JPH05196583A - Total reflection x-ray analyzer - Google Patents

Total reflection x-ray analyzer

Info

Publication number
JPH05196583A
JPH05196583A JP4009789A JP978992A JPH05196583A JP H05196583 A JPH05196583 A JP H05196583A JP 4009789 A JP4009789 A JP 4009789A JP 978992 A JP978992 A JP 978992A JP H05196583 A JPH05196583 A JP H05196583A
Authority
JP
Japan
Prior art keywords
ray
sample
incident
total reflection
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4009789A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ogata
潔 尾形
Asao Nakano
朝雄 中野
Makiko Kono
真貴子 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4009789A priority Critical patent/JPH05196583A/en
Publication of JPH05196583A publication Critical patent/JPH05196583A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To set forth X-ray incident position and incident angle thereof with very good repeatability and to enable highly accurate measurement of X-ray scattering, X-ray diffraction, EXAFS and phosphorescent X-ray at multi-layer- thin-film-interface.surface, in a total reflection X-ray analyzer. CONSTITUTION:X-ray is monochromized by a 14 and by an X-ray collecting mirror 15. Subsequently, the X-ray 1 of which harmonics is removed by an X-ray reflecting mirror 16, is made to come into a sample 4 by very small incident angle less than total reflection critical angle. A sample table 4 has an elevating mechanism and a rotating mechanism. While monitoring a scattering X-ray intensity detector 11, sample position is set forth to have the optimum total reflection condition, and therewith reflecting X-ray and phosphorescent X-ray are measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はX線をプローブとして材
料の評価を行うためのX線分析装置に係り、特に半導体
素子等に用いられる多層薄膜界面・表面のX線散乱、X
線回折、EXAFS、蛍光X線等を測定して材料の原子
・分子配列の解析あるいは表面の超微量分析を行うため
に好適な全反射X線分析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray analyzer for evaluating a material using X-rays as a probe, and particularly to X-ray scattering, X-ray scattering at the interface / surface of a multilayer thin film used for semiconductor elements and the like.
The present invention relates to a total reflection X-ray analysis apparatus suitable for analyzing the atomic / molecular arrangement of a material by measuring line diffraction, EXAFS, fluorescent X-rays, etc., or performing ultratrace analysis of the surface.

【0002】[0002]

【従来の技術】従来の技術では、例えばフィジカル・レ
ビューB第38巻1019頁〜1026頁(Physi
cal Review B38,1019−1026,
1988)に記載のあるS.M.Heald他著の「す
れすれ入射法による界面の拡張X線吸収端微細構造及び
反射率の研究」(Glancing−angle ex
tended x−ray−absorption f
ine structure and reflect
ivity studies of interfac
ial regions)に記述されているいるよう
に、試料に入射したX線が全反射現象を生じるような全
反射臨界角より小さい角度に入射角を固定し、入射X線
のエネルギーを連続的に走査しながら、入射X線強度検
出器及び反射X線強度検出器により反射率を測定し、さ
らに蛍光X線検出器により蛍光収率を測定するようにな
っていた。
2. Description of the Related Art In the prior art, for example, Physical Review B Vol. 38, pages 1019 to 1026 (Physi
cal Review B38, 1019-1026.
1988). M. Heald et al., "Study of extended X-ray absorption edge fine structure and reflectance of interfaces by grazing incidence method" (Glanching-angle ex)
tended x-ray-absorption f
ine structure and reflect
ivity studies of interfac
As described in “Ial regions”, the energy of incident X-rays is continuously scanned by fixing the incident angle to an angle smaller than the critical angle of total reflection that causes X-rays incident on the sample to cause total reflection phenomenon. However, the reflectance is measured by an incident X-ray intensity detector and a reflected X-ray intensity detector, and the fluorescence yield is measured by a fluorescent X-ray detector.

【0003】[0003]

【発明が解決しようとする課題】X線を試料表面に入射
したときの全反射臨界角は、例えば波長0.15nmの
X線に対しては0.2°から0.6°程度である。X線
の全反射現象を用いて反射率や蛍光収率等のX線分光測
定を行なう場合には、上記全反射臨界角より小さい試料
表面にすれすれの角度でX線を入射する必要がある。こ
の際精度の高い測定を行なうには、X線ビームが全て試
料表面に入射し試料側面には入射しないこと、また再現
性良く入射角を設定することが必要である。
The critical angle for total reflection when X-rays are incident on the sample surface is, for example, about 0.2 ° to 0.6 ° for X-rays having a wavelength of 0.15 nm. When X-ray spectroscopic measurement such as reflectance and fluorescence yield is performed by using the total reflection phenomenon of X-rays, it is necessary to make X-rays incident on the surface of the sample smaller than the critical angle for total reflection. At this time, in order to perform a highly accurate measurement, it is necessary that all the X-ray beams are incident on the sample surface and not on the sample side surface and that the incident angle is set with good reproducibility.

