JPS61284642A - Sample cooler for spectroscopic measurement - Google Patents
Sample cooler for spectroscopic measurementInfo
- Publication number
- JPS61284642A JPS61284642A JP12768785A JP12768785A JPS61284642A JP S61284642 A JPS61284642 A JP S61284642A JP 12768785 A JP12768785 A JP 12768785A JP 12768785 A JP12768785 A JP 12768785A JP S61284642 A JPS61284642 A JP S61284642A
- Authority
- JP
- Japan
- Prior art keywords
- optical window
- sample
- light
- plate
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Spectrometry And Color Measurement (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、分光測定によつてケイ素等の単結晶に含ま
れる異種元素の分析を行うに際し、試料を冷却する分光
測定用試料冷却装置に関するのもである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a sample cooling device for spectrometry that cools a sample when analyzing different elements contained in a single crystal such as silicon by spectrometry. It's also.
従来の技術
一般に1分光測定法は、試料に光を当て、その透過光ま
たは反射光を分光器でスペクトル解析すること忙よシ試
料に含まれている元素を分析する測定方法であシ、試料
の定性分析または定量分析に広く利用されている。この
ような分光測定法としては、試料を室温にて測定する方
法と、試料を冷却して測定する方法が知られている。後
者の分光測定法は、試料を極低温に冷却して測定する方
法であり、前者の測定方法に比して複雑に隆起したスペ
クトルが得られ、それによって種々の解析結果を得るこ
とができるので、定性分析と定量分析のいずれにおいて
も優れた測定精度を得ることができる測定方法である。Conventional technology In general, spectrometry is a measurement method in which the elements contained in the sample are analyzed by shining light onto the sample and analyzing the transmitted or reflected light using a spectrometer. It is widely used for qualitative or quantitative analysis. As such spectroscopic measurement methods, there are two known methods: one in which the sample is measured at room temperature, and the other in which the sample is cooled. The latter method of spectrometry is a method in which the sample is cooled to an extremely low temperature for measurement, and compared to the former measurement method, a more complex spectrum can be obtained, which makes it possible to obtain various analytical results. This is a measurement method that can provide excellent measurement accuracy in both qualitative and quantitative analysis.
従来、上記のような、試料を冷却して測定する分光測定
法において、試料を冷却する装置としては、第5図に示
すような分光測定用試料冷却装置Aが提供されている。BACKGROUND ART Conventionally, in the above-mentioned spectrometry method in which a sample is cooled and measured, a sample cooling device A for spectrometry as shown in FIG. 5 has been provided as a device for cooling the sample.
この分光測定用試料冷却装置Aは、容器1の側周面1a
に入射光学窓2を形成し、この入射光学窓2と相対向す
る容器1の側周面1aに出射光学窓3を形成し、これら
入射光学窓2と出射光学窓3とにそれぞれ透光性を有す
る板体4,4を装着し、容器lの頂板部1b内側に、容
器1の外部に突出する配管5を介して冷媒タンク6を連
結してなるものである。冷媒タンク6は、その底板6a
の下面に試料7を固定できるよう罠なっている。This spectroscopic measurement sample cooling device A has a side peripheral surface 1a of a container 1.
An input optical window 2 is formed in the input optical window 2, an output optical window 3 is formed on the side circumferential surface 1a of the container 1 opposite to the input optical window 2, and each of the input optical window 2 and the output optical window 3 has a light-transmitting property. A refrigerant tank 6 is connected to the inside of the top plate portion 1b of the container 1 via a pipe 5 projecting to the outside of the container 1. The refrigerant tank 6 has a bottom plate 6a.
A trap is provided on the bottom surface of the holder so that the sample 7 can be fixed.
また、冷媒タンク6には、容器1の外部から配管5を通
して液体ヘリウムが送入されるようになっておシ、それ
によって容器1内の雰囲気温度を降下させ、試料7を冷
却できるようになっている。In addition, liquid helium is fed into the refrigerant tank 6 from outside the container 1 through a pipe 5, thereby lowering the atmospheric temperature inside the container 1 and cooling the sample 7. ing.
このように構成された分光測定用試料冷却装置Aは、試
料の分光測定に際して試料を極低温に冷却するものでオ
シ、入射光学窓2を通って容器1内に入射した光が試料
7を透過し、その透過光が出射光学窓3から容器1の外
部に出射できるようになっている。そして、このよう圧
して出射した光は、分光器(図示せず)によって解析さ
れるようになっている。The spectroscopic measurement sample cooling device A configured as described above cools the sample to an extremely low temperature during spectroscopic measurement of the sample. However, the transmitted light can be emitted from the exit optical window 3 to the outside of the container 1. The emitted light is then analyzed by a spectrometer (not shown).
