JPS6182150A - X-ray spectrochemical analysis device - Google Patents

X-ray spectrochemical analysis device

Info

Publication number
JPS6182150A
JPS6182150A JP59205330A JP20533084A JPS6182150A JP S6182150 A JPS6182150 A JP S6182150A JP 59205330 A JP59205330 A JP 59205330A JP 20533084 A JP20533084 A JP 20533084A JP S6182150 A JPS6182150 A JP S6182150A
Authority
JP
Japan
Prior art keywords
ray
sample
electron beam
outputs
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59205330A
Other languages
Japanese (ja)
Inventor
Teruji Hirai
平居 暉士
Takeshi Araki
武 荒木
Hideto Furumi
秀人 古味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP59205330A priority Critical patent/JPS6182150A/en
Publication of JPS6182150A publication Critical patent/JPS6182150A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • G01N23/2076Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions for spectrometry, i.e. using an analysing crystal, e.g. for measuring X-ray fluorescence spectrum of a sample with wavelength-dispersion, i.e. WDXFS

Abstract

PURPOSE:To improve sensitivity and to obtain the result of analysis without the influence of the ruggedness of a sample by disposing plural units of x-ray spectroscopes approximately symmetrically around the irradiating point of an electron beam, driving wavelength driving mechanisms by a common driving control circuit, adding the outputs of the X-ray detectors and displaying the same. CONSTITUTION:The X-ray spectroscopes M1, M2 are disposed approximately symmetrically around the point for irradiating the electron beam to the sample S and stepping motors P1, P2 are driven by a driving control circuit 1 to rotate feed screws T1, T2 and to drive cooperatively spectral crystals C1, C2 and X-ray detectors D1, D2. The outputs from the detectors D1, D2 which detect the diffracted X-rays from the sample S are added in an adder 3 via pulse amplifiers 21, 22 and are displayed on a display device 4. Since the outputs of the plural X-ray spectroscopes M1, M2 are added, the sensitivity is improved and the result of the analysis which is not influenced by the ruggedness of the sample S is obtd.

Description

【発明の詳細な説明】 イ・ 産業上の利用分野 本発明は試料面の微小領域の分析を行うX線マイクロア
ナライザに関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an X-ray microanalyzer that analyzes a minute area on a sample surface.

ロ、従来技術 X線マイクロアナライザは電子ビームを試料面上に収束
させ試料面の電子ビーム照射点から放射されるX線を分
光分析するもので、通常試料の周囲に複数台のX線分光
器が配置されているが、一つの元素の分析には一台のX
線分光器を使うようになっている。
B. Conventional technology An X-ray microanalyzer focuses an electron beam on the sample surface and performs spectroscopic analysis of the X-rays emitted from the electron beam irradiation point on the sample surface. Usually, multiple X-ray spectrometers are installed around the sample. are installed, but one X is used for the analysis of one element.
A line spectrometer is now used.

ハ・ 発明が解決しようとする問題点 試料面の電子ビーム照射点からは四方にX線が出ている
が、一つの分光結晶がX線放射点を望む立体角は小さい
から、−元素につき一台のX線分光器を用いているだけ
の従来のX線マイクロアナライザでは一回の測定に時間
がか\ると云う問題があった。またX線マイクロアナラ
イザでは試料の電子ビーム照射域が小さいので、細い凹
凸のある試料で、電子ビーム照射点が丁度その凸部或は
凹部で分光結晶から見て陰になる部分があると、その部
分から放射されているX線は分光器に入射できず、見掛
上その電子ビーム照射点(微小領域)には測定しようと
している元素がないか検出されても実際より量が少ない
ように観測されると云う問題があった。
C. Problem to be solved by the invention X-rays are emitted in all directions from the electron beam irradiation point on the sample surface, but since the solid angle at which one spectroscopic crystal views the X-ray emission point is small, Conventional X-ray microanalyzers that only use a standalone X-ray spectrometer have a problem in that one measurement takes a long time. In addition, with an X-ray microanalyzer, the electron beam irradiation area of the sample is small, so if the sample has thin irregularities and the electron beam irradiation point is exactly on the convex or concave part and there is a part that is shaded when viewed from the spectrometer crystal, the The X-rays emitted from the area cannot enter the spectrometer, and the element to be measured appears to be present at the electron beam irradiation point (micro area), or even if it is detected, the amount is observed to be smaller than it actually is. There was a problem that it would happen.

本発明はこれら二つの問題を解決しようとするものであ
る。
The present invention seeks to solve these two problems.

二・問題解決のだめの手段 本発明は試料周囲の複数のX線分光器を同一波長位置に
設定し、−元素につき複数のX線分光器で異る方向から
X線分光分析を行うようにした。
2. Means to solve the problem In the present invention, multiple X-ray spectrometers around the sample are set at the same wavelength position, and X-ray spectroscopic analysis is performed from different directions with multiple X-ray spectrometers for each element. .

ホ・作用 X線分光分析における検出感度は測定時間の平方根に比
例し、同一波長につきX線分光器をn台用いると、測定
時間をn倍したのと等しいから感度は6倍になり、感度
を同一にすれば測定所要時間が1/nに短縮される。ま
た試料の電子ビーム照射点を異る方向から見ているので
、凹凸のある試料でも分光器から見て陰になる部分がな
くなシ、凹凸の影響のない分析結果が得られる。
E. Detection sensitivity in action X-ray spectrometry is proportional to the square root of the measurement time.If n X-ray spectrometers are used for the same wavelength, the sensitivity will be six times as high as the measurement time multiplied by n. If they are made the same, the time required for measurement will be reduced to 1/n. In addition, since the electron beam irradiation point on the sample is viewed from different directions, even if the sample has unevenness, there will be no shadows when viewed from the spectrometer, and analysis results that are unaffected by the unevenness can be obtained.

へ・実施例 第1図は本発明の一実施例を示す。Eは電子ビーム、S
は試料である。C1,C2は分光結晶、DI、D2はX
線検出器テ、C1,D lハ−ッ17)X線分光器M1
を構成しておシ、C2,D2はMlと同じ仕様のもう一
つのX線分光器M2を構成している。これら二台のX線
分光器は試料Sの周囲に180 距て\配置されており
、共に試料上の電子ビーム照射点を望んでいる。分光結
晶c1、C2は夫々送りねじTl、T2によって夫々矢
印方向に駆動され、矢印方向に沿う線上の位置によって
設定波長が決まる。X線検出器DI、D2は夫々分光結
晶C1,C2と機構的に連結されており、C1,C2の
移動に伴って動く。各送りねじTl、T2は夫々ステッ
ピングモータPI、P2によって駆動され、両ステッピ
ングモータは共通の駆動制御回路1によって駆動され、
二つのX線分光器Ml、M2は連動的に同じ波長位置に
設定される。X線検出器DI、D2の出方はパルスアン
プ21.22で増幅された後、加算回路3で合算され、
記録計或はCRT等の表示装置4によって表示される。
Embodiment FIG. 1 shows an embodiment of the present invention. E is electron beam, S
is the sample. C1 and C2 are spectroscopic crystals, DI and D2 are X
17) X-ray spectrometer M1
C2 and D2 constitute another X-ray spectrometer M2 having the same specifications as Ml. These two X-ray spectrometers are placed around the sample S at a distance of 180 degrees, and both aim at the electron beam irradiation point on the sample. The spectroscopic crystals c1 and C2 are driven in the direction of the arrow by feed screws Tl and T2, respectively, and the set wavelength is determined by the position on the line along the direction of the arrow. The X-ray detectors DI and D2 are mechanically connected to the spectroscopic crystals C1 and C2, respectively, and move as the crystals C1 and C2 move. Each feed screw Tl, T2 is driven by a stepping motor PI, P2, respectively, both stepping motors are driven by a common drive control circuit 1,
The two X-ray spectrometers Ml and M2 are set at the same wavelength position in conjunction. The outputs of the X-ray detectors DI and D2 are amplified by pulse amplifiers 21 and 22, and then summed by an adder circuit 3.
It is displayed on a display device 4 such as a recorder or CRT.

試料の周囲に配置するX線分光器は試料を中心としてな
るべく対称的に配置するのが望ましい。
It is desirable that the X-ray spectrometers placed around the sample be placed as symmetrically as possible with the sample as the center.

これはX線分光器の配置が偏っていると、凹凸のある試
料において凹凸の影響が対称でなくなシ凹凸の影響を完
全には打消せなくなるからである。
This is because if the arrangement of the X-ray spectrometer is uneven, the influence of the irregularities on a sample with irregularities will not be symmetrical, and the influence of the irregularities will not be completely canceled.

第2図は試料Sの周囲に120°間隔で同一仕様のX線
分光器Ml、M2.M3を配置したものである。
FIG. 2 shows X-ray spectrometers Ml, M2, and M2 with the same specifications placed around the sample S at 120° intervals. This is where M3 is placed.

ト8効果 本発明によれば一個の分光器で測定するよシも、試料か
ら放射されるX線を多く測定に利用しているので、従来
と同一時間をかけると検出感度が向上し、分析精度が向
上し、同じ感度精度を得る場合、分析所要時間が短縮さ
れる。また第3図Aに示すような凸部を有する試料をX
方向に動かしながら試料面上のX方向の線に沿う分析を
行う場合、試料面のBの範囲は分光結晶Cから見ると陰
になっておシ、凸部の側面FではGの範囲からの反射電
子及びX線による励起でX線が放射されており、これが
Gの範囲の走査中に検出されるのでX線の検出強度のX
方向分布は第3図Bのようになるが、分光結晶C′によ
るX線強度のX方向分布は第3図Cのようになって第3
図Bと丁度反対の形になるので、両方の測定結果の合算
にょシ凹凸の影響が消去され、凹凸のある試料に対して
も正確な分析ができる。
8 Effects According to the present invention, even though measurement is performed with a single spectrometer, a large amount of X-rays emitted from the sample is used for measurement, so detection sensitivity improves and analysis takes the same amount of time as before. Accuracy is improved and analysis time is reduced for the same sensitivity accuracy. In addition, a sample having a convex portion as shown in Fig. 3A was
When performing analysis along the line in the X direction on the sample surface while moving in the direction, the area B on the sample surface is in shadow when viewed from the spectroscopic crystal C, and the area F on the side face of the convex part is hidden from the area G. X-rays are emitted due to excitation by backscattered electrons and X-rays, and since these are detected during scanning in the G range, the X-ray detection intensity is
The directional distribution is as shown in Figure 3B, but the X-direction distribution of the X-ray intensity by the spectroscopic crystal C' is as shown in Figure 3C.
Since the shape is exactly opposite to that in Figure B, the influence of unevenness is eliminated when the results of both measurements are combined, allowing accurate analysis even for samples with unevenness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示すブロック図、第
2図は他の実施例の平面図、第3図は本発明の詳細な説
明する図である。
FIG. 1 is a block diagram showing the configuration of one embodiment of the invention, FIG. 2 is a plan view of another embodiment, and FIG. 3 is a diagram illustrating the invention in detail.

Claims (1)

【特許請求の範囲】[Claims] 試料の電子ビーム照射点を中心に略対称的に複数台のX
線分光器を配置し、これらのX線分光器の波長駆動機構
を共通の駆動制御回路で駆動して上記各X線分光器を同
一波長に設定するようにし、上記各X線分光器のX線検
出器の出力を合算して表示或は記録するようにしたこと
を特徴とするX線分光分析装置。
Multiple X units are installed approximately symmetrically around the electron beam irradiation point of the sample.
X-ray spectrometers are arranged, and the wavelength drive mechanisms of these X-ray spectrometers are driven by a common drive control circuit to set each of the X-ray spectrometers to the same wavelength. An X-ray spectrometer characterized in that the outputs of the ray detectors are summed up and displayed or recorded.
JP59205330A 1984-09-28 1984-09-28 X-ray spectrochemical analysis device Pending JPS6182150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59205330A JPS6182150A (en) 1984-09-28 1984-09-28 X-ray spectrochemical analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59205330A JPS6182150A (en) 1984-09-28 1984-09-28 X-ray spectrochemical analysis device

Publications (1)

Publication Number Publication Date
JPS6182150A true JPS6182150A (en) 1986-04-25

Family

ID=16505135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59205330A Pending JPS6182150A (en) 1984-09-28 1984-09-28 X-ray spectrochemical analysis device

Country Status (1)

Country Link
JP (1) JPS6182150A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026827A (en) * 2010-07-22 2012-02-09 Jeol Ltd X-ray detection device
JP2012242392A (en) * 2011-05-16 2012-12-10 Fei Co Charged particle microscope for performing blockage detection
JP2014153342A (en) * 2013-02-14 2014-08-25 Jeol Ltd Sample analysis method and sample analysis device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912553A (en) * 1982-07-12 1984-01-23 Jeol Ltd Electron ray device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912553A (en) * 1982-07-12 1984-01-23 Jeol Ltd Electron ray device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026827A (en) * 2010-07-22 2012-02-09 Jeol Ltd X-ray detection device
JP2012242392A (en) * 2011-05-16 2012-12-10 Fei Co Charged particle microscope for performing blockage detection
JP2014153342A (en) * 2013-02-14 2014-08-25 Jeol Ltd Sample analysis method and sample analysis device

Similar Documents

Publication Publication Date Title
US4169228A (en) X-ray analyzer for testing layered structures
JPS6182150A (en) X-ray spectrochemical analysis device
JP3081002B2 (en) Test object inspection device by gamma or X-ray
JP2002189004A (en) X-ray analyzer
US3344274A (en) Ray analysis apparatus having both diffraction amd spectrometer tubes mounted on a common housing
US4331872A (en) Method for measurement of distribution of inclusions in a slab by electron beam irradiation
JPH0136061B2 (en)
JP3968452B2 (en) X-ray analyzer
JPS61284642A (en) Sample cooler for spectroscopic measurement
JPH06186344A (en) Semiconductor detector
JPH03246862A (en) X-ray analyzer for electron microscope or the like
JP2581677B2 (en) X-ray spectrometer
JPH0210639A (en) X-ray spectral mapping device
JP2002310957A (en) X-ray analyzer by electron excitation
JPS6298208A (en) Surface roughness measuring instrument using electron beam
JPH1151883A (en) Method and equipment for fluorescent x-ray analysis
JPS62285048A (en) Element density distribution measurement
JPH0734366Y2 (en) Reflection high-speed electron diffraction device
JPH08101142A (en) Ion dispersion spectrographic device
JPH0821367B2 (en) Charged particle analyzer
JP2985904B2 (en) X-ray photoelectron analysis method
JP2917475B2 (en) X-ray analyzer
JP3740530B2 (en) Aligner for total internal reflection X-ray fluorescence analysis
JPH0511642Y2 (en)
JPH09147783A (en) Method and device for measuring configuration of sample