JPS62151447A - Epoxy resin composition for sealing semiconductor - Google Patents

Epoxy resin composition for sealing semiconductor

Info

Publication number
JPS62151447A
JPS62151447A JP29579685A JP29579685A JPS62151447A JP S62151447 A JPS62151447 A JP S62151447A JP 29579685 A JP29579685 A JP 29579685A JP 29579685 A JP29579685 A JP 29579685A JP S62151447 A JPS62151447 A JP S62151447A
Authority
JP
Japan
Prior art keywords
silica
epoxy resin
ray
maximum particle
low alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29579685A
Other languages
Japanese (ja)
Inventor
Shigeki Ichimura
茂樹 市村
Michihito Igarashi
五十嵐 未知人
Etsuji Kubo
久保 悦司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP29579685A priority Critical patent/JPS62151447A/en
Publication of JPS62151447A publication Critical patent/JPS62151447A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:An epoxy resin composition having improved water-vapor resistance and improved molding workability, containing synthetic, low alpha-ray spherical silica and low alpha-ray square silica having specific maximum particle diameters and comprising coarse particles of the silica in a specific ratio. CONSTITUTION:(A) Synthetic low alpha-ray spherical silica having 149mum maximum particle diameter, preferably obtained by melting AKOROZURU R as a raw material and processing it into spheres and (B) low alpha-ray square silica having 74mum maximum particle diameter obtained by mechanically grinding synthetic silica or natural silica are both used in such a way that coarse particles having >=44mum are >=6wt% based on the total amounts of the component A+B and content of the component B is 10-70wt% and th silicas are blended with an epoxy resin (preferably O-cresol novolak type epoxy resin having 180-205 epoxy equivalent), a curing agent (novolak type phenolic resin, etc.), a curing promotor (2-methylimidazole, etc.), etc., in a molten state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、信頼性および成形性に優れた半導体封止用エ
ポキシ樹脂組成物(以下封止材と略す)に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an epoxy resin composition for encapsulating semiconductors (hereinafter abbreviated as encapsulating material) having excellent reliability and moldability.

〔従来の技術〕[Conventional technology]

封止材を用いたトランスファー成形法による半導体装置
(TR3,IC,LSI等)の樹脂封止は、その生産性
の良さから封止法の主流を占めている。さらに封止材の
信頼性向上に伴い、その適用範囲もメモリ、マイコン等
のVLS Iまで拡大してきた。特に最近では集積度の
向上が著しく進み、これに対応してたとえばダイナミッ
クメモリを例にとると、アルミ配線巾が16にビットで
は約5μm、64にビットでは約3μm、256にビッ
トでは約2μmと微細化する傾向にある。また、素子サ
イズも16にビットでは約20mm、64にビットでは
約30mff1,256にビットでは約40 m mと
大形化している。これに伴い封止材にはより一層の信頼
性向上を要求されるようになってきた。従来、耐湿性の
向上については素材の高純度化などで対処してきた。ま
た、素子サイズの大形化に対しては封止材と素子との膨
張率の差により発生する熱応力を低減するため、封止材
の膨張率を小さくしたり弾性率を低下させる処方が用い
られてきた。しかし、素子の急速な高集積度化に伴い、
これら対策だけでは限界に達している。
Resin encapsulation of semiconductor devices (TR3, IC, LSI, etc.) by transfer molding using a encapsulating material is the mainstream encapsulation method due to its high productivity. Furthermore, as the reliability of encapsulants has improved, their range of application has expanded to include VLSI devices such as memories and microcomputers. Particularly in recent years, the degree of integration has been significantly improved, and correspondingly, taking dynamic memory as an example, the aluminum wiring width has increased to about 5 μm for 16 bits, about 3 μm for 64 bits, and about 2 μm for 256 bits. There is a trend towards miniaturization. Furthermore, the element size has also increased to about 20 mm for 16 bits and about 30 mm for 64 bits, and about 40 mm for 64 bits. As a result, sealing materials are required to have even higher reliability. Conventionally, improvements in moisture resistance have been achieved by increasing the purity of the material. In addition, in order to reduce the thermal stress caused by the difference in expansion coefficient between the encapsulant and the element as the element size increases, formulations that reduce the expansion coefficient or elastic modulus of the encapsulant are required. has been used. However, with the rapid increase in the degree of integration of devices,
These measures alone have reached their limits.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、高集積、微細配線化された素子を封止
したときの耐湿性に優れ、かつ成形作業性も良好な、産
業上有用な封止材を提供することにある。
An object of the present invention is to provide an industrially useful sealing material that has excellent moisture resistance and good molding workability when sealing highly integrated and finely interconnected elements.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体封止用エポキシ樹脂組成物は(al最大
粒径149μmの合成紙α線球形シリカとfb)最大粒
径74μmの低α線角形シリカを含有することを特徴と
する。
The epoxy resin composition for semiconductor encapsulation of the present invention is characterized by containing (synthetic paper α-ray spherical silica with an al maximum particle size of 149 μm and fb) low α-ray prismatic silica with a maximum particle size of 74 μm.

本発明者らが樹脂封止半導体装置の代表例として256
にビットメモリをとりあげ、120°Cのプレシャーク
フカテストにおける不良モードを検討した結果、次のこ
とがわかった。fil素子周辺部のアルミバンド部等の
腐食が最も多く発生するが、不良発生に至る時間は長い
。(2)素子の中央部付近にも腐食不良が発生する。不
良発生数は少ないが、不良発生に至る時間が短く、短時
間で不良に至る点が問題である。
256 as a representative example of a resin-sealed semiconductor device.
As a result of examining the failure mode in a 120°C pre-shark test for bit memory, we found the following. Corrosion occurs most often in the aluminum band parts around the fil element, but it takes a long time to develop defects. (2) Corrosion defects also occur near the center of the element. Although the number of defects is small, the problem is that the time required for defects to occur is short, and defects occur in a short period of time.

従来技術である素材の高純度化や低応力化の手法は、素
子周辺部で発生する腐食不良の改善には有効であったが
、素子中央で発生する腐食不良の改善にはほとんど効果
がなかった。その原因を検討した結果、素子中央部の不
良はパッシベーション膜の欠陥によるものであることが
わかった。そこで、さらにパッシベーション膜の欠陥と
封止材の関係について検討したところ、粗い充填材を減
らすことによりパッシベーション膜の欠陥が発生しにく
くなり、これに伴い腐食不良が大幅に低減することが明
らかになった。
Conventional techniques for improving the purity of materials and reducing stress have been effective in improving corrosion defects that occur in the periphery of the element, but have little effect on improving corrosion defects that occur in the center of the element. Ta. As a result of investigating the cause, it was found that the failure in the central part of the element was due to a defect in the passivation film. Therefore, we further investigated the relationship between defects in the passivation film and the encapsulant, and found that by reducing the amount of coarse filler, defects in the passivation film become less likely to occur, and as a result, corrosion defects are significantly reduced. Ta.

一般的に封止材は最大粒径149μm、平均粒径10〜
20μmの角形シリカを充填材として50〜70vo1
%含有している。本発明においては、パッシベーション
膜の欠陥が粗い角形粒子の傷に起因すると考えられるこ
とから最大粒径149μmの合成紙α線球形シリカを併
用して、角形シリカの最大粒径が74μmを越えるもの
を除くことにより、パッシベーション膜に傷をつけない
ようにして、素子中央部の腐食不良を防止した。
Generally, the maximum particle size of the sealant is 149μm, and the average particle size is 10~
50-70vol with 20μm square silica as filler
Contains %. In the present invention, since defects in the passivation film are thought to be caused by scratches on coarse prismatic particles, synthetic paper α-ray spherical silica with a maximum particle size of 149 μm is used together with prismatic silica with a maximum particle size exceeding 74 μm. By removing this, the passivation film was not damaged and corrosion defects at the center of the element were prevented.

また、合成紙α線球形シリカはα線発生源であるUの含
有量も少ないことから、高集積メモリ用としては好適の
ものである。合成紙α線球形シリカの最大粒径が149
μmを越えると、金型の中の細い流路を流れなくなり好
ましくない。
In addition, synthetic α-ray spherical silica has a low content of U, which is an α-ray generating source, and is therefore suitable for use in highly integrated memories. The maximum particle size of synthetic paper α-ray spherical silica is 149
If it exceeds μm, it will not flow through the narrow channel in the mold, which is undesirable.

上記したように、74μmより粗い低α線角形シリカを
除いた場合、金型の40μm以上の隙から封止材が流出
しくパリが発生し)作業性が充分とはいえない。そこで
、前記fa) + fblの合計量のうち44μm以上
の粗い粒子を5wt%以上とし、かつ(blの含有量を
10〜70wt%とすると、パリの発生が防止され作業
性の点から好ましい。
As mentioned above, when the low α-ray prismatic silica having a roughness of 74 μm or more is excluded, the sealing material flows out from the gap of 40 μm or more in the mold, causing flaking, and the workability is not sufficient. Therefore, it is preferable that the coarse particles of 44 μm or more in the total amount of fa) + fbl be 5 wt % or more, and the content of (bl be 10 to 70 wt %), since this will prevent the generation of flakes and improve workability.

すなわち、ネ■い粒子が5wt%未満だとパリが発生し
好ましくない。また、球形シリカを単独で使用した場合
、金型の薄い隙から40μm以上の厚い隙全域にわたり
封止材が流出(パリ発生)しやすく、作業性を著しく損
なう。この問題は角形シリカを併用することで解決され
る。この含有賀lQwt%未満では効果がな(,70w
t%を越えると、薄いパリは発生しなくなるものの、4
0μm以上の厚いパリが発生し易くなる。
That is, if the amount of black particles is less than 5 wt%, paris will occur, which is not preferable. Furthermore, when spherical silica is used alone, the sealing material tends to flow out (splash generation) over the entire area from the thin gap of the mold to the thick gap of 40 μm or more, which significantly impairs workability. This problem can be solved by using prismatic silica. If the content is less than 1Qwt%, there is no effect (70w
If it exceeds t%, thin paris will no longer occur, but 4
Thick paris of 0 μm or more are likely to occur.

合成紙α線球形シリカとしては、例えばアエロジル■を
原料として溶融球形化させたもの(三菱金属製)が好適
である。また低α線角形シリカは、合成シリカや天然シ
リカを機械的に粉砕したものを用いることができる。
As the synthetic paper α-ray spherical silica, for example, one obtained by melting and spheroidizing Aerosil ■ (manufactured by Mitsubishi Metals) is suitable. Further, as the low α-ray prismatic silica, mechanically pulverized synthetic silica or natural silica can be used.

本発明に用いることができるエポキシ樹脂としては、例
えばビスフェノールA、ビスフェノールFルーゾルシノ
ール、フェノールノボラックなどのフェノール類のグリ
シジルエーテル、ブタンジオール、ポリエチレングリコ
ール、ポリプロピレングリコールなどのアルコール類の
グリシジルエーテル、フタル酸、イソフタル酸、テレフ
タル酸、テトラヒドロフタル酸などのカルボン酸類のグ
リシジルエステル、アニリン、イソシアヌール酸などの
窒素原子に結合した活性水素をグリシジル基で置換した
ものなどのグリシジル型エポキシ樹脂、分子内のオレフ
ィン結合を過酸等でエポキシ化して得られるいわゆる脂
環型エポキシドなどがあげられる。なかでもエポキシ当
量180〜205の0−クレゾールノボラック型エポキ
シ樹脂力<iH界性およびガラス転移温度など耐熱性に
優れており、最も好適である。
Epoxy resins that can be used in the present invention include, for example, glycidyl ethers of phenols such as bisphenol A, bisphenol F lu-sorcinol, and phenol novolak, glycidyl ethers of alcohols such as butanediol, polyethylene glycol, and polypropylene glycol, and phthalic acid. , glycidyl esters of carboxylic acids such as isophthalic acid, terephthalic acid, and tetrahydrophthalic acid, glycidyl-type epoxy resins such as those in which the active hydrogen bonded to the nitrogen atom is replaced with a glycidyl group such as aniline and isocyanuric acid, and olefins in the molecule. Examples include so-called alicyclic epoxides obtained by epoxidizing a bond with a peracid or the like. Among them, 0-cresol novolac type epoxy resins having an epoxy equivalent of 180 to 205 are the most suitable because they have excellent heat resistance such as strength<iH interface and glass transition temperature.

また、硬化剤としては特に制約はないが、ノボラック型
フェノール樹脂、ノボラック型クレゾール樹脂などのフ
ェノール樹脂、テトラヒドロ無水フタル酸、無水ピロメ
ロノド酸などの酸無水物、ジアミノジフェニルスルフォ
ンなどのアミン類、アジピン酸ジヒドラジド、イソフタ
ル酸ジヒドラジドなどの二塩基酸ジヒドラジド類などを
用いることができる。これらは好ましくは、エポキシ基
に対する当量比0.5〜1.5の範囲で用いられ、2種
以上併用してもかまわない。
There are no particular restrictions on the curing agent, but phenolic resins such as novolak-type phenolic resins and novolac-type cresol resins, acid anhydrides such as tetrahydrophthalic anhydride and pyromeronotic anhydride, amines such as diaminodiphenylsulfone, and adipic acid Dibasic acid dihydrazides such as dihydrazide and isophthalic acid dihydrazide can be used. These are preferably used in an equivalent ratio of 0.5 to 1.5 with respect to the epoxy group, and two or more types may be used in combination.

硬化促進剤としては、例えば、2−メチルイミダゾール
、2−フェニルイミダゾール、2−フェニル−4−メチ
ルイミダゾール、2−ヘプタデシルイミダゾールなどの
イミダゾール類、ベンジルジメチルアミン、■、8−ジ
アザビシクロ〔5゜4.0]ウンデセン−7(DBUと
略す)、DBUのフェノール塩、DBUのノボラック樹
脂塩、DBUのカリボール塩などのDBU誘導体類など
のアミン類、トリブチルホスフィン、メチルジフェニル
ホスフィン、ジフェニルホスフィン、トリフェニルホス
フィン、フェニルホスフィンなどの有機ホスフィン類、
テトラフェノールフォスフオニウムテトラフェニルボレ
ート、2−エチル−4メチルイミダゾールテトラフエニ
ルボレートなどのテトラフェニルボロン塩等が挙げられ
る。
Examples of the curing accelerator include imidazoles such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, and 2-heptadecyl imidazole, benzyldimethylamine, and ■,8-diazabicyclo[5゜4 .0] Undecene-7 (abbreviated as DBU), phenol salts of DBU, novolak resin salts of DBU, DBU derivatives such as Kalibol salt of DBU, tributylphosphine, methyldiphenylphosphine, diphenylphosphine, triphenylphosphine , organic phosphines such as phenylphosphine,
Examples include tetraphenylboron salts such as tetraphenol phosphonium tetraphenylborate and 2-ethyl-4methylimidazole tetraphenylborate.

また、必要に応じて、可撓剤としてポリブタジェン、ア
クリロニトリル−ブタジェン共重合体などのゴム類およ
びこれらの末端カルボキシ、ヒドロキシ、内部エポキシ
などを有する変性ゴム類、シリコーンオイル、シリコー
ンゴム、シリコーンゲル、各種官能基、有機基を有する
シリコーン化合物などのオルガノポリシロキサン類、テ
フロン、フッソゴムなどのフッソ化合物などを用いるこ
とができる。また公知の可塑剤としてフタル酸ジエステ
ル、脂肪族二塩基酸エステル、グリコールエステルなど
を用いることができる。
In addition, if necessary, rubbers such as polybutadiene and acrylonitrile-butadiene copolymer, modified rubbers having terminal carboxy, hydroxy, internal epoxy, etc., silicone oil, silicone rubber, silicone gel, various types can be used as flexibilizers. Organopolysiloxanes such as silicone compounds having functional groups or organic groups, fluorine compounds such as Teflon, fluorine rubber, etc. can be used. In addition, phthalic acid diesters, aliphatic dibasic acid esters, glycol esters, and the like can be used as known plasticizers.

その他、着色剤、離型剤、難燃剤、着色剤、カンプリン
グ剤などを必要に応じ用いることができる。
In addition, a coloring agent, a mold release agent, a flame retardant, a coloring agent, a camping agent, etc. can be used as necessary.

本発明のエポキシ樹脂組成物の製造方法としては、ミキ
シングロールや押出機を用いた溶融混合法が好適であり
、これら方法により所望の流動性の組成物を製造するこ
とができる。
As a method for producing the epoxy resin composition of the present invention, a melt mixing method using a mixing roll or an extruder is suitable, and a composition with desired fluidity can be produced by these methods.

〔実施例〕〔Example〕

以下実施例により本発明を説明するが、本発明の範囲は
これらの実施例に限定されるものではない。
The present invention will be explained below with reference to Examples, but the scope of the present invention is not limited to these Examples.

使用したシリカの粒度を表1に示す。Table 1 shows the particle size of the silica used.

以下余白 表1 シリカの粒度 本 JIS  Z  8801の標準篩を用いた測定値
実施例1 0−クレゾールノボラック型エポキシ樹脂(エポキシ当
41i195)80重量部、Br化ビスフェノールAエ
ポキシ樹脂(エポキシ当量400、Br化率48%)2
0重量部、ノボラック型フェノール樹脂 50重量部、
2−メチルイミダゾール1重量部、三酸化アンチモン 
10重量部、T−グリシドキシブロピルトリメトキシシ
ラン 3重量部、カルナハワ・7クス 2重量部、カー
ボンブラック 2重量部、さらに充填材として球形のA
を320重量部、角形のBを80重量部用い、配合した
組成物を常法に従い80℃のミキシングロールで5分間
溶融部合した後、シート状で取り出し、冷却後粉砕して
封止材を作製した。
Below is a margin Table 1 Silica particle size book Measured values using a JIS Z 8801 standard sieve Example 1 80 parts by weight of 0-cresol novolac type epoxy resin (41i195 per epoxy), Br bisphenol A epoxy resin (epoxy equivalent 400, Br conversion rate: 48%)2
0 parts by weight, 50 parts by weight of novolac type phenolic resin,
1 part by weight of 2-methylimidazole, antimony trioxide
10 parts by weight, 3 parts by weight of T-glycidoxypropyltrimethoxysilane, 2 parts by weight of Karunahawa 7x, 2 parts by weight of carbon black, and spherical A as a filler.
Using 320 parts by weight of B and 80 parts by weight of square B, the blended composition was melted in a mixing roll at 80°C for 5 minutes according to a conventional method, taken out in a sheet form, cooled and crushed to form a sealing material. Created.

実施例2 充填材として球形のAを200重量部、角形のBを20
0重量部用いる以外は、実施例1と同様の方法で封止材
を作製した。
Example 2 200 parts by weight of spherical A and 20 parts by weight of square B as fillers
A sealing material was produced in the same manner as in Example 1 except that 0 parts by weight was used.

実施例3 充填材として球形のAを120重量部、角形のBを28
0重量部用いる以外は、実施例1と同様の方法で封止材
を作製した。
Example 3 120 parts by weight of spherical A and 28 parts by weight of square B as fillers
A sealing material was produced in the same manner as in Example 1 except that 0 parts by weight was used.

比較例1 充填材として球形のAを単独で400重量部用いる以外
は、実施例1と同様の方法で封止材を作製した。
Comparative Example 1 A sealing material was produced in the same manner as in Example 1, except that 400 parts by weight of spherical A was used alone as a filler.

比較例2 充填材として角形のBを単独で400重量部用いる以外
は、実施例1と同様の方法で封止材を作製した。
Comparative Example 2 A sealing material was produced in the same manner as in Example 1, except that 400 parts by weight of square B was used alone as a filler.

実施例および比較例の結果を表2に示す。Table 2 shows the results of Examples and Comparative Examples.

以下余白 表2 * 配線巾1.5μm、サイズ42mm2の素子を用い
16pin−DIPで評価した。加湿は120℃、10
0%RHMの条件で1000時間行い、腐食による耐湿
性不良数を数えた。
Margin Table 2 below *Evaluation was performed using a 16-pin DIP using a device with a wiring width of 1.5 μm and a size of 42 mm2. Humidification is 120℃, 10
Testing was carried out for 1000 hours at 0% RHM, and the number of moisture resistance failures due to corrosion was counted.

** 50μm、10μmなど所定厚みのスリットを持
つ金型を用い、型温180℃、成形圧70 kg / 
swa ”の条件で流出長さを求めた。比較例2でしめ
したレベルが標準である。
** Using a mold with slits of a predetermined thickness such as 50 μm or 10 μm, the mold temperature is 180°C and the molding pressure is 70 kg /
The outflow length was determined under the conditions of ``swa''. The level shown in Comparative Example 2 is the standard.

〔発明の効果〕〔Effect of the invention〕

本発明により耐湿性に優れた産業上有用な封止材が得ら
れた。
According to the present invention, an industrially useful sealing material with excellent moisture resistance was obtained.

代理人 弁理士 若林邦彦  、パ) 昌ノ+−,7’Agent: Patent attorney Kunihiko Wakabayashi, PA) Masano+-, 7'

Claims (1)

【特許請求の範囲】 1、(a)最大粒径149μmの合成低α線球形シリカ
と(b)最大粒径74μmの低α線角形シリカを含有す
ることを特徴とする半導体封止用エポキシ樹脂組成物。 2、(a)+(b)の合計量のうち、44μm以上の粗
い粒子が6wt%以上含まれており、かつ(b)の含有
量が10〜70wt%である特許請求の範囲第1項記載
の半導体封止用エポキシ樹脂組成物。
[Claims] 1. An epoxy resin for semiconductor encapsulation characterized by containing (a) synthetic low α-ray spherical silica with a maximum particle size of 149 μm and (b) low α-ray prismatic silica with a maximum particle size of 74 μm Composition. 2. Out of the total amount of (a) + (b), 6 wt% or more of coarse particles of 44 μm or more are contained, and the content of (b) is 10 to 70 wt%, Claim 1 The epoxy resin composition for semiconductor encapsulation described above.
JP29579685A 1985-12-26 1985-12-26 Epoxy resin composition for sealing semiconductor Pending JPS62151447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29579685A JPS62151447A (en) 1985-12-26 1985-12-26 Epoxy resin composition for sealing semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29579685A JPS62151447A (en) 1985-12-26 1985-12-26 Epoxy resin composition for sealing semiconductor

Publications (1)

Publication Number Publication Date
JPS62151447A true JPS62151447A (en) 1987-07-06

Family

ID=17825272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29579685A Pending JPS62151447A (en) 1985-12-26 1985-12-26 Epoxy resin composition for sealing semiconductor

Country Status (1)

Country Link
JP (1) JPS62151447A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438424A (en) * 1987-08-03 1989-02-08 Matsushita Electric Works Ltd Epoxy resin molding material
JPS6440518A (en) * 1987-08-07 1989-02-10 Nitto Denko Corp Semiconductor device
JPH02265953A (en) * 1989-04-06 1990-10-30 Shin Etsu Chem Co Ltd Thermosetting epoxy resin composition and cured product
JPH08259671A (en) * 1996-01-29 1996-10-08 Nitto Denko Corp Semiconductor device
US5798400A (en) * 1995-01-05 1998-08-25 Toray Industries, Inc. Epoxy resin compound

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438424A (en) * 1987-08-03 1989-02-08 Matsushita Electric Works Ltd Epoxy resin molding material
JPS6440518A (en) * 1987-08-07 1989-02-10 Nitto Denko Corp Semiconductor device
JPH02265953A (en) * 1989-04-06 1990-10-30 Shin Etsu Chem Co Ltd Thermosetting epoxy resin composition and cured product
US5798400A (en) * 1995-01-05 1998-08-25 Toray Industries, Inc. Epoxy resin compound
US5985455A (en) * 1995-01-05 1999-11-16 Toray Industries, Inc. Semiconductor element sealed with an epoxy resin compound
JPH08259671A (en) * 1996-01-29 1996-10-08 Nitto Denko Corp Semiconductor device

Similar Documents

Publication Publication Date Title
KR100547069B1 (en) Epoxy Resin Composition for Sealing Semiconductor and Semiconductor Device
WO2006059542A1 (en) Epoxy resin composition and semiconductor devices
WO2005116104A1 (en) Semiconductor sealing resin composition and semiconductor device
JP2007002110A (en) Resin composition for sealing semiconductor and semiconductor device
JPH07278415A (en) Resin composition for semiconductor sealing and semiconductor device sealed therewith
JPH09157497A (en) Epoxy resin composition for sealing semiconductor and semiconductor device sealed with the same
JP5224734B2 (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the same
JP2006282958A (en) Semiconductor-sealing epoxy resin composition and semiconductor device
JPH05148411A (en) Thermosetting resin composition and semiconductor device
JP4967353B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JPS62151447A (en) Epoxy resin composition for sealing semiconductor
JPS6210159A (en) Resin composition for semiconductor sealing
JP5167587B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2005105087A (en) Epoxy resin composition and semiconductor device
JP4496740B2 (en) Epoxy resin composition and semiconductor device
TW201517228A (en) Semiconductor device
JP3214266B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2004292514A (en) Epoxy resin composition and semiconductor device
JPS6210132A (en) Resin composition for sealing semiconductor
JP2643706B2 (en) Thermosetting resin composition and semiconductor device
JP2007262384A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP3871025B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4380101B2 (en) Epoxy resin composition and semiconductor device
JPH1045872A (en) Epoxy resin composition
JPS6185432A (en) Epoxy resin molding material for encapsulation of semiconductor device