【0004】ところが上記従来技術では、X線ビームと
試料台上の試料表面の位置及びX線ビームと試料回転軸
の調整については考慮していないため、実際に測定する
試料毎に厚さや大きさ等の形状が異なる場合には、再現
性の良い位置設定が困難である。
However, in the above-mentioned prior art, since the position of the X-ray beam and the position of the sample surface on the sample stage and the adjustment of the X-ray beam and the sample rotation axis are not taken into consideration, the thickness and size of each sample to be actually measured. If the shapes are different, it is difficult to set the position with good reproducibility.

【0005】本発明の目的は、全反射X線分析装置にお
いてX線入射位置及び入射角を再現性良く設定し、高精
度の測定を行なうことにある。
An object of the present invention is to set an X-ray incident position and an incident angle with good reproducibility in a total reflection X-ray analyzer to perform highly accurate measurement.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明においては、上記試料より散乱するX線強度を
測定する散乱X線強度検出器と、入射X線ビームの試料
への入射角を任意の角度で設定する機構と、X線ビーム
の試料への入射位置をX線ビームに平行方向に移動する
ための試料移動機構とを設け、上記入射X線ビームの試
料表面への入射角をX線の全反射臨界角より小さい角度
に設定し、上記散乱X線強度検出器により検出した散乱
X線が最小になるような位置に自動的に試料を移動する
ような制御機構を設けるようにする。
In order to achieve the above object, in the present invention, a scattered X-ray intensity detector for measuring the X-ray intensity scattered from the sample, and an incident angle of the incident X-ray beam to the sample. And a sample moving mechanism for moving the incident position of the X-ray beam on the sample in a direction parallel to the X-ray beam, and the incident angle of the incident X-ray beam on the sample surface. Is set to an angle smaller than the critical angle of total reflection of X-rays, and a control mechanism is provided to automatically move the sample to a position where the scattered X-rays detected by the scattered X-ray intensity detector are minimized. To

【0007】さらに、上記全反射X線分析装置を真空排
気手段を有する真空容器内に納め、上記入射角設定機構
と試料移動機構の操作を上記真空容器内の真空度を維持
しつつ、上記真空容器外から操作できる機構を設けるよ
うにする。
Further, the total reflection X-ray analysis apparatus is housed in a vacuum container having a vacuum exhaust means, and the incident angle setting mechanism and the sample moving mechanism are operated while maintaining the degree of vacuum in the vacuum container. Provide a mechanism that can be operated from outside the container.

【0008】さらに、上記入射X線の試料表面への入射
角をX線の全反射臨界角より小さい角度に設定し、さら
に入射X線のエネルギーを連続的に変化させてX線反射
率のエネルギー依存性を測定できる機構を設けるように
する。
Further, the angle of incidence of the incident X-rays on the sample surface is set to be smaller than the critical angle of total reflection of X-rays, and the energy of the incident X-rays is continuously changed to obtain the energy of the X-ray reflectance. Provide a mechanism to measure the dependency.

【0009】さらに、蛍光X線検出器を備えて蛍光X線
収率のエネルギー依存性を測定できるうにする。
Further, the fluorescent X-ray detector is provided so that the energy dependence of the fluorescent X-ray yield can be measured.

【0010】さらに、電子検出器を備えて全電子収率の
エネルギー依存性を測定できるようにする。
Furthermore, an electron detector is provided so that the energy dependence of the total electron yield can be measured.

【0011】さらに、回折X線検出器を備えて試料から
の回折X線を測定できるようにする。
Further, a diffracted X-ray detector is provided so that diffracted X-rays from the sample can be measured.

【0012】さらに、回折X線検出器として湾曲型位置
敏感検出器を用い、試料からの複数の回折X線を同時に
測定できるようにする。
Further, a curved type position sensitive detector is used as the diffracted X-ray detector so that a plurality of diffracted X-rays from the sample can be simultaneously measured.