ところで、上記従来の分光測定用試料冷却装置におい曵
は、入射光学窓と出射光学窓とにそれぞれ装着された板
体が光軸に対して垂直になっているために、第6図にお
いて一点鎖線の矢印で示すように、試料を透過した光が
出射光学窓に装着された板体の表面で反射し、さらにそ
の反射光が入射光学窓に装着された板体の表面で反射し
、その反射光が出射光学窓から容器の外部に出射する。By the way, in the conventional sample cooling device for spectrometry mentioned above, the plates attached to the input optical window and the output optical window are perpendicular to the optical axis, so that the dotted line in FIG. As shown by the arrow, the light that has passed through the sample is reflected on the surface of the plate attached to the output optical window, and the reflected light is further reflected on the surface of the plate attached to the input optical window. Light exits the container through an exit optical window.
このような光C以下多重反射光と称する)は、図中実線
の矢印で示すような、試料を透過してそのまま出射光学
窓から容器の外部に出射した光(以下光軸上の光と称す
る)とともに検出され、そのために測定誤差や測定値の
ばらつきが大きくなるという問題があった。Such light C (hereinafter referred to as multiple reflected light) is the light (hereinafter referred to as light on the optical axis) that passes through the sample and exits from the exit optical window to the outside of the container, as shown by the solid arrow in the figure. ), which caused the problem of increased measurement errors and variations in measured values.
なお、図において一点鎖線で示す光線の経路は、説明の
便宜上光軸に対して傾斜させているが、実際には、光軸
と同一軸線上にある。Note that although the path of the light ray indicated by the dashed line in the figure is inclined with respect to the optical axis for convenience of explanation, it is actually coaxial with the optical axis.
この発明では、入射光学窓に装着された板体と、出射光
学窓に装着された板体との少くともいずれか一方を、光
軸に対して傾斜させることによって上記問題を解決して
いる。In this invention, the above problem is solved by tilting at least one of the plate attached to the entrance optical window and the plate attached to the output optical window with respect to the optical axis.
板体の表面で反射した光は、板体に設定された傾斜角度
に応じて光軸に対して傾斜し、これによって多重反射光
は光軸から大きく逸れ、分光器の解析結果に及ぼす多重
反射光の影響が少くなる。The light reflected on the surface of the plate is tilted with respect to the optical axis according to the inclination angle set on the plate, and this causes the multiple reflection light to deviate greatly from the optical axis, causing multiple reflections to affect the analysis results of the spectrometer. The influence of light is reduced.
第7図は本発明の一実施例を示す図である。 FIG. 7 is a diagram showing an embodiment of the present invention.
この図において符号Aは分光測定用試料冷却装置であり
、その構成要素は上記従来の分光測定用試料冷却装置と
同一である。In this figure, reference numeral A denotes a sample cooling device for spectrometry, and its components are the same as those of the conventional sample cooling device for spectrometry.
この分光測定用試料冷却装fAにおいて、板体4.4は
、それぞれ図中実線の矢印で示す光軸に対して所定の角
度で傾斜して入射光学窓2と出射光学窓3とに装着され
ている。In this spectroscopic measurement sample cooling device fA, the plates 4.4 are attached to the entrance optical window 2 and the exit optical window 3 at a predetermined angle with respect to the optical axis indicated by the solid arrow in the figure. ing.
このように構成された分光測定用試料冷却装置Aにおい
ては、多重反射光が、図中一点鎖線の矢印で示すように
光軸から大きく逸れ、それによって分光器(図示せず)
の解析結果に及ぼす多重反射光の影響を少くすることが
でき、測定誤差や測定値のばらつきを小さくすることが
できる。In the spectroscopic sample cooling device A configured as described above, the multiple reflected light deviates significantly from the optical axis as shown by the dashed-dotted arrow in the figure, thereby causing the spectrometer (not shown) to deviate from the optical axis.
The influence of multiple reflected light on the analysis results can be reduced, and measurement errors and variations in measured values can be reduced.
