覆性)が良好である事が望ましい。プラズマ
シリコン窒化膜(以下P−5iNと略記する)はステッ
プカバレジも良好で耐圧も十分であるが、膜中に水素を
含んでいるので、ゲート酸化膜中に拡散してVT(MO
S)ランジスタのしきい値電圧)の変動をもたらす事が
ある。一方P  3102は、ステップカバレジがあま
シ良くなく、耐圧も不十分である。CVD bt02は
、耐圧はP−8iN並みであるが、ステップカバレジが
悪く、AI!、上では特にクラックを発生しやすい。プ
ラズマオキシナイトライド(以下P −8i ONと略
記する)を用いる方法もあるが、膜質を制御するのが難
しい。                      
      1■ g−p、1層間絶縁性を確保するに
は、膜種、膜厚、膜質が重要である。特にヒロック、エ
レクトロマイグレーションに対して留意する必要がある
。膜厚が厚いほど、ヒロック、エレクトロマイグレーシ
ョンに対しては耐性が増加するが、Al−Affi間の
コンタクト形成時の加工性が減少するため、゛Q、5〜
1.0μm程度が普通である。ヒロックは必ずしも絶縁
性を低下させるわけではないが、外観不良や、ボンディ
ングの際の認識不良を起こしやすい。
(2) Since the film thickness of the first Aj7 wiring is as thick as 0.6 to 1.0 μm, if the second A4 wiring is formed as is, short circuits and disconnections will occur, so it is necessary to flatten it by some method. It is desirable that the planarizing insulating film used here has good step coverage (difference coverage). Plasma silicon nitride film (hereinafter abbreviated as P-5iN) has good step coverage and sufficient breakdown voltage, but since it contains hydrogen, it diffuses into the gate oxide film and causes VT (MO
(S) threshold voltage of transistors). On the other hand, P3102 has poor step coverage and insufficient breakdown voltage. CVD bt02 has a breakdown voltage comparable to P-8iN, but has poor step coverage and AI! , are particularly prone to cracking. There is also a method using plasma oxynitride (hereinafter abbreviated as P-8i ON), but it is difficult to control the film quality.
1) G-P, 1 To ensure interlayer insulation, film type, film thickness, and film quality are important. Particular attention should be paid to hillocks and electromigration. The thicker the film, the higher the resistance to hillocks and electromigration, but the processability during Al-Affi contact formation decreases.
It is usually about 1.0 μm. Although hillocks do not necessarily reduce insulation properties, they tend to cause poor appearance and poor recognition during bonding.

従来から、平坦化膜と層間絶縁膜には、複合膜を用いる
方法も知られているが、クラックを発生しやすいという
欠点があり、膜種と膜厚をクラックが発生しない範囲で
設定する必要がある。
Conventionally, a method of using a composite film as a flattening film and an interlayer insulating film has been known, but this method has the disadvantage of being prone to cracking, so the film type and thickness must be set within a range that does not cause cracks. There is.

発明の目的 本発明は以上の様な問題点に対してなされたもので、A
2二層配線に最適な構造とその形成方法を提供するもの
である。
Purpose of the Invention The present invention has been made to solve the above-mentioned problems.
The present invention provides an optimal structure for two-layer wiring and a method for forming the same.