【0013】[0013]

【作用】上記全反射X線分析装置において、試料より散
乱するX線強度を測定する散乱X線検出器と、入射X線
ビームの試料への入射角を任意の角度で設定する機構
と、X線ビームの試料への入射位置をX線ビームに平行
方向に移動するための試料移動機構とを設け、さらに、
上記入射X線ビームの試料表面への入射角をX線の全反
射臨界角より小さい角度に設定し、上記散乱X線検出器
により検出した散乱X線が最小になるような位置に自動
的に試料を移動するような制御機構を設けることによ
り、入射したX線ビームが全て試料表面に入射するこ
と、また再現性良く入射角を設定することが可能とな
る。そのため測定すべき試料毎に厚さや大きさ等の形状
が異なる場合でも、再現性の良い測定を行なうことが可
能となる。
In the above total reflection X-ray analyzer, a scattered X-ray detector for measuring the intensity of X-rays scattered from the sample, a mechanism for setting the incident angle of the incident X-ray beam to the sample at an arbitrary angle, and an X-ray detector A sample moving mechanism for moving the incident position of the line beam on the sample in a direction parallel to the X-ray beam, and
The incident angle of the incident X-ray beam on the sample surface is set to an angle smaller than the critical angle of total reflection of X-rays, and the scattered X-rays detected by the scattered X-ray detector are automatically set to a position where the scattered X-rays are minimized. By providing the control mechanism for moving the sample, it becomes possible to make all the incident X-ray beams incident on the sample surface and set the incident angle with good reproducibility. Therefore, even when the shape such as the thickness and the size is different for each sample to be measured, it is possible to perform the measurement with good reproducibility.

【0014】さらに、上記全反射X線分析装置を真空排
気手段を有する真空容器内に納め、上記入射角設定機構
と試料移動機構の操作を上記真空容器内の真空度を維持
しつつ、上記真空容器外から操作できる機構を設けるこ
とにより、さらに、上記入射X線の試料表面への入射角
をX線の全反射臨界角より小さい角度に設定し、さらに
入射X線のエネルギーを連続的に変化させることによ
り、X線反射率のエネルギー依存性を測定できるように
なる。
Further, the total reflection X-ray analysis apparatus is housed in a vacuum container having a vacuum exhaust means, and the incident angle setting mechanism and the sample moving mechanism are operated while maintaining the degree of vacuum in the vacuum container. By providing a mechanism that can be operated from outside the container, the incident angle of the incident X-ray on the sample surface is set to an angle smaller than the critical angle of total reflection of the X-ray, and the energy of the incident X-ray is continuously changed. By doing so, it becomes possible to measure the energy dependence of the X-ray reflectance.

【0015】さらに、蛍光X線検出器を備えてることに
より、蛍光X線収率のエネルギー依存性を測定できるよ
うになる。
Further, by providing the fluorescent X-ray detector, the energy dependence of the fluorescent X-ray yield can be measured.

【0016】さらに、電子検出器を備えることにより、
全電子収率のエネルギー依存性を測定できるようにな
る。
Further, by providing an electronic detector,
It becomes possible to measure the energy dependence of the total electron yield.

【0017】さらに、回折X線検出器を備えて試料から
の回折X線を測定できるようにする。
Further, a diffracted X-ray detector is provided so that diffracted X-rays from the sample can be measured.

【0018】さらに、回折X線検出器として湾曲型位置
敏感検出器を用い、試料からの複数の回折X線を同時に
測定できるようにする。
Further, a curved position sensitive detector is used as the diffracted X-ray detector so that a plurality of diffracted X-rays from the sample can be measured at the same time.

【0019】[0019]

【実施例】以下本発明の実施例を図面により具体的に説
明する。
Embodiments of the present invention will be specifically described below with reference to the drawings.

【0020】(実施例1) (1)構造 図1は本発明の実施例1である全反射X線分析装置のブ
ロック図である。本装置は試料4に入射X線1を全反射
臨界角以下の微小入射角で入射させ、試料のX線反射
率、2次電子収量、蛍光X線収量等のエネルギー依存性
を測定するものである。
(Embodiment 1) (1) Structure FIG. 1 is a block diagram of a total reflection X-ray analysis apparatus which is Embodiment 1 of the present invention. This device makes incident X-ray 1 incident on the sample 4 at a small incident angle less than the critical angle for total reflection and measures the energy dependence of the sample's X-ray reflectance, secondary electron yield, fluorescent X-ray yield, etc. is there.