また、上記実施例において、板体4,4の光軸に対する
傾斜角度(以下板体傾斜角と称する)なさらに大きく、
多重反射光が出射光学窓3以外の容器l内壁面に尚たる
ようにすれは、測定誤差や測定値のばらつきをさらに小
さくすることができる。すなわち、多重反射光が出射光
学窓3の縁部3aに当たるような板体傾斜角(以下臨界
角と称する)をαとし、入射光学窓2および出射光学窓
3の開口径なりとし、入射光学窓2と出射光学窓3との
間隔なLとすると臨界角αは次の1式で与えられる。Further, in the above embodiment, the inclination angle of the plates 4, 4 with respect to the optical axis (hereinafter referred to as the plate inclination angle) is even larger,
By allowing the multiple reflected light to fall on the inner wall surface of the container 1 other than the exit optical window 3, measurement errors and variations in measured values can be further reduced. That is, the plate inclination angle (hereinafter referred to as critical angle) at which the multiple reflected light hits the edge 3a of the output optical window 3 is α, the aperture diameter of the input optical window 2 and the output optical window 3 is set, and the input optical window 2 and the exit optical window 3, the critical angle α is given by the following equation.
TAN・α=D/2 L ・・・・・・・・・ α
)したがって、板体傾斜角を上記臨界角αよシも大きく
することによって、多重反射光は、出射光学窓3から容
器1の外部に出射することがなく、多重反射光が 分光
器による解析結果に与える影響を完全に無くすことがで
きる。TAN・α=D/2 L ・・・・・・・・・ α
) Therefore, by making the plate inclination angle larger than the above-mentioned critical angle α, the multiple reflected light will not be emitted from the exit optical window 3 to the outside of the container 1, and the multiple reflected light will be the result of analysis by a spectrometer. It is possible to completely eliminate the impact on
以下、上記実施例において、板体傾斜角を変化させて試
料の分光測定を行なった結果について説明する。この分
光測定では、ケイ素単結晶(試料)K含まれている酸素
の濃度を赤外分光により測定した。Hereinafter, in the above example, the results of spectroscopic measurement of a sample while changing the plate inclination angle will be explained. In this spectroscopic measurement, the concentration of oxygen contained in the silicon single crystal (sample) K was measured by infrared spectroscopy.
分光測定圧使用した分光測定用試料冷却装置人では、入
射光学窓2および出射光学窓3の開口径を一3■とし、
入射光学窓2と出射光学窓3との間隔りを700■とじ
た。これらの数値を1式に代入すると、板体傾斜角の臨
界角α=qMを得ることができる。この分光測定では、
板体傾斜角を臨界角よシも小さい3°とした分光測定用
試料冷却装KAと、板体傾斜角を臨界角よりも大きいr
とした分光測定用試料冷却装[Aとをそれぞれ使用し、
ケイ素単結晶を、20°Kまで冷却し、このケイ素単結
晶に赤外光を当て、光の波数//、34cm−”忙表わ
れた酸素による光の吸収の大きさを測定した。そして、
予め求めておいた検量+i[よって酸素濃度(酸′:A
原子数/cd)を求めた。このようにして3櫨類のケイ
素単結晶についてそれぞれ5回ずつ繰シ返し測定した結
果を表1に示す。また、上記と同じ3種類のケイ素単結
晶を、従来の分光測定用試料冷却装置を使用して分光測
定を行なった結果を表2に、室温にて測定する方法で分
光測定を行なった結果を表3・に参考として示す。表I
K示すように、板体傾斜角を50とした分光測定用試料
冷却装置Aを使用した場合の測定結果では、ばらつきの
平均値が±0.2 / X / 01?/iであシ、従
来よシも小さな値となった。また、各試料に対する中央
値は、室温での測定結果に近い値となった。In the sample cooling device for spectrometry using spectrometry pressure, the aperture diameter of the entrance optical window 2 and the exit optical window 3 is 13mm.
The distance between the entrance optical window 2 and the exit optical window 3 was set at 700 square meters. By substituting these values into equation 1, the critical angle α=qM of the plate inclination angle can be obtained. In this spectroscopic measurement,
A sample cooling device KA for spectrometry with a plate inclination angle of 3°, which is smaller than the critical angle, and a plate inclination angle r larger than the critical angle.
A sample cooling device for spectrometry [A and
The silicon single crystal was cooled to 20°K, and the silicon single crystal was irradiated with infrared light, and the magnitude of light absorption by oxygen was measured at a wave number of 34 cm.