発明の構成 ある形成条件のP−8102をAfi−Afi層間膜に
用いると、外観上ヒロックが発生しない事を実験から確
認する事ができた。この効果はP  8102膜厚に関
係しており、第2図に示す様に膜厚が厚いほどヒロック
の発生は少なく、0.5〜0.7μmでまったく発生し
なくなる。しかし層間耐圧の歩留でみると、P  81
02のみではCV D b 102に比べて゛歩留が悪
い。P−b 102とP−3iN の二層膜の場合もほ
ぼ同じ結果である。P−8iO2一層の場合でもヒロッ
クの発生については同じである。この現象は、ヒロック
が発生しなくなるのではなく、第1AI!、配線に生ず
るヒロックがP  b iO2で吸収され第2AQに達
しないだけであるが、CVD5iO□やP−8iNの様
に外観不良を起こす心配はない。
Structure of the Invention It was confirmed through experiments that when P-8102 under certain formation conditions was used for an Afi-Afi interlayer film, no hillocks were generated in appearance. This effect is related to the thickness of the P8102 film, and as shown in FIG. 2, the thicker the film, the less hillocks occur, and at 0.5 to 0.7 μm, no hillocks occur at all. However, in terms of interlayer breakdown voltage yield, P 81
02 alone has a lower yield than CV D b 102. Almost the same results are obtained for the two-layer film of P-b 102 and P-3iN. Even in the case of a single layer of P-8iO2, the occurrence of hillocks is the same. This phenomenon does not mean that hillocks no longer occur, but rather that the first AI! Hillocks that occur in the wiring are absorbed by P b iO2 and do not reach the second AQ, but there is no concern that it will cause poor appearance unlike CVD5iO□ or P-8iN.

従ツーC1P ’、 S X O2(!: CV D 
S 102 ;J) ルイハP−3102とP−3iN
の二層膜を用いれば、ヒロックの発生も外観上なく、眉
間耐圧も確保する事ができる。ステップカバレジ、クラ
ックの点や、耐湿性の点からCV D S iO2より
はP−3iNO方が望ましい。
Sub two C1P', S X O2 (!: CV D
S 102; J) Ruiha P-3102 and P-3iN
By using this two-layer membrane, there will be no appearance of hillocks, and glabellar pressure resistance can be ensured. P-3iNO is more desirable than CV D SiO2 in terms of step coverage, cracking, and moisture resistance.

実施例の説明 以下本発明の一実施例を図面を用いて説明する第3図(
−)では、第1Al配線パターンが形成された状態が示
されておシ、半導体基板31、フィールド酸化膜32、
ゲート酸化膜33、Po1y−8iゲート電極34、層
間絶縁膜35、第1・へβ配線36である。第3図(b
)では、平坦化膜37が堆積された状態が示されている
。この平坦化膜37はP −81021,2〜2.4μ
mである。この後レジストを1〜4μm 塗布し、酸素
プラズマによって全面エツチングすると、第3図(0)
に示す状態になる。
DESCRIPTION OF EMBODIMENTS FIG. 3 (
-) shows the state in which the first Al wiring pattern has been formed.
These are a gate oxide film 33, a Po1y-8i gate electrode 34, an interlayer insulating film 35, and a first β wiring 36. Figure 3 (b
) shows the state in which the planarization film 37 has been deposited. This flattening film 37 is P-81021, 2 to 2.4μ
It is m. After this, a resist is applied to a thickness of 1 to 4 μm and the entire surface is etched using oxygen plasma, as shown in Fig. 3 (0).
The state shown in is reached.

エツチング後のレジスト37′が段差の凹部に埋め込ま
れている。次にレジストとP  8102 を同時にエ
ツチングした状態が第3図(d)に示されている。
The etched resist 37' is embedded in the recessed portion of the step. Next, a state in which the resist and P 8102 are simultaneously etched is shown in FIG. 3(d).

P 810237の一部が第1Aft36の段差凹部に
埋込まれている。第3図(c) 、 (d)に示す工程
は、エッチバックと呼ばれる1釉である。第3図(e)
はエッチバック後、層間絶縁膜としてP−3io2ss
al       とP−8iN38bを堆積させた状
態を示している。
A part of P 810237 is embedded in the stepped recess of the first Aft36. The steps shown in FIGS. 3(c) and 3(d) are one glaze process called etchback. Figure 3(e)
After etchback, P-3io2ss is used as an interlayer insulating film.
The state in which al and P-8iN38b are deposited is shown.

P  8102の膜厚は、第1AI!、のヒロックが第
2八2に達しないために、0.3〜1.0μmの膜厚が
必要である。まだP−5iNは層間耐圧を確保するだめ
に0.3−1.0pmの膜厚が必要である。P 810
2とP−8iNの膜厚は、組み合わせによってはクラッ
クを生ずるが、上記の範囲内であればクラックは発生し
ない。
The film thickness of P8102 is the 1st AI! , a film thickness of 0.3 to 1.0 μm is required so that the hillocks of , do not reach the 282nd diameter. P-5iN still requires a film thickness of 0.3-1.0 pm to ensure interlayer breakdown voltage. P810
Depending on the combination of film thicknesses of 2 and P-8iN, cracks may occur, but no cracks will occur if the film thickness is within the above range.

第3図(f)に示すのは、An−A1間のコンタクトホ
ールを形成した状態である。ここでP−3iN38bは
等方性のエツチングで、またP−8i 0238 aは
異方性のエツチングで形成しているため、三ンタクト部
での第2A4の断線が生ぜず、かつ実効の膜を用いる事
によって容易に得られるものである。
FIG. 3(f) shows a state in which a contact hole between An and A1 has been formed. Here, since P-3iN38b is formed by isotropic etching and P-8i 0238a is formed by anisotropic etching, disconnection of No. 2 A4 at the three contact parts does not occur, and an effective film can be formed. It can be easily obtained by using

第3図(q)は、第2A(3)を堆積し、バタニ形成し
た状態が示されている。
FIG. 3(q) shows a state where No. 2A(3) is deposited and a battling is formed.

以上本発明の実施例では、P−8i O2,P−8iN
を用いた場合について説明したが、九−〇VD等他oi
*′;ai=t″8−−1−・         1ア
P  5102とP−8iNの上下関係を逆にしても効
果はあるが、エッチバック工程を含むため、平坦用いる
事が多い)との間でクラックを生じゃすい。
In the above embodiments of the present invention, P-8i O2, P-8iN
We have explained the case using 9-0VD etc.
*';ai=t''8--1-・1a It is effective even if the vertical relationship between P5102 and P-8iN is reversed, but since it involves an etch-back process, it is often used flat) Let's crack raw.

発明の詳細 な説明した様に、本発明は外観上ヒロックが発生しない
P  8102と、ステップカバレジ、絶縁性が良好な
P−8iNを組み合わす事によって、高歩留のAn二層
配線形成方法および構造を提供する事ができる。またP
 bx02がP−3iNの下層にあるのでP−3iNの
みを層間絶縁膜に用いる場合に比べて半導体素子特性に
与える影響が少ない。
As described in detail, the present invention combines P8102, which does not cause hillocks in appearance, and P-8iN, which has good step coverage and insulation, to create a high-yield method for forming two-layer An interconnects. It can provide structure. Also P
Since bx02 is in the lower layer of P-3iN, it has less influence on semiconductor device characteristics than when only P-3iN is used for the interlayer insulating film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の2層配線構造の概略断面図、第2図はP
 S z 02の膜厚と層間耐圧歩留と、ヒロックの発
生頻度の関係を示す図、第3図(a)〜(q)は本発明
の一実施例の2層配線の製造工程断面図である。 36・・・・・・第1八2配線、37・・山・P S 
102.38a・・・・・・P−8iO2,38b ・
・−・−P−3i N、 39−・・・・・第2A4配
線。 第2図 P−5:02 o、7 0.50.40,311)、2
 0CVDS:02 0      0.2 0.3 
04  QS      O,’T牒厚 C)を倦〕 諏       −
Figure 1 is a schematic cross-sectional view of a conventional two-layer wiring structure, and Figure 2 is a schematic cross-sectional view of a conventional two-layer wiring structure.
Figures 3(a) to 3(q), which are diagrams showing the relationship between the film thickness of S z 02, the interlayer breakdown voltage yield, and the frequency of hillock occurrence, are cross-sectional views of the manufacturing process of a two-layer wiring according to an embodiment of the present invention. be. 36...182nd wiring, 37...Mountain P S
102.38a...P-8iO2,38b ・
-P-3i N, 39-...2nd A4 wiring. Figure 2 P-5:02 o, 7 0.50.40,311), 2
0CVDS:02 0 0.2 0.3
04 QS O, 'T thickness C)〕 Su -

Claims (3)

【特許請求の範囲】[Claims] (1)第1アルミニウム配線と第2アルミニウム配線の
層間絶縁膜が下層のシリコン酸化膜と上層のシリコン窒
化膜より成る事を特徴とする半導体装置。
(1) A semiconductor device characterized in that the interlayer insulating film between the first aluminum wiring and the second aluminum wiring is composed of a lower layer of silicon oxide film and an upper layer of silicon nitride film.
(2)シリコン酸化膜がプラズマシリコン酸化膜、シリ
コン窒化膜がプラズマシリコン窒化膜である事を特徴と
する特許請求の範囲第1項に記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the silicon oxide film is a plasma silicon oxide film and the silicon nitride film is a plasma silicon nitride film.
(3)第1アルミニウム配線形成後、第1のシリコン酸
化膜を堆積する工程、レジストなどの有機膜をスピンコ
ートする工程、前記有機膜と前記第1のシリコン酸化膜
とを同時にエッチングする工程、第2のシリコン酸化膜
とシリコン窒化膜とを堆積する工程、レジストパターン
を形成し、前記シリコン窒化膜をサイドエッチを生じさ
せてエッチングする工程、ひき続き前記第2のシリコン
酸化膜をサイドエッチを生じさせずにエッチングする工
程、第2アルミニウム膜を堆積しパターン形成する工程
とを含む事を特徴とする半導体装置の製造方法。
(3) After forming the first aluminum wiring, a step of depositing a first silicon oxide film, a step of spin coating an organic film such as a resist, a step of simultaneously etching the organic film and the first silicon oxide film, a step of depositing a second silicon oxide film and a silicon nitride film, a step of forming a resist pattern and etching the silicon nitride film by causing side etching, and subsequently a step of side etching the second silicon oxide film. 1. A method of manufacturing a semiconductor device, comprising the steps of etching without forming a second aluminum film, and depositing and patterning a second aluminum film.
JP12980384A 1984-06-22 1984-06-22 Semiconductor device and manufacture thereof Pending JPS618950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12980384A JPS618950A (en) 1984-06-22 1984-06-22 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12980384A JPS618950A (en) 1984-06-22 1984-06-22 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS618950A true JPS618950A (en) 1986-01-16

Family

ID=15018610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12980384A Pending JPS618950A (en) 1984-06-22 1984-06-22 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS618950A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287627A (en) * 1986-06-05 1987-12-14 Mitsubishi Electric Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287627A (en) * 1986-06-05 1987-12-14 Mitsubishi Electric Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US6291331B1 (en) Re-deposition high compressive stress PECVD oxide film after IMD CMP process to solve more than 5 metal stack via process IMD crack issue
JPH0492427A (en) Manufacture of semiconductor device
TW200414283A (en) Semiconductor device and the manufacturing method thereof
US6184159B1 (en) Interlayer dielectric planarization process
KR100380890B1 (en) Semiconductor device and method for manufacturing the same
JPH06244185A (en) Wiring structure and its manufacture
JPH05144811A (en) Thin film semiconductor device and manufacture thereof
JPS618950A (en) Semiconductor device and manufacture thereof
JPH04355951A (en) Semiconductor device and manufacture thereof
JPH11111842A (en) Multilayered wiring structure and its manufacture
JPH0823028A (en) Semiconductor device having multilayer interconnect and manufacture thereof
JP2550508B2 (en) Semiconductor device and manufacturing method thereof
JP3099813B2 (en) Method for manufacturing semiconductor device
JP2000208620A (en) Production of semiconductor device
JPH1140666A (en) Semiconductor integrated circuit device
JP2637726B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH05226333A (en) Manufacture of semiconductor device
KR100226250B1 (en) Semiconductor element metal line manufacturing method
KR0166826B1 (en) Method of interlayer insulating film in a semiconductor device
JPH07147281A (en) Manufacture of semiconductor integrated circuit device
JPH10173051A (en) Wiring forming method
JPH0574953A (en) Manufacture of semiconductor device
JP2003218116A (en) Semiconductor device and its manufacturing method
JPH06244180A (en) Semiconductor device and its manufacture
JPH0758096A (en) Manufacture of semiconductor device