【0021】入射X線1は4象限スリット2で幅3mm
×高さ50μm程度に整形し、入射X線検出器3に入射
させる。入射X線検出器3としては電離箱等を用いる。
検出器3は入射X線1の強度変動を補正するために用い
る。入射X線1は検出器3により多少吸収されるがほと
んどは通過し、試料台4の上に固定した試料5に入射す
る。試料台4は上下移動機構を持つとともに、上記入射
X線1に対する入射角θを変化させるため、試料表面を
軸とする回転機構を持っている。試料5の表面で反射し
た反射X線6の強度は反射X線検出器7で測定する。検
出器7の入射窓を充分大きく取っておけば、検出器7を
動かさなくても試料4で反射したX線6を測定できる。
本実施例では試料中心から反射X線検出器7の入射窓ま
での距離は300mm、入射窓の直径は15mmである
ためθ<1.1°の範囲で測定出来る。試料5によって
散乱されたX線は散乱X線強度検出器11で測定する。
また試料5から発生する蛍光X線は蛍光X線検出器12
により測定する。蛍光X線検出器12としては、エネル
ギー分解能の高い半導体検出器等を用いる。
The incident X-ray 1 has a 4-quadrant slit 2 and a width of 3 mm.
B. The height is shaped into about 50 μm, and the incident X-ray detector 3 is made to enter. An ionization chamber or the like is used as the incident X-ray detector 3.
The detector 3 is used to correct the intensity fluctuation of the incident X-ray 1. The incident X-ray 1 is absorbed by the detector 3 to some extent, but most of it passes through and is incident on the sample 5 fixed on the sample table 4. The sample table 4 has a vertical movement mechanism and a rotation mechanism having the sample surface as an axis in order to change the incident angle θ with respect to the incident X-ray 1. The intensity of the reflected X-ray 6 reflected on the surface of the sample 5 is measured by the reflected X-ray detector 7. If the entrance window of the detector 7 is made large enough, the X-ray 6 reflected by the sample 4 can be measured without moving the detector 7.
In this embodiment, the distance from the center of the sample to the entrance window of the reflection X-ray detector 7 is 300 mm, and the diameter of the entrance window is 15 mm, so that measurement can be performed within the range of θ <1.1 °. The X-ray scattered by the sample 5 is measured by the scattered X-ray intensity detector 11.
The fluorescent X-rays emitted from the sample 5 are the fluorescent X-ray detector 12
To measure. As the fluorescent X-ray detector 12, a semiconductor detector or the like having high energy resolution is used.

【0022】上記の試料移動機構及びX線検出系はコン
ピュータにより制御する。なお図中で2次電子検出器は
省略してある。
The sample moving mechanism and the X-ray detection system described above are controlled by a computer. The secondary electron detector is omitted in the figure.

【0023】また図1には本装置に用いるX線光学系の
一例を示してある。任意のX線源より発生したX線をモ
ノクロメータ14により単色化し、X線集光鏡により収
束させ、次いでX線反射鏡により高調波を除去し、スリ
ット2に入射させる。
FIG. 1 shows an example of an X-ray optical system used in this apparatus. The X-ray generated from an arbitrary X-ray source is monochromaticized by the monochromator 14, converged by the X-ray condensing mirror, then harmonics are removed by the X-ray reflecting mirror, and the slit 2 is made incident.