Calibration determined in advance + i [Therefore, oxygen concentration (acid': A
number of atoms/cd) was determined. Table 1 shows the results of repeated measurements performed five times on each of the three types of silicon single crystals. In addition, Table 2 shows the results of spectroscopic measurements of the same three types of silicon single crystals as described above using a conventional sample cooling device for spectroscopic measurements. It is shown in Table 3 for reference. Table I
As shown in K, in the measurement results when using sample cooling device A for spectrometry with a plate inclination angle of 50, the average value of dispersion is ±0.2/X/01? /i has a smaller value than the conventional one. Moreover, the median value for each sample was close to the measurement result at room temperature.
セしてさらに1板体傾斜角をrとした分光測定用試料冷
却装置1liiAを使用した場合の測定結果では、ばら
つきの平均値が±0.0gX101フ/diであシ、室
温での測定結果よりも小さな値となった。In the measurement results when using the sample cooling device 1liiA for spectrometry with one plate inclination angle r, the average variation was ±0.0 g x 101 f/di, and the measurement results at room temperature. It became a smaller value.
また、各試料に対する中央値は、室温での測定結果とほ
ぼ同一の値となった。Moreover, the median value for each sample was almost the same value as the measurement result at room temperature.
以上説明したように、上記実施例においては、板体4,
4を光軸に対して傾斜させることによって、測定誤差や
測定値のばらつきを少なくすることができ、そしてさら
に、板体傾斜角を臨界角よシも大きくすれば、室温での
測定結果とほぼ同一の測定結果が得られ、しかも、室温
での測定結果よシもばらつきの小さい測定結果を得るこ
とができる。As explained above, in the above embodiment, the plate body 4,
By tilting the plate 4 with respect to the optical axis, measurement errors and variations in measured values can be reduced. Furthermore, if the plate inclination angle is made larger than the critical angle, the measurement results are almost the same as those at room temperature. The same measurement results can be obtained, and measurement results with less variation than the measurement results at room temperature can be obtained.
第一図は、本発明のさらに他の実施例を示す図でおる。FIG. 1 is a diagram showing still another embodiment of the present invention.
この実施例は、板体4.4のうち一方のみを光軸に対し
て傾斜させたものであり、上記実施例と同じ効果を得る
ことができる。なお、この実施例において臨界角αは、
1式に対して
TAN・2α=D/2L ・・・・・・・・・ (
2)Kよって与えられる。In this embodiment, only one of the plates 4.4 is inclined with respect to the optical axis, and the same effect as the above embodiment can be obtained. In addition, in this example, the critical angle α is
For equation 1, TAN・2α=D/2L ・・・・・・・・・ (
2) Given by K.
第3図は、本発明のさらに他の実施例を示す図である。FIG. 3 is a diagram showing still another embodiment of the present invention.
この実施例は、板体4,4のそれぞれを光軸に対してハ
字状に傾斜させたものであり、上記実施例と同じ効果を
得ることができる。なお、この実施例において臨界角α
は、1式に対してTAN・3α=D/2L ・・・
・・・・・・ (3)によって与えられる。In this embodiment, each of the plates 4, 4 is inclined in a V-shape with respect to the optical axis, and the same effect as the above embodiment can be obtained. In addition, in this example, the critical angle α
For equation 1, TAN・3α=D/2L...
...... It is given by (3).
以上は、分光測定において、試料に光を当【、その透過
光を検出する場合の実施例であるが、第1図に示すよう
罠、反射光を検出する場合においても、板体4,4の少
くともいずれか一方を光軸に対して傾斜させることによ
って、上記実施例と同じ効果を得ることができる。The above is an example in which light is applied to a sample and the transmitted light is detected in spectroscopic measurements, but as shown in FIG. By tilting at least one of them with respect to the optical axis, the same effect as in the above embodiment can be obtained.
この発明では、入射光学窓に装着された透光性を有する
板体と、出射光学窓に装着された透光性を有する板体と
の少くともいずれか一方を光軸に対して傾斜させること
によって、測定誤差が少く、かつ、測定値のばらつきが
小さい測定結果を得られるという効果を得ることができ
る。セしてさらに、入射光学窓に装着された板体と、出
射光学窓に装着された板体との少くともいずれか一方の
光軸に対する傾斜角度を、入射光学窓から入射し、出射
光学窓に装着された板体と入射光学窓に装着された板体
で順次一度宛反射した光が出射光学窓以外の容器内周面
に当たるように規定すれば、試料を室温K ”C1u1
1定する方法よりもばらつきが小さく、かつ、室温にて
測定する方法とほぼ同一の測定結果を得ることができる
という効果を得ることができる。In this invention, at least one of the light-transmitting plate attached to the input optical window and the light-transmitting plate attached to the output optical window is tilted with respect to the optical axis. Accordingly, it is possible to obtain measurement results with small measurement errors and small variations in measurement values. Then, the angle of inclination of at least one of the plate attached to the input optical window and the plate attached to the output optical window with respect to the optical axis is adjusted so that the angle of inclination between the plate attached to the input optical window and the plate attached to the output optical window is If the light is set so that the light that is sequentially reflected once by the plate attached to the plate attached to the input optical window and the plate attached to the input optical window hits the inner peripheral surface of the container other than the output optical window, the sample can be kept at room temperature K ``C1u1.
It is possible to obtain the effect that the variation is smaller than that of the method of measuring at room temperature, and that it is possible to obtain measurement results that are almost the same as the method of measuring at room temperature.
第7図、第一図、第3図および第9図はそれぞれ本発明
の一実施例を示す図であって、第6図と同様の断面図、
第3図および第6図は従来の分光測定用試料冷却装置の
一例を示す図であって、第3図はその側断面図、第6図
は第S図の■−■線矢視断面図である。
l・・・・・・容器、2・・・・・・入射光学窓、3・
・・・・・出射光学窓、4・・・・・・板体、7・・・
・・・試料。FIG. 7, FIG. 1, FIG. 3, and FIG. 9 are views showing an embodiment of the present invention, respectively, and are sectional views similar to FIG. 6,
3 and 6 are views showing an example of a conventional sample cooling device for spectrometry, in which FIG. 3 is a side sectional view thereof, and FIG. 6 is a sectional view taken along the line ■-■ in FIG. S. It is. l...Container, 2...Incidence optical window, 3.
...Emission optical window, 4...Plate body, 7...
···sample.
Claims (2)
ぞれ装着された入射光学窓と出射光学窓とを設け、上記
入射光学窓を通つて上記容器内に入射し、上記容器内で
冷却された試料を通過した光、または、この試料の表面
で反射した光が上記出射光学窓から上記容器の外部に出
射する構成とした分光測定用試料冷却装置において、上
記入射光学窓に装着された板体と上記出射光学窓に装着
された板体との少くともいずれか一方を光軸に対して傾
斜させてなることを特徴とする分光測定用試料冷却装置
。(1) A container for cooling a sample is provided with an entrance optical window and an exit optical window, each of which is equipped with a light-transmitting plate, so that the sample enters the container through the entrance optical window, and In a sample cooling device for spectrometry, the light passing through the cooled sample or the light reflected on the surface of the sample is emitted from the exit optical window to the outside of the container, in which the light is attached to the entrance optical window. 1. A sample cooling device for spectrometry, characterized in that at least one of the plate body mounted on the output optical window and the plate body attached to the exit optical window is tilted with respect to the optical axis.
された板体との少くともいずれか一方は、入射光学窓か
ら入射し、出射光学窓に装着された板体と入射光学窓に
装着された板体で順次一度宛反射した光が出射光学窓以
外の容器内周面に当たるように、光軸に対する傾斜角度
が規定されていることを特徴とする特許請求の範囲の第
1項記載の分光測定用試料冷却装置。(2) At least one of the plate attached to the input optical window and the plate attached to the output optical window is connected to the input optical window, and the plate attached to the output optical window and the input optical The first aspect of the present invention is characterized in that the angle of inclination with respect to the optical axis is defined so that the light that has been reflected once by the plate attached to the window hits the inner circumferential surface of the container other than the exit optical window. A sample cooling device for spectroscopic measurements as described in .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12768785A JPS61284642A (en) | 1985-06-12 | 1985-06-12 | Sample cooler for spectroscopic measurement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12768785A JPS61284642A (en) | 1985-06-12 | 1985-06-12 | Sample cooler for spectroscopic measurement |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61284642A true JPS61284642A (en) | 1986-12-15 |
JPH0310901B2 JPH0310901B2 (en) | 1991-02-14 |
Family
ID=14966214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12768785A Granted JPS61284642A (en) | 1985-06-12 | 1985-06-12 | Sample cooler for spectroscopic measurement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61284642A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63293430A (en) * | 1987-05-27 | 1988-11-30 | Agency Of Ind Science & Technol | Optical measuring instrument |
JPH07502344A (en) * | 1992-11-12 | 1995-03-09 | サンタ・バーバラ・リサーチ・センター | Reflection-free polarimetry system for small volume sample cells |
JP2000065738A (en) * | 1998-08-26 | 2000-03-03 | Hitachi Ltd | Atomic absorption photometer |
JP2000346794A (en) * | 1999-03-31 | 2000-12-15 | Tokyo Gas Co Ltd | Optical cell apparatus |
JP2016507429A (en) * | 2012-12-21 | 2016-03-10 | オーアンドアール・カートン・ルンド・アーベー | Container for food, method for manufacturing container, method for detecting internal gas, and production system for filling container |
JP2018119894A (en) * | 2017-01-27 | 2018-08-02 | 日立造船株式会社 | Laser spectroscopy inspection method and laser spectroscopy inspection device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6641171B2 (en) * | 2015-12-14 | 2020-02-05 | 株式会社堀場製作所 | Absorbance meter |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS451092Y1 (en) * | 1964-02-07 | 1970-01-19 | ||
JPS564846U (en) * | 1979-06-25 | 1981-01-17 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52148179A (en) * | 1976-06-04 | 1977-12-09 | Japan National Railway | Method of measuring lateral swing of rolling stock from ground |
-
1985
- 1985-06-12 JP JP12768785A patent/JPS61284642A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS451092Y1 (en) * | 1964-02-07 | 1970-01-19 | ||
JPS564846U (en) * | 1979-06-25 | 1981-01-17 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63293430A (en) * | 1987-05-27 | 1988-11-30 | Agency Of Ind Science & Technol | Optical measuring instrument |
JPH07502344A (en) * | 1992-11-12 | 1995-03-09 | サンタ・バーバラ・リサーチ・センター | Reflection-free polarimetry system for small volume sample cells |
JP2000065738A (en) * | 1998-08-26 | 2000-03-03 | Hitachi Ltd | Atomic absorption photometer |
JP2000346794A (en) * | 1999-03-31 | 2000-12-15 | Tokyo Gas Co Ltd | Optical cell apparatus |
JP2016507429A (en) * | 2012-12-21 | 2016-03-10 | オーアンドアール・カートン・ルンド・アーベー | Container for food, method for manufacturing container, method for detecting internal gas, and production system for filling container |
JP2018119894A (en) * | 2017-01-27 | 2018-08-02 | 日立造船株式会社 | Laser spectroscopy inspection method and laser spectroscopy inspection device |
Also Published As
Publication number | Publication date |
---|---|
JPH0310901B2 (en) | 1991-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0764844A2 (en) | Method and apparatus for analysis by light scattering | |
US9207117B2 (en) | Apparatus and method for performing surface plasmon resonance (SPR) spectroscopy with an infrared (IR) spectrometer | |
JPH07146295A (en) | Immunoanalysis method and device by raman spectral measurement | |
JP2003507703A (en) | Infrared spectrometer for measuring isotope ratios | |
JP2559851B2 (en) | Calibration device for non-dispersive infrared photometer | |
JPS61284642A (en) | Sample cooler for spectroscopic measurement | |
JPH11211654A (en) | Polarization analysis device | |
JPS63111446A (en) | Analyzing device | |
EP0059836A1 (en) | Optical beam splitter | |
JP7477072B2 (en) | Light source for variable optical path length systems | |
Beauchemin et al. | Quantitative analysis of diazonaphthoquinones by thin-layer chromatographic/diffuse reflectance infrared Fourier-transform spectrometry | |
JPH07502344A (en) | Reflection-free polarimetry system for small volume sample cells | |
US3708228A (en) | Sampling technique for atomic absorption spectroscopy | |
JP2613511B2 (en) | X-ray fluorescence analyzer | |
Powell et al. | Rapid headspace analysis in sealed drug vials by multichannel Raman spectrometry | |
US5528648A (en) | Method and apparatus for analyzing contaminative element concentrations | |
JP2002005858A (en) | Total reflection x-ray fluorescence analyzer | |
JPS6225239A (en) | Light transmission type measuring instrument | |
JPS63140941A (en) | Infrared gas analyzer | |
JPH0749305A (en) | Apparatus and method for measuring interstitial oxygen concentration in silicon single crystal | |
Dupuy et al. | Quantitative analysis by mid-infrared spectrometry in food and agro-industrial fields | |
JPH0549177B2 (en) | ||
JP3740530B2 (en) | Aligner for total internal reflection X-ray fluorescence analysis | |
JPS6183940A (en) | Spectral transmittance measuring apparatus | |
JP2000009666A (en) | X-ray analyzer |