JPS6185432A - Epoxy resin molding material for encapsulation of semiconductor device - Google Patents

Epoxy resin molding material for encapsulation of semiconductor device

Info

Publication number
JPS6185432A
JPS6185432A JP20863084A JP20863084A JPS6185432A JP S6185432 A JPS6185432 A JP S6185432A JP 20863084 A JP20863084 A JP 20863084A JP 20863084 A JP20863084 A JP 20863084A JP S6185432 A JPS6185432 A JP S6185432A
Authority
JP
Japan
Prior art keywords
epoxy resin
filler
molding material
resin molding
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20863084A
Other languages
Japanese (ja)
Inventor
Shigeki Ichimura
茂樹 市村
Shinsuke Hagiwara
伸介 萩原
Etsuji Kubo
久保 悦司
Keiichi Kinashi
木梨 恵一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP20863084A priority Critical patent/JPS6185432A/en
Publication of JPS6185432A publication Critical patent/JPS6185432A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain the titled material having excellent thermal shock resistance, high reliability of the glass transition temperature and moisture-resistance, etc., and excellent moldability, by compounding an epoxy resin with a rubber- shaped filler having specific diameter and a spherical filler at specific ratios. CONSTITUTION:The objective molding material can be produced by compounding (A) an epoxy resin (preferably an o-cresol novolac epoxy resin having an epoxy equivalent of 180-205) with (B) a rubber-shaped filler wherein the content of granules having diameter of 44-149mu is 1-6wt%, and (C) a spherical filler and adding other components to the mixture. The amount of the granules having diameter of 44-149mu in the component B+C is adjusted to 8-40%, preferably 10-30%. The filler is preferably silica.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、耐熱衝撃性に優れた半導体装置封止用エポキ
シ樹脂成形材料(以下封止材という)に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an epoxy resin molding material for encapsulating semiconductor devices (hereinafter referred to as encapsulating material) having excellent thermal shock resistance.

〔従来の技術〕[Conventional technology]

封止材を用いたトランスファ成形法による半導体装置の
樹脂封止は、生産性の良さから初圧法の主流を占めてい
る。さらに封止材の信頼性向上に伴ない適用範囲もメモ
リ、マイコンなどのVLS Iまで拡大し、より一層の
信頼性向上を要求されている。
Resin encapsulation of semiconductor devices by transfer molding using a encapsulating material is the mainstream of initial pressure methods due to its high productivity. Furthermore, as the reliability of sealing materials improves, the range of application has expanded to include VLSI devices such as memories and microcomputers, and further improvements in reliability are required.

特に最近では、集積度向上のための素子サイズの大型化
や、パッケージ形状の薄肉小型化に伴ない、冷熱サイク
ル試験における封止材の耐クラツク性が要求されるに至
っている。
Particularly in recent years, as device sizes have become larger to improve the degree of integration and packages have become thinner and smaller, crack resistance of sealing materials in thermal cycle tests has become required.

従来これら要求に対し、封止材の熱膨張率を小さくする
方法や弾性率を下げ可撓性を与える方法等が検討されて
きた。しかし、熱膨張率を下げるために充填材の量を増
すことは、可撓性がなくなる上に流動性も損なわれ、f
た可使性を出すために架橋度を下げることにガラス転移
源1度の低下など高温特性を損なう他、耐湿性も低下し
、いずれの方法も満足すべきものではなかった。
Conventionally, in response to these demands, methods of reducing the coefficient of thermal expansion of the sealing material and methods of lowering the modulus of elasticity to provide flexibility have been studied. However, increasing the amount of filler to lower the coefficient of thermal expansion results in loss of flexibility and fluidity, resulting in f
In order to improve usability, lowering the degree of crosslinking resulted in a decrease in the glass transition source by 1 degree, which impairs high-temperature properties, and also reduces moisture resistance, so none of the methods were satisfactory.

〔発ヴ1が解決しようとする問題、へ〕季発明は耐熱衝
撃性に優れ、かつガラス転移湯度や耐湿性などの信頼性
や、成形作業性にも優れた、有用な封止材を提供しよう
とするものである。
[Problems to be solved by Ev 1] The invention is to develop a useful sealing material that has excellent thermal shock resistance, reliability in terms of glass transition temperature and moisture resistance, and excellent molding workability. This is what we are trying to provide.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はエポキシ樹脂に、(a)粒子径44〜149μ
の粒子の含有量が1〜6M−W%である砕石状充填材と
(b)球状充填材からなり、かつ(ml+(blのうち
粒子径44μ〜149μの粒子の含有量が8〜40重量
%である充填層を配合したことを%徴とする半導体封止
用エポキシ衝脂敢形材料にかかわるものである。
The present invention provides an epoxy resin with (a) a particle size of 44 to 149 μm;
consisting of a crushed stone filler whose content of particles is 1 to 6 M-W% and (b) a spherical filler, and whose content of particles with a particle size of 44 μ to 149 μ in (ml + (bl) is 8 to 40 wt. The invention relates to an epoxy resin molding material for semiconductor encapsulation, which is characterized by the fact that it contains a filling layer of %.

すなわち、粒径の小さい砕石状充填材、もしくは球状充
填材が封止材の耐熱衝撃性を大巾に向上さ−1すること
を見い出し本発明に至ったものである。ここで1粒径の
小さい砕石状充填材としては、44μ〜149μの粒子
含有量が1〜6重量%のものを用いる必要があり、6重
量%以上では耐熱衝撃性向上効果が小さく、44μ以下
の粒子の含有量が1重量%未満では流動性が著しく低下
する。また砕石状充填材と球状充填材合計量のうち、4
4〜149μの粒子が8〜40重量%5好t[、<Hl
 0〜50X:J1%に調整する必要がある。8重量%
未満では金型での50μ程度の厚い隙におけるバリ量が
増加し、40重量%を越えるとは10μ程度の薄い隙に
おけるバリ量が増加するため成形作業性を署しく損なう
。なお本発明における球状充填材は完全な球でらる必要
はないが、角状の形状を持たない充填材を意味する。ま
た本発明でいつ粒径はJIS規格の標準篩を用いて測定
したものである。さらに本発明で用いる充填材としては
That is, it was discovered that a crushed stone-like filler or a spherical filler with a small particle size greatly improves the thermal shock resistance of a sealing material by -1, which led to the present invention. Here, as the crushed stone-like filler with a small particle size, it is necessary to use one with a particle content of 44μ to 149μ in the range of 1 to 6% by weight. If the content of particles is less than 1% by weight, the fluidity will be significantly reduced. Also, of the total amount of crushed stone filler and spherical filler, 4
8 to 40% by weight of particles of 4 to 149μ
0-50X: It is necessary to adjust to J1%. 8% by weight
If it is less than 40% by weight, the amount of burrs in a thick gap of about 50 μm in the mold increases, and if it exceeds 40% by weight, the amount of burr in a thin gap of about 10 μm increases, seriously impairing molding workability. Note that the spherical filler in the present invention does not necessarily have to be a perfect sphere, but refers to a filler that does not have an angular shape. Further, in the present invention, the particle size is measured using a standard sieve according to JIS standards. Furthermore, as a filler used in the present invention.

溶融シリカ、結晶性シリカ、ガラス、アルミナ。Fused silica, crystalline silica, glass, alumina.

ジルコン等がめげられるが、耐熱クラック性以外の耐湿
性等緒特性にも優れたシリカが好適である。
Although zircon and the like are rejected, silica is preferred because it has excellent properties such as moisture resistance as well as heat crack resistance.

本発明に用いることができるエポキシ樹脂としては、た
とえばビスフェノールA、ビスフェノールF、レゾルシ
ノール、フェノールノボラブク、クレゾールノボラック
などのフェノール類のグリシジルエーテル、ブタンジオ
ール、ポリエチレングリコール、ポリプロピレングリコ
ールナトのアルコール類のグリシジルエーテル。
Epoxy resins that can be used in the present invention include, for example, glycidyl ethers of phenols such as bisphenol A, bisphenol F, resorcinol, phenol novolac, and cresol novolak; glycidyl ethers of alcohols such as butanediol, polyethylene glycol, and polypropylene glycol nat .

フタル酸、イソフタル酸、テレフタル酸、テトラヒドロ
フタル酸などのカルボン酸類のグリシジルエステル、ア
ニリン、イソシアタール酸などの窒素原子に結合した活
性水素をグリシジル基で置換したものなどのグリシジル
型エポキシ樹脂、分子内のオレフィン結@を過酸等でエ
ポキシ化して得られるいわゆる脂環型エポキシドなどが
あげられる。中でもエポキシ当量180〜205のθ−
クレゾールノボラック型エボキである。
Glycidyl esters of carboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, and tetrahydrophthalic acid, glycidyl-type epoxy resins such as those in which the active hydrogen bonded to the nitrogen atom of aniline and isotheateric acid is replaced with a glycidyl group, and intramolecular Examples include so-called alicyclic epoxides obtained by epoxidizing the olefin bonds of Among them, θ- with an epoxy equivalent of 180 to 205
It is a cresol novolak type eboki.

また、硬化剤としては特に制約はないが、ノボラック型
フェノール樹脂、ノボラック型クレゾール樹脂などのフ
ェノール樹脂、テトラヒドロ無水フタル酸、無水ピロメ
リット酸などの酸無水物、ジアミノジフェニルメタン、
ジアミノジフェニルスルフオルなどのアミン類、アジピ
ン酸ジヒドラジド、イソフタル酸ジヒドラジドなどの2
塩基酸ジヒドラジド類などを用いることができる。
There are no particular restrictions on the curing agent, but phenolic resins such as novolak-type phenolic resins and novolak-type cresol resins, acid anhydrides such as tetrahydrophthalic anhydride and pyromellitic anhydride, diaminodiphenylmethane,
Amines such as diaminodiphenylsulfur, adipic acid dihydrazide, isophthalic acid dihydrazide, etc.
Basic acid dihydrazides and the like can be used.

さらに硬化促進剤としては、たとえば、2メチルイミダ
ゾール、2エチル−4−メチルイミダゾールなどのイミ
ダゾール類、ベンジルジメチルアミンなどの三原アミン
類、トリブチルホスフィンやトリフェニルホスフィンな
どの有機リン化合物などを用いることが好やしく、その
他着色剤、離型剤、難燃剤、カップリング剤などを必要
に応じて用いることができる。
Furthermore, as a curing accelerator, for example, imidazoles such as 2-methylimidazole and 2-ethyl-4-methylimidazole, ternary amines such as benzyldimethylamine, and organic phosphorus compounds such as tributylphosphine and triphenylphosphine can be used. Preferably, other colorants, mold release agents, flame retardants, coupling agents, etc. may be used as necessary.

本発明の半導体装置封止用エポキシ樹脂成形材料の製造
方法としては、ミキシングロールや押出機を用いた溶融
混合法が好適でろり、これら方法により所望の流動性の
組成物を製造することができる。
As a method for producing the epoxy resin molding material for encapsulating semiconductor devices of the present invention, a melt mixing method using a mixing roll or an extruder is suitable, and a composition with desired fluidity can be produced by these methods. .

〔実施例〕 以下実施例をもって具体的に説明する。〔Example〕 This will be specifically explained below using examples.

実施例1〜5および比較例1〜3 表1に示す充填材、軟化点82℃、エポキシ半量198
のθ−クレゾールノボラック型エポキシ樹脂(1)、軟
化点76℃、エポキシ当fi4QOのブロム化ビスフェ
ノール型エポキシ樹脂(2)。
Examples 1 to 5 and Comparative Examples 1 to 3 Fillers shown in Table 1, softening point 82°C, epoxy half amount 198
a θ-cresol novolac type epoxy resin (1), and a brominated bisphenol type epoxy resin (2) having a softening point of 76°C and an epoxy equivalent fi4QO.

その地表2に示す添加材を表2に示す童で配合し、80
℃のミキシングロールで5分間溶融混合した。溶融混合
した材料はシート状で取出し、冷却後粉砕して成形に供
した。
The additives shown in Table 2 were mixed with the ingredients shown in Table 2, and 80
Melt mixing was performed for 5 minutes on a mixing roll at °C. The melt-mixed material was taken out in the form of a sheet, cooled, and then crushed and used for molding.

表1 充填材の粒度   (%) 表2 実施例 ここで表2に示(7た特性の測定方法、試験方法を月9
明する。耐熱衝撃性のテストはフラットパッケージを用
い、チップにそって発生する樹脂部のクランクによりチ
ェックした。熱衝撃の条件は、150℃才イルバス1分
および液体N21分を1サイクル七し、半数のパッケー
ジにクランクが入る回数をもって耐’l’+衝零性とし
た。
Table 1 Particle size of filler (%) Table 2 Examples The measurement methods and test methods for the properties shown in Table 2 are as follows:
I will clarify. Thermal shock resistance was tested by using a flat package and checking by cranking the resin part along the chip. Thermal shock conditions were 7 cycles of 150°C heating bath for 1 minute and 21 minutes of liquid N, and the number of times that half of the packages were cranked was defined as 'l'+shock resistance.

パリ長さは、表記厚みのスリットを持つ金星を用い、型
温180℃、成形圧カフ0kg/−で測定した。ガラス
転移温度は熱膨張曲線の転移点より求めた。体積抵抗率
はJISK6911に従って測定し、プレッシャークツ
カー処理(PCT)は2気圧水蒸気中でjDDQ間行な
っfc。
The Paris length was measured using a Venus with a slit of the indicated thickness at a mold temperature of 180°C and a molding pressure cuff of 0 kg/-. The glass transition temperature was determined from the transition point of the thermal expansion curve. The volume resistivity was measured according to JIS K6911, and the pressure pressure treatment (PCT) was carried out in 2 atmospheres of water vapor for DDQ.

スパイラルフローはEMMI−夏−661C従いMl+
定したが、A當50〜40inch が適当である。
Spiral flow follows EMMI-Summer-661C Ml+
However, A of 50 to 40 inches is appropriate.

比較例1は従来作られていた標準的材料であり、耐rX
S衝撃性が悪い仙には特に欠点のない材料である。また
比較例2株充填材を細かくした例で、50a厚のバリ貸
が増えており、比較例3に球状充填剤を用い比例で、1
0μ厚のパリ5″が増えている。これに対し、実施例1
〜5に示した本発明による例では、IH熱衝撃性が著し
く向上しており、さらにガラス転移温度、耐湿性等の信
頼性に優れて(・る他、パリ発生が少なく)成形性も良
(・ことがわかる。
Comparative Example 1 is a standard material made conventionally and has rX resistance.
S is a material with no particular drawbacks in terms of its poor impact resistance. In addition, in Comparative Example 2, where the filler was made finer, the amount of burr increased with a thickness of 50 mm.
0 μ thick Paris 5″ is increased. On the other hand, in Example 1
In the examples according to the present invention shown in 5 to 5, the IH thermal shock resistance is significantly improved, and furthermore, the glass transition temperature, moisture resistance, etc. are excellent (in addition, there is little occurrence of paris), and the moldability is also good. (・I understand.

〔発明の効果〕〔Effect of the invention〕

本発明により耐熱衝撃性に侵れ、かつガラス転移温度や
耐湿性などの信頼性や成形作業性にも8i叱れた封止剤
が得られた。
According to the present invention, a sealant which has excellent thermal shock resistance and is improved by 8i in terms of reliability such as glass transition temperature and moisture resistance, and molding workability has been obtained.

Claims (1)

【特許請求の範囲】 1、エポキシ樹脂に、(a)粒子径44〜149μの粒
子の含有量が1〜6重量%である砕石状充填材と(b)
球状充填材からなり、かつ(a)+(b)のうち粒子径
44〜149μの粒子の含有量が8〜40重量%である
充填材を配合したことを特徴とする半導体装置封止用エ
ポキシ樹脂成形材料。 2、エポキシ樹脂がエポキシ当量180〜205のロー
クレゾールノボラック型エポキシ樹脂であることを特徴
とする請求範囲第1項記載の半導体装置封止用エポキシ
樹脂成形材料。 3、充填材がシリカであることを特徴とする請求範囲第
2項記載の半導体装置封止用エポキシ樹脂成形材料。
[Claims] 1. In the epoxy resin, (a) a crushed stone-like filler containing 1 to 6% by weight of particles with a particle size of 44 to 149 μ; and (b)
An epoxy for encapsulating semiconductor devices, which is made of a spherical filler and contains 8 to 40% by weight of particles with a particle diameter of 44 to 149 μ out of (a) + (b). Resin molding material. 2. The epoxy resin molding material for encapsulating a semiconductor device according to claim 1, wherein the epoxy resin is a low cresol novolac type epoxy resin having an epoxy equivalent of 180 to 205. 3. The epoxy resin molding material for encapsulating a semiconductor device according to claim 2, wherein the filler is silica.
JP20863084A 1984-10-04 1984-10-04 Epoxy resin molding material for encapsulation of semiconductor device Pending JPS6185432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20863084A JPS6185432A (en) 1984-10-04 1984-10-04 Epoxy resin molding material for encapsulation of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20863084A JPS6185432A (en) 1984-10-04 1984-10-04 Epoxy resin molding material for encapsulation of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6185432A true JPS6185432A (en) 1986-05-01

Family

ID=16559404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20863084A Pending JPS6185432A (en) 1984-10-04 1984-10-04 Epoxy resin molding material for encapsulation of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6185432A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274924A (en) * 1985-09-30 1987-04-06 Toshiba Corp Epoxy resin composition for sealing semiconductor device
JPS62261161A (en) * 1986-05-08 1987-11-13 Mitsubishi Electric Corp Resin sealed semiconductor device
JPH01161037A (en) * 1987-12-17 1989-06-23 Toshiba Chem Corp Sealing resin composition
US6221509B1 (en) 1998-04-16 2001-04-24 Tatsumori Ltd. Semiconductor encapsulating epoxy resin compositions, and semiconductor devices encapsulated therewith
KR100656489B1 (en) * 1998-12-24 2006-12-15 창 춘 플라스틱스 컴퍼니, 리미티드 Epoxy resin and resin-sealed type semiconductor apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274924A (en) * 1985-09-30 1987-04-06 Toshiba Corp Epoxy resin composition for sealing semiconductor device
JPS62261161A (en) * 1986-05-08 1987-11-13 Mitsubishi Electric Corp Resin sealed semiconductor device
JPH01161037A (en) * 1987-12-17 1989-06-23 Toshiba Chem Corp Sealing resin composition
US6221509B1 (en) 1998-04-16 2001-04-24 Tatsumori Ltd. Semiconductor encapsulating epoxy resin compositions, and semiconductor devices encapsulated therewith
KR100656489B1 (en) * 1998-12-24 2006-12-15 창 춘 플라스틱스 컴퍼니, 리미티드 Epoxy resin and resin-sealed type semiconductor apparatus

Similar Documents

Publication Publication Date Title
TWI478969B (en) Epoxy resin composition and semiconductor device
JPH07278415A (en) Resin composition for semiconductor sealing and semiconductor device sealed therewith
JPH04300914A (en) Epoxy resin composition and semiconductor device
KR970004948B1 (en) Resin encapsulation type semiconductor device
JPH05148411A (en) Thermosetting resin composition and semiconductor device
JPH06345847A (en) Epoxy resin composition and semiconductor device
JPS6185432A (en) Epoxy resin molding material for encapsulation of semiconductor device
JPH05259316A (en) Resin-sealed semiconductor device
JPS6210159A (en) Resin composition for semiconductor sealing
JPS61168618A (en) Epoxy resin composition for semiconductor sealing
JPS6189247A (en) Epoxy resin composition for semiconductor sealing
JPS6210132A (en) Resin composition for sealing semiconductor
JPH04300915A (en) Epoxy resin composition and semiconductor device
JPS62151447A (en) Epoxy resin composition for sealing semiconductor
JP2925905B2 (en) Epoxy resin composition
JPS6181427A (en) Epoxy resin composition
JPH1045872A (en) Epoxy resin composition
JPS62260820A (en) Polymerizable composition
JPH01188518A (en) Epoxy resin composition and resin-sealed semiconductor device produced by using same
JP2000309678A (en) Epoxy resin composition and semiconductor device
JPH03115455A (en) Sealing resin composition and resin-sealed semiconductor device
JPS62209127A (en) Epoxy resin composition for sealing semiconductor device
JPH04318056A (en) Epoxy resin composition
JPS63178121A (en) Resin composition for sealing semiconductor
JPS63189421A (en) Epoxy resin composition for sealing semiconductor