【0024】図2は本発明の実施例1の側面図である。
試料台4が入射X線ビーム1を中心とした回転及び上下
移動ができるようになっているとともに、入射X線1に
対する入射角を変化させるために試料台4を傾斜させる
ことができるようになっている。これらの操作はいずれ
も高真空状態を維持したまま真空容器20の外部から行
なうことができる。以下に真空容器20の内部に設けた
試料台4の動作機構と構成を説明する。ウォームギア2
2と23は試料5の回転用のギアで、試料台4に載せた
試料5を入射X線1の軸を中心に回転することができ
る。ウォームギア22と23の回転の差はベベルギア2
4の噛み合わせを通じて入射角設定用ネジ26を回転さ
せ、その結果試料台4は支点21を中心に回転する。こ
れにより入射X線1に対して微小角度で入射角を設定可
能となっている。バネ32は試料台4をベース27に安
定に押しつけておくためのものである。平ギア28、2
5はそれぞれウォームギア22、23に対して回転を伝
達する。平ギア30は試料ステージ全体を上下させる機
能を持つ。平ギア30は超高真空用回転導入機構31に
より駆動される。なお平ギア28と29も超高真空用回
転導入機構により駆動されるが、図中では省略してあ
る。真空容器20はステージの上に置かれる。真空容器
20のX線源側には入射X線検出器3と接続するための
インターフェースが接続される。真空容器20には反射
X線検出器7が取付けられ、さらに2次電子検出器13
を取付けている。ステージは上下移動が可能な装置架台
に傾斜調整用リンクを通じて結合され、入射X線の軸と
装置全体の光軸が一致するよう調整される。
FIG. 2 is a side view of the first embodiment of the present invention.
The sample table 4 can rotate and move up and down around the incident X-ray beam 1, and the sample table 4 can be tilted to change the incident angle with respect to the incident X-ray 1. ing. Any of these operations can be performed from the outside of the vacuum container 20 while maintaining a high vacuum state. The operation mechanism and configuration of the sample table 4 provided inside the vacuum container 20 will be described below. Worm gear 2
Gears 2 and 23 are for rotating the sample 5, and the sample 5 placed on the sample table 4 can be rotated about the axis of the incident X-ray 1. The difference in rotation between the worm gears 22 and 23 is the bevel gear 2
The incident angle setting screw 26 is rotated through the engagement of 4 so that the sample stage 4 rotates about the fulcrum 21. This makes it possible to set the incident angle with respect to the incident X-ray 1 at a minute angle. The spring 32 is for stably pressing the sample table 4 against the base 27. Spur gears 28, 2
5 transmits the rotation to the worm gears 22 and 23, respectively. The spur gear 30 has a function of moving up and down the entire sample stage. The spur gear 30 is driven by an ultrahigh vacuum rotation introducing mechanism 31. The spur gears 28 and 29 are also driven by the rotation introducing mechanism for ultra-high vacuum, but they are omitted in the figure. The vacuum container 20 is placed on the stage. An interface for connecting to the incident X-ray detector 3 is connected to the X-ray source side of the vacuum container 20. The reflection X-ray detector 7 is attached to the vacuum container 20, and the secondary electron detector 13
Is installed. The stage is connected to a vertically movable apparatus frame through a tilt adjusting link and adjusted so that the axis of the incident X-ray and the optical axis of the entire apparatus coincide.

【0025】(2)X線光学系及び試料位置の調整方法 図3には本発明の実施例1のX線源として、シンクロト
ロン放射光を用いた場合のX線光学系の概要を示す。本
実施例では2結晶モノクロメ−タ、X線集光鏡から試料
までの距離を11mと長くとり、試料に入射するX線ビ
−ムの角度変動を抑制する構成となっている。このと
き、X線ビ−ムのビ−ム進行方向発散εはX線光学系に
依存し、X線集光鏡の全反射角φ、その全長、及びX線
集光鏡からスリット位置までの距離から決定される。ス
リット2の垂直方向の幅ΔS≒0の時εは下式の(数
1)、(数2)で表わされる。
(2) Method for adjusting X-ray optical system and sample position FIG. 3 shows an outline of the X-ray optical system when synchrotron radiation is used as the X-ray source of the first embodiment of the present invention. In this embodiment, the distance from the two-crystal monochromator and the X-ray condensing mirror to the sample is set as long as 11 m to suppress the angular fluctuation of the X-ray beam incident on the sample. At this time, the divergence ε of the beam traveling direction of the X-ray beam depends on the X-ray optical system, and the total reflection angle φ of the X-ray focusing mirror, its total length, and the distance from the X-ray focusing mirror to the slit position. Determined from distance. When the width ΔS≈0 of the slit 2 in the vertical direction, ε is expressed by the following equations (Equation 1) and (Equation 2).

【0026】[0026]

【数1】 ε=(500×φ )/10000=5×φ ×10 ̄2…(数1) 例えばφ=6×10 ̄3ラジアンに設定した場合、ε=
3×10 ̄4である。また、本実施例では試料5とスリ
ット2の間の距離は600mmであるから、試料5への
X線の入射角をθとすると必要な試料の長さLは、下式
で表わされる。
[Number 1] ε = (500 × φ) / 10000 = 5 × φ × 10¯ 2 ... ( Equation 1) When set to, for example, φ = 6 × 10¯ 3 radians, epsilon =
3 × 10¯ is 4. In addition, since the distance between the sample 5 and the slit 2 is 600 mm in this embodiment, the required sample length L is represented by the following equation, where the incident angle of X-rays on the sample 5 is θ.

【0027】[0027]

【数2】 L>(600×ε+ΔS)/φ (mm)…(数2) ここで、ΔS=50μm、θ=1×10 ̄2(約0.6
゜)とすると、L>23mmとなる。
[Formula 2] L> (600 × ε + ΔS) / φ (mm) (Formula 2 ) where ΔS = 50 μm, θ = 1 × 10 −2 (about 0.6
L) is 23 mm.

【0028】このように全反射条件で測定する場合に
は、試料に微少な入射角でX線を入射させるため試料表
面の広い範囲にX線が照射される。そのため試料の高さ
及び入射角を高精度に設定しないと、試料5の側面ある
いは試料台4にX線1が入射し反射率その他の測定精度
及び再現性が低下する。しかし実際には試料毎に大き
さ、厚さ及びそり等の形状が異なるため、試料台4の移
動機構の機械的精度のみにより試料5の位置を高精度に
設定することは困難である。
When the measurement is performed under the condition of total internal reflection as described above, the X-ray is irradiated onto a wide range of the sample surface because the X-ray is incident on the sample at a small incident angle. Therefore, unless the height and the incident angle of the sample are set with high accuracy, the X-ray 1 is incident on the side surface of the sample 5 or the sample table 4, and the reflectance and other measurement accuracy and reproducibility deteriorate. However, in practice, since the size, thickness, and shape of the warp and the like are different for each sample, it is difficult to set the position of the sample 5 with high accuracy only by the mechanical accuracy of the moving mechanism of the sample table 4.

【0029】しかし本実施例では試料台4の移動機構及
び散乱X線検出器9等を用い、以下の(a)から(g)
までの手順で試料を全反射条件に設定することができ
る。
However, in the present embodiment, the moving mechanism of the sample stage 4 and the scattered X-ray detector 9 are used, and the following (a) to (g) are used.
The sample can be set to the total reflection condition by the procedure up to.

【0030】(a)試料台4を十分下げ、入射X線1が
試料5に入射すること無く全て反射X線検出器7に入射
するようにする。この時X線は試料に反射していない
が、反射率R=1.0と定義する。入射X線検出器3は
入射X線1の強度の変動を補正するために用いる。
(A) The sample stage 4 is sufficiently lowered so that the incident X-rays 1 are not incident on the sample 5 but all are incident on the reflected X-ray detector 7. At this time, the X-ray is not reflected on the sample, but the reflectance is defined as R = 1.0. The incident X-ray detector 3 is used to correct the fluctuation of the intensity of the incident X-ray 1.

【0031】(b)試料台4の高さをR=0.5となる
まで上げる。精度0.1μm程度で設定する。
(B) Raise the height of the sample table 4 until R = 0.5. The accuracy is set to about 0.1 μm.

【0032】(c)反射率の入射角依存性(例えば入射
角=−0.5°から1.5°程度の範囲)を測定し全反
射臨界角θcを求める。
(C) The incident angle dependency of the reflectance (for example, the incident angle range from -0.5 ° to about 1.5 °) is measured to determine the total reflection critical angle θc.

【0033】(d)入射角を0<θ<θcの間の目的の
値、例えばθ=0.6°に設定する。
(D) The incident angle is set to a target value between 0 <θ <θc, for example, θ = 0.6 °.

【0034】(e)試料台4の高さを変化させながら散
乱X線強度を測定し、散乱X線強度の試料台4の高さに
対する関係を求める。
(E) The scattered X-ray intensity is measured while changing the height of the sample table 4, and the relationship between the scattered X-ray intensity and the height of the sample table 4 is obtained.

【0035】(f)試料台4の高さを、(e)で測定し
た散乱X線強度の小さい領域の中点に設定する。X線1
が全反射していない場合、すなわちX線1が試料5の側
面あるいは試料台4に入射した場合に散乱X線強度が大
きくなるので、上記の中点は試料5の中央にX線1が入
射している場合を意味する。
(F) The height of the sample table 4 is set at the midpoint of the region where the scattered X-ray intensity measured in (e) is small. X-ray 1
Is not totally reflected, that is, when the X-ray 1 is incident on the side surface of the sample 5 or the sample stage 4, the scattered X-ray intensity becomes large. Means if you are.

【0036】(g)上記(c)及び(b)を再度実行す
る。
(G) The above (c) and (b) are executed again.

【0037】以上の手順により目的の入射角θにおける
試料位置の自動調整が完了する。
By the above procedure, the automatic adjustment of the sample position at the target incident angle θ is completed.

【0038】X線1の試料に対する入射角をθとし、試
料5のX線に対する屈折率をnとすると臨界角θcは
When the incident angle of the X-ray 1 on the sample is θ and the refractive index of the sample 5 on the X-ray is n, the critical angle θc is

【0039】[0039]

【数3】θc=√2(1−n)…(数3) で与えられ、例えば波長0.15nmのX線に対しては
通常0.2°から0.6°の値となる。θ<θcの時全
反射が起きるが、この時物質内にX線が全く進入しない
わけではなく、表面に沿った波が存在する。その強度が
1/eになる深さを進入深さと呼び、θ≪θcの時は波
長によらず例えばSiで3.2nm、Auでは1.2n
mとなる。このような全反射条件のもとで各種の特性を
測定することにより極薄膜あるいは表面の測定が可能と
なる。
[Mathematical formula-see original document] θc = √2 (1-n) ... (Equation 3), which is usually 0.2 ° to 0.6 ° for an X-ray having a wavelength of 0.15 nm. When θ <θc, total reflection occurs, but at this time, X-rays do not enter the substance at all, and waves exist along the surface. The depth at which the intensity becomes 1 / e is called the penetration depth. When θ << θc, it depends on the wavelength, for example, 3.2 nm for Si and 1.2 n for Au.
m. By measuring various characteristics under such total reflection conditions, it becomes possible to measure the ultrathin film or the surface.

【0040】(3)測定例 図4は、X線ビ−ム1の進行方向の長さL=40mmの
Siウエハを試料として実測したX線反射率の角度依存
性を示す図である。また図5は、図4を説明するために
X線ビームと試料の位置関係を示した図である。図4中
の記号(a)から(e)を測定した時の試料の位置を、
図5の同一の記号の図に示してある。(a)はθ<0の
場合であり入射X線1は試料5を通過しない。(b)は
θ=0の場合であり入射X線1の1/2だけが通過す
る。(c)では入射X線1の100%近くが反射する。
(c)から(e)に到るまで入射角の増加とともに反射
率が減少する。本実施例では試料5の中心から反射X線
検出器7の入射窓までの距離は300mm、入射窓の直
径は15mmであるため(e)より大きな角度では測定
出来ない。
(3) Measurement Example FIG. 4 is a diagram showing the angle dependence of the X-ray reflectance measured using a Si wafer having a length L = 40 mm in the traveling direction of the X-ray beam 1 as a sample. Further, FIG. 5 is a diagram showing the positional relationship between the X-ray beam and the sample for explaining FIG. 4. The position of the sample when measuring the symbols (a) to (e) in FIG.
It is shown in the diagram of the same symbols in FIG. (A) is the case of θ <0, and the incident X-ray 1 does not pass through the sample 5. (B) is the case of θ = 0, and only half of the incident X-ray 1 passes through. In (c), nearly 100% of the incident X-ray 1 is reflected.
From (c) to (e), the reflectance decreases as the incident angle increases. In this embodiment, the distance from the center of the sample 5 to the entrance window of the reflection X-ray detector 7 is 300 mm and the diameter of the entrance window is 15 mm, so that the measurement cannot be performed at an angle larger than (e).

【0041】図6は本実施例を用いて測定した反射率R
のエネルギーE(keV)に対する変化の実測例であ
る。このスペクトルでは試料表面に含まれる原子の吸収
端より高エネルギ−側でX線の異常分散による振動が生
ずる。この振動構造はX線吸収スペクトルに見られるE
XAFSと呼ばれる振動構造と類似の現象である。計算
によりこの反射率のスペクトルからX線吸収スペクトル
を近似的に求めることができる。図7は図6の反射率の
デ−タから計算したX線吸収スペクトルの一例である。
このスペクトルをフーリエ変換することにより、動径分
布関数が得られる。動径分布関数からX線吸収原子の周
囲の他の原子の配列を解析することができる。図8は上
記のX線吸収スペクトルから計算したSi及びSiO2
の動径分布関数の一例である。
FIG. 6 shows the reflectance R measured using this example.
It is an example of actual measurement of changes with respect to energy E (keV) of. In this spectrum, vibration occurs due to the anomalous dispersion of X-rays on the higher energy side than the absorption edge of the atoms contained in the sample surface. This vibrational structure is found in the X-ray absorption spectrum E
It is a phenomenon similar to the vibration structure called XAFS. The X-ray absorption spectrum can be approximately calculated from the reflectance spectrum by calculation. FIG. 7 is an example of an X-ray absorption spectrum calculated from the reflectance data of FIG.
A Fourier distribution function is obtained by Fourier transforming this spectrum. The array of other atoms around the X-ray absorbing atom can be analyzed from the radial distribution function. FIG. 8 shows Si and SiO 2 calculated from the above X-ray absorption spectrum.
3 is an example of a radial distribution function of.

【0042】以上に示したように本実施例を用いれば試
料表面の原始レベルの構造を解析することが可能とな
る。
As described above, the use of this embodiment makes it possible to analyze the primitive level structure of the sample surface.

【0043】また同時に蛍光X線検出器で測定した蛍光
X線のエネルギーをマルチチャンネルアナライザーによ
り解析することにより、試料表面の組成分析も可能であ
る。
At the same time, the composition of the sample surface can be analyzed by analyzing the energy of the fluorescent X-rays measured by the fluorescent X-ray detector with a multi-channel analyzer.

【0044】(実施例2) (1)構造 図9には本発明の実施例2の構成を示す。本実施例はX
線検出器11を設けてある点が実施例1と異なる。4象
限スリット12より上流のX線光学系は実施例1と同様
である。回折X線検出器11としては超高真空用の湾曲
型位置敏感X線検出器を使用している。散乱X線検出器
9としては半導体検出器を使用している。本実施例では
試料表面が鉛直方向になるように保持し、図中に示した
X、Y、Z方向の水平移動と、Z軸及びY軸を中心とす
る回転ができるようになっている。
Example 2 (1) Structure FIG. 9 shows the configuration of Example 2 of the present invention. In this embodiment, X
The difference from the first embodiment is that the line detector 11 is provided. The X-ray optical system upstream of the four-quadrant slit 12 is the same as that in the first embodiment. As the diffracted X-ray detector 11, a curved type position sensitive X-ray detector for ultra-high vacuum is used. A semiconductor detector is used as the scattered X-ray detector 9. In this embodiment, the sample surface is held in the vertical direction, and horizontal movement in the X, Y, and Z directions shown in the drawing and rotation around the Z axis and the Y axis are possible.

【0045】図10には本実施例の試料台部分の上面図
を示す。試料台4は超高真空雰囲気の真空容器20に収
納される。試料交換の際には試料台4及び移動機構とも
に試料交換室36に移動させる。試料交換室36も高真
空雰囲気となっている。
FIG. 10 shows a top view of the sample stage portion of this embodiment. The sample table 4 is housed in a vacuum container 20 having an ultrahigh vacuum atmosphere. At the time of sample exchange, both the sample table 4 and the moving mechanism are moved to the sample exchange chamber 36. The sample exchange chamber 36 is also in a high vacuum atmosphere.

【0046】(2)測定例 X線反射率、EXAFS測定及び蛍光X線分析に関して
は実施例1と同様の結果が得られる。実施例2の特徴は
湾曲型位置敏感検出器を用いてX線回折を測定できる点
にある。図11は全反射法を用いた試料表面のX線回折
の一測定例である。表面の1原子面の2次元格子は、逆
空間では逆格子ロッドとなる。回折スポットはエワルト
球の中心から、逆格子ロッドとエワルト球の交点に向か
う方向に現れ、回折強度はロッド上のどの位置でも等し
くなる。複数の逆格子ロッドが同時にエワルト球に交わ
るような方位に結晶を設定すれば、図11に示すような
複数の回折スポットを同時に湾曲型位置敏感検出器で測
定することが可能である。
(2) Measurement example Regarding the X-ray reflectance, EXAFS measurement and fluorescent X-ray analysis, the same results as in Example 1 can be obtained. The feature of the second embodiment is that X-ray diffraction can be measured by using a curved position sensitive detector. FIG. 11 shows an example of measurement of X-ray diffraction on the sample surface using the total reflection method. The one-dimensional two-dimensional lattice on the surface becomes a reciprocal lattice rod in reciprocal space. The diffraction spot appears in the direction from the center of the Ewald sphere toward the intersection of the reciprocal rod and the Ewald sphere, and the diffraction intensity is equal at any position on the rod. If the crystal is set in such an orientation that a plurality of reciprocal lattice rods intersect the Ewald sphere at the same time, a plurality of diffraction spots as shown in FIG. 11 can be simultaneously measured by the curved position sensitive detector.

【0047】[0047]

【発明の効果】本発明によれば、全反射条件のもとでX
線反射率のエネルギー依存性等を測定する場合に、入射
位置及び入射角を再現性良く自動的に設定し、高精度の
測定を行なうことができる。試料毎に厚さや大きさ等の
形状が異なる場合でも、再現性の良い位置設定を行うこ
とができる。これにより半導体素子等に用いられる多層
薄膜界面・表面のX線散乱、X線回折、EXAFS、蛍
光X線等を高精度に測定して材料の原子・分子配列の解
析あるいは表面の超微量分析を行うことが可能となる。
According to the present invention, under the condition of total internal reflection, X
When measuring the energy dependence of the linear reflectance, the incident position and the incident angle can be automatically set with good reