JPS6188220A - Production of thin film transistor array - Google Patents

Production of thin film transistor array

Info

Publication number
JPS6188220A
JPS6188220A JP59210742A JP21074284A JPS6188220A JP S6188220 A JPS6188220 A JP S6188220A JP 59210742 A JP59210742 A JP 59210742A JP 21074284 A JP21074284 A JP 21074284A JP S6188220 A JPS6188220 A JP S6188220A
Authority
JP
Japan
Prior art keywords
semiconductor layer
glass substrate
etching
etched
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59210742A
Other languages
Japanese (ja)
Inventor
Yoshiharu Ichikawa
市川 祥治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59210742A priority Critical patent/JPS6188220A/en
Publication of JPS6188220A publication Critical patent/JPS6188220A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obviate the generation of clouding even if throughput is high by forming successively insulator layers and semiconductor layers under the same conditions for production on not only the front but also rear of a glass substrate then etching the semiconductor layer on the front. CONSTITUTION:A silicon nitride film is formed to 2,500Angstrom as a gate insulating layer 4 on the surface of the glass substrate 1 and an amorphous silicon film is formed to 3,000Angstrom thickness thereon as a semiconductor layer 5. The amorphous silicon is etched to a prescribed pattern by a plasma CVD method and at the same time the semiconductor layer 2' on the rear of the substrate 1 is removed by etching. A mixed soln, composed of hydrofluoric acid:nitric acid: glacial acetic acid = 1:5:15 is used for the etching soln. of the amorphous silicon. The glass substrate is etched and the rear of the substrate is clouded in the conventional process for production using the above-mentioned soln. mixture but the glass substrate is not etched at all and the rear of the substrate is not clouded when the amorphous silicon film is preliminarily formed on the rear of the glass substrate and is simultaneously etched away as in this embodiment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液晶表示装置に用いられる薄膜トランジスタ
アレイの製造方法に関し、特にスルーグツトの高いウェ
ットエツチング法を用いる薄膜トランジスタアレイの製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a thin film transistor array used in a liquid crystal display device, and particularly to a method for manufacturing a thin film transistor array using a wet etching method with high throughput.

〔従来技術とその問題点〕[Prior art and its problems]

近年、オフィスオートメーションの進展に伴い、マンマ
シンインターフェイスとしての表示デバイスの画素数の
大容量化が活発に進められている。
In recent years, with the progress of office automation, the number of pixels of display devices used as man-machine interfaces has been actively increased.

液晶ディスプレイにおいても液晶をスイッチングするた
めの薄膜トランジスタアレイの開発が盛んに行われてい
る。
In the field of liquid crystal displays, thin film transistor arrays for switching liquid crystals are being actively developed.

従来の液晶表示用薄膜トランジスタアレイの製造方法の
一例として特静昭58−126725に示された方法が
知られている・第2図(a)〜(h)に、この薄膜トラ
ンジスタの製造方法を工程順に表わした断面図を示す。
As an example of a conventional method for manufacturing thin film transistor arrays for liquid crystal displays, the method shown in Japanese Patent Application No. 126725/1988 is known. Figures 2 (a) to (h) show the method for manufacturing thin film transistors in order of process. A cross-sectional view is shown.

この製造方法はまず、絶縁基板1上の表面にゲート電極
3を形成しく第2図(a))、所定のパターンにエツチ
ングする(第2図(b))。その後その上にゲート絶縁
層4及び半導体層5を膜状に形成しく第2図(C))、
半導体層5を所定パターンにエツチングする(第2図(
d))。次いで、全上面にドレイン及びソース電極とな
る金机薄膜6を形成しく第2図(e))、チャンネルと
なる半導体層5を覆う部分に金員薄膜6を残して不要部
分をエツチノ、グにより除去する(第2図(f))。そ
の後全上面に透明電極7を形成する(第2図(g))。
In this manufacturing method, first, the gate electrode 3 is formed on the surface of the insulating substrate 1 (FIG. 2(a)), and then etched into a predetermined pattern (FIG. 2(b)). Thereafter, a gate insulating layer 4 and a semiconductor layer 5 are formed in the form of a film (FIG. 2(C)).
The semiconductor layer 5 is etched into a predetermined pattern (see FIG.
d)). Next, a metal thin film 6 that will become the drain and source electrodes is formed on the entire upper surface (FIG. 2(e)), and unnecessary parts are etched away by etching, leaving the metal thin film 6 in the area that covers the semiconductor layer 5 that will become the channel. (Fig. 2(f)). Thereafter, a transparent electrode 7 is formed on the entire upper surface (FIG. 2(g)).

そして最後に、エツチングにより透明電極7を所望パタ
ーンにノくターニングすると同時にチャンネルとしての
半導体層5上の金属薄膜6を除去し、ドレイン電極8と
ソース電極9とを形成する(第2図(h) ) 、なお
液晶ディスプレイパネルは、透過型、反射型両方で使用
できるのが好ましく、また安価である点から絶縁基板1
として通常ガラス基板が使用される。
Finally, the transparent electrode 7 is turned into a desired pattern by etching, and at the same time the metal thin film 6 on the semiconductor layer 5 serving as a channel is removed to form a drain electrode 8 and a source electrode 9 (see Fig. 2 (h). )) It is preferable that the liquid crystal display panel can be used in both a transmissive type and a reflective type, and since it is inexpensive, an insulating substrate 1 is used.
A glass substrate is usually used.

また半導体層5としては、トランジスタ特性の点からア
モルファスシリコンやポリシリコンが適している。
Further, as the semiconductor layer 5, amorphous silicon or polysilicon is suitable from the viewpoint of transistor characteristics.

従来の!!遣方法において半導体層5のエツチングをウ
ェットエツチングで行なう際に半導体層5がアモルファ
スシリコンやポリシリコンの場合には、フッ素と硝酸と
の混合液を用いるため絶縁基板1に用いたガラス基板も
エツチングされてしまう。このため上記方法により得ら
れた薄膜トランジスタアレイを液晶ディスプレイに用い
ると表示品質が著しく低下するという問題が生ずる。ま
た、半S体層5をウェットエツチングするときに絶縁基
板1に用いたガラス基板の裏面をレジスト等でカバーす
る方法によれば、レジストがはがれ易くやはりガラス基
板がエツチングされる確率が高いこと、裏面にレジスト
を塗布するとき表面が汚れ易い等の問題点がある。なお
、アモルファスシリコンやポリシリコンのエツチングに
アルカリ系の溶剤を用いるのは均一性が非常に悪く好ま
しくない。一方半導体層5のエツチングをドライエツチ
ングで行なえば、裏面がエツチングされることはないが
、ドライエツチングはウェットエツチングに比べてスル
ープットが悪いという重大な欠点がある。
Traditional! ! When etching the semiconductor layer 5 by wet etching in the etching method, if the semiconductor layer 5 is made of amorphous silicon or polysilicon, a mixed solution of fluorine and nitric acid is used, so that the glass substrate used as the insulating substrate 1 is also etched. It ends up. Therefore, when a thin film transistor array obtained by the above method is used in a liquid crystal display, a problem arises in that the display quality is significantly degraded. Furthermore, if the back surface of the glass substrate used as the insulating substrate 1 is covered with a resist or the like when wet-etching the semi-S body layer 5, the resist easily peels off and there is a high probability that the glass substrate will be etched. When a resist is applied to the back side, there are problems such as the front surface being easily stained. Note that it is not preferable to use an alkaline solvent for etching amorphous silicon or polysilicon because the uniformity is very poor. On the other hand, if the semiconductor layer 5 is etched by dry etching, the back surface will not be etched, but dry etching has a serious drawback of lower throughput than wet etching.

〔発明の目的〕[Purpose of the invention]

本発明は、このような従来の欠点を除去し、スルーブツ
トが良くしかも表示品質の良い薄膜トランジスタアレイ
の製造方法を提供することにある。
The object of the present invention is to provide a method for manufacturing a thin film transistor array with good throughput and display quality by eliminating these conventional drawbacks.

〔発明の構成〕[Structure of the invention]

本発明は、ガラス基板を絶縁基板としてその表面に少な
くとも絶縁体層と半導体層とを順次形成し、半導体層の
みを、パターンエツチングスル工程を行う薄膜トランジ
スタアレイの製造方法において、前記ガラス基板の裏面
にも同一の製造条件で絶縁体層と半導体層とを順次形成
したのち表面の前記半導体層のエツチングを行うことを
特徴とする薄膜トランジスタアレイの製造方法である。
The present invention provides a method for manufacturing a thin film transistor array in which a glass substrate is used as an insulating substrate, at least an insulating layer and a semiconductor layer are sequentially formed on the surface thereof, and only the semiconductor layer is subjected to a pattern etching process. This method of manufacturing a thin film transistor array is characterized in that an insulator layer and a semiconductor layer are sequentially formed under the same manufacturing conditions, and then the semiconductor layer on the surface is etched.

〔構成の詳細な説明〕[Detailed explanation of configuration]

本発明は上述の構成をとることにより従来技術の問題点
を解決した。以下に本発明の薄膜トランジスタアレイの
製造方法を工程順に示した第1図(a)〜(h)により
説明する。まず、絶縁基板1にガラス基板を用いてその
裏面に絶縁体層2と半導体層2′を順次形成し、該絶縁
基板1の表面上にゲート電極3を形成する(第1図(a
))。次に該ゲート電極3を所定のパターンにエツチン
グしく第1図(b))、その後その上にゲート絶縁体層
4及び半導体層5を膜状に順次形成しく第1図(C))
、半導体層5を所定パターンにエツチングすると同時に
絶縁基板1の裏面の半導体層τを除去する(第1図(d
))。
The present invention has solved the problems of the prior art by adopting the above-described configuration. The method for manufacturing a thin film transistor array according to the present invention will be explained below with reference to FIGS. 1(a) to 1(h) showing the process order. First, a glass substrate is used as the insulating substrate 1, an insulating layer 2 and a semiconductor layer 2' are sequentially formed on the back surface of the insulating substrate 1, and a gate electrode 3 is formed on the front surface of the insulating substrate 1 (see FIG. 1(a).
)). Next, the gate electrode 3 is etched into a predetermined pattern (FIG. 1(b)), and then a gate insulator layer 4 and a semiconductor layer 5 are sequentially formed thereon in the form of a film (FIG. 1(C)).
At the same time as etching the semiconductor layer 5 into a predetermined pattern, the semiconductor layer τ on the back surface of the insulating substrate 1 is removed (FIG. 1(d)
)).

一方、絶縁基板1の表面全面にドレイン及びソース電極
となる金属薄膜6を形成しく第1図(e))、チャンネ
ルとなる半導体層5を覆う部分にのみ金属薄膜6を残し
て不要部分をエツチングによシ除去する(第1図(f)
 ) 、続いて全表面に透明電極7を所望パターンにパ
ターニングする(第1図(g))と同時にチャンネルと
しての半導体層5上の金姐薄膜6t−除去し、ドレイン
電極8とソース電極9とを形成する(第1図(h))。
On the other hand, a metal thin film 6 that will become the drain and source electrodes is formed on the entire surface of the insulating substrate 1 (FIG. 1(e)), and unnecessary parts are etched, leaving the metal thin film 6 only in the part that covers the semiconductor layer 5 that will become the channel. (Fig. 1(f))
) Subsequently, a transparent electrode 7 is patterned on the entire surface in a desired pattern (FIG. 1(g)), and at the same time, the metal thin film 6t on the semiconductor layer 5 serving as a channel is removed, and a drain electrode 8 and a source electrode 9 are formed. (Fig. 1(h)).

したがって第1図(d)において、半導体層5を所定パ
ターンにエツチングすると同時に裏面の半導体層2をエ
ツチングするためウェットエツチングを行なっても絶縁
基板1としてのガラス基板がエツチングされることはな
い。
Therefore, in FIG. 1(d), even if the semiconductor layer 5 is etched into a predetermined pattern and the semiconductor layer 2 on the back surface is simultaneously etched by wet etching, the glass substrate serving as the insulating substrate 1 is not etched.

〔実施例〕〔Example〕

以下本発明の実施例について第1図(a)〜(h)を参
照して詳細に説明する。まず、裏面に絶縁層2として窒
化シリコン膜を250OA、半導体層2としてアモルフ
ァスシリコン膜を300OAの厚さにプラズマCVD法
により連続形成したガラス基板lにゲニト電極用メタル
としてチタン1oooAを蒸着しく第1図(a))、フ
ォトレジスト法により所定のパターンにエツチングした
(第1図(b))。なお、チタンのエツチングにはフッ
酸:硝酸:水=i:t:1o。
Embodiments of the present invention will be described in detail below with reference to FIGS. 1(a) to (h). First, titanium 100A was deposited as a metal for the genit electrode on a glass substrate l on which a silicon nitride film with a thickness of 250 OA as an insulating layer 2 and an amorphous silicon film as a semiconductor layer 2 with a thickness of 300 OA were successively formed on the back surface by plasma CVD. (a)) and etched into a predetermined pattern by a photoresist method (FIG. 1(b)). In addition, for etching titanium, hydrofluoric acid:nitric acid:water=i:t:1o.

の混合液を用いたが、このエツチング液にガラス基板は
ほとんどエツチングされなかった。その後ガラス基板1
0表面にゲート絶縁層4として窒化シリコン膜6250
OA、半導体層5としてアモルファスシリコン膜を30
0OAの厚さにプラズマ(至)法により連続形成しく第
1図(C))、フォトレジスト法により所定のパターン
にアモルファスシリコンをエツチングすると同時にガラ
ス基板1の裏面の半導体層2′をエツチングにより除去
した(第2図(d) )。アモルファスシリコンのエツ
チング液には、フッ酸:硝酸:氷酢酸= 1 : 5 
: 15の混合液を用いた。この混合液で従来の製造方
法ではガラス基板がエツチングされ裏面にくもりが生じ
たが、本実施例のようにガラス基板1の裏面にもアモル
ファスシリコン膜を形成しておき同時にエツチング除去
した場合にはガラス基板1はまったくエツチングされず
、したがってくもりは生じなかった。
However, the glass substrate was hardly etched by this etching solution. Then glass substrate 1
Silicon nitride film 6250 as gate insulating layer 4 on the surface of
OA, an amorphous silicon film is used as the semiconductor layer 5.
The amorphous silicon is continuously formed to a thickness of 0 OA using the plasma method (Fig. 1 (C)), and at the same time, the amorphous silicon is etched into a predetermined pattern using the photoresist method, and at the same time, the semiconductor layer 2' on the back surface of the glass substrate 1 is removed by etching. (Figure 2(d)). The etching solution for amorphous silicon is hydrofluoric acid: nitric acid: glacial acetic acid = 1:5.
: A mixed solution of 15 was used. In the conventional manufacturing method using this mixed solution, the glass substrate was etched and clouding occurred on the back surface, but when an amorphous silicon film is also formed on the back surface of the glass substrate 1 and removed by etching at the same time as in this example, The glass substrate 1 was not etched at all, so no clouding occurred.

とれは表面と同様に裏面にもアモルファスシリコン膜の
下に窒化シリコン膜が形成され、これがアモルファスシ
リコン膜よりも充分にエツチング速度が遅いためである
。その後全上面にドレイン及びソース電極となる金属薄
膜6としてチタンを無人形成しく第1図(e))、チャ
ンネルとなる半導体層5を覆う部分に金屑薄膜6を残し
て不要部分をエツチングにより除去した(第1図(f)
 ) 、エツチング液にはゲート電極のチタンのエツチ
ング液と同じものを用いた。その後全上面に透明電極7
としてITOt−アルゴンスパッタ法で150OAの厚
さに形成しく第1図(g))、フォトレジスト法により
透明電極7を所望パターンにパターニングすると同時に
チャンネルとしての半導体層5上の金属薄膜6を除去し
、ドレイン電極8とソース電極9とを形成した(第1図
(h))。ITOのエツチング液には塩酸:水=1:l
の混合液を用いた。ガラス基板はITOのエツチング液
に全くエツチングされなかった。
This is because a silicon nitride film is formed under the amorphous silicon film on the back surface as well as the front surface, and the etching rate of this film is sufficiently slower than that of the amorphous silicon film. After that, titanium is automatically formed on the entire upper surface as a metal thin film 6 that will become the drain and source electrodes (FIG. 1(e)), and unnecessary parts are removed by etching, leaving a thin gold film 6 that covers the semiconductor layer 5 that will become the channel. (Figure 1(f)
), the same etching solution as that for the titanium of the gate electrode was used. After that, transparent electrode 7 is placed on the entire top surface.
The transparent electrode 7 was formed to a thickness of 150 OA using the ITOt-argon sputtering method (FIG. 1(g)), and the metal thin film 6 on the semiconductor layer 5 as a channel was removed at the same time as the transparent electrode 7 was patterned into a desired pattern using the photoresist method. , a drain electrode 8 and a source electrode 9 were formed (FIG. 1(h)). ITO etching solution contains hydrochloric acid:water = 1:l
A mixture of these was used. The glass substrate was not etched at all by the ITO etching solution.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明による薄膜トランジスタの製造方法
を用いれば、ガラス基板裏面に絶縁体層と半導体層を順
次形成するため、スルーグツトの良いウェットエツチン
グ法を用いてもガラス基板がエツチングされてくもりが
生ずることはなく、したがって、スループットが高くし
かも液晶ディスプレイの表示品質が良い薄膜トランジス
タアレイの製造方法を提供できる効果を有するものであ
る。
As described above, if the method for manufacturing a thin film transistor according to the present invention is used, the insulating layer and the semiconductor layer are sequentially formed on the back surface of the glass substrate, so even if a wet etching method with good throughput is used, the glass substrate will be etched and clouding will occur. Therefore, it is possible to provide a method for manufacturing a thin film transistor array with high throughput and good display quality on a liquid crystal display.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(h)は本発明の薄膜トランジスタアレ
イの製造工程を示す断面図、第2図(a)〜(h)は従
来の薄膜トランジスタアレイの製造工程を示す断面図で
ある。 l・・・絶縁基板、2・・・絶縁体層、!・・・半導体
層、3・・・ゲート電極、4・・・ゲート絶縁体層、5
・・・半導体層、6・・・ドレイン及びソース電極とな
る金[4摸、7・・°透明電極、8・・・ドレイン電極
、9・・・ソース電極
FIGS. 1(a) to (h) are cross-sectional views showing the manufacturing process of a thin film transistor array according to the present invention, and FIGS. 2(a) to (h) are cross-sectional views showing the manufacturing process of a conventional thin film transistor array. l...Insulating substrate, 2...Insulator layer,! ... Semiconductor layer, 3... Gate electrode, 4... Gate insulator layer, 5
... Semiconductor layer, 6... Gold serving as drain and source electrodes [4 copies, 7...° transparent electrode, 8... Drain electrode, 9... Source electrode

Claims (1)

【特許請求の範囲】[Claims] (1)ガラス基板を絶縁基板としてその表面に少なくと
も絶縁体層と半導体層とを順次形成し、半導体層のみを
パターンエッチングする工程を行う薄膜トランジスタア
レイの製造方法において、前記ガラス基板の裏面にも同
一の製造条件で絶縁体層と半導体層とを順次形成したの
ち、表面の前記半導体層のエッチングを行うことを特徴
とする薄膜トランジスタアレイの製造方法。
(1) In a method for manufacturing a thin film transistor array in which a glass substrate is used as an insulating substrate, at least an insulating layer and a semiconductor layer are sequentially formed on the surface thereof, and pattern etching is performed only on the semiconductor layer, the same process is performed on the back surface of the glass substrate. 1. A method for manufacturing a thin film transistor array, comprising sequentially forming an insulator layer and a semiconductor layer under manufacturing conditions, and then etching the semiconductor layer on the surface.
JP59210742A 1984-10-08 1984-10-08 Production of thin film transistor array Pending JPS6188220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59210742A JPS6188220A (en) 1984-10-08 1984-10-08 Production of thin film transistor array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59210742A JPS6188220A (en) 1984-10-08 1984-10-08 Production of thin film transistor array

Publications (1)

Publication Number Publication Date
JPS6188220A true JPS6188220A (en) 1986-05-06

Family

ID=16594358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59210742A Pending JPS6188220A (en) 1984-10-08 1984-10-08 Production of thin film transistor array

Country Status (1)

Country Link
JP (1) JPS6188220A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0350071A2 (en) * 1988-07-08 1990-01-10 Idemitsu Petrochemical Co. Ltd. Controlling agent composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0350071A2 (en) * 1988-07-08 1990-01-10 Idemitsu Petrochemical Co. Ltd. Controlling agent composition

Similar Documents

Publication Publication Date Title
JP2637078B2 (en) Method of depositing gate electrode material for tipping thin film field effect transistor
US4778560A (en) Method for production of thin film transistor array substrates
EP0211401A2 (en) N+ Amorphous silicon thin film transistors for matrix addressed liquid crystal displays
JPH1041521A (en) Manufacture of thin film transistor and the structure of thin film transistor manufactured by the method
EP0211402B1 (en) Process and structure for thin film transistor matrix addressed liquid crystal displays
JP2002280391A (en) Semiconductor device using self-aligned crystallization by metal induction in silicon layer for tfts, top-gate type tft and top-gate type tft manufacturing method
JP2001166336A (en) Method of producing liquid crystal display device and method of forming wires in liquid crystal display device
US4889411A (en) Process and structure for thin film transistor with aluminum contacts and nonaluminum metallization in liquid crystal displays
JPH04171767A (en) Thin film transistor and manufacture thereof
JPS6188220A (en) Production of thin film transistor array
JP2556550B2 (en) Method for forming high yield electrical contacts to amorphous silicon
JPS61161765A (en) Manufacture of thin film transistor array
JP2000349294A (en) Manufacture of thin-film transistor
JPS61145530A (en) Manufacture of thin-film transistor array
JPH08262491A (en) Liquid crystal display element and its production
JPS61161764A (en) Manufacture of thin film transistor
JPS61164267A (en) Manufacture of thin film transistor
JPH07110496A (en) Production of active matrix panel
JPH01253715A (en) Manufacture of thin film transistor
JPH03116778A (en) Manufacture of active matrix substrate and manufacture of display device
JPH04348041A (en) Manufacture of thin film transistor
JPH07218929A (en) Array structure of thin-film transistor
JP3230311B2 (en) Manufacturing method of TFT matrix
JP2781383B2 (en) Method for manufacturing thin film transistor array
KR910008946B1 (en) Thin film transistor for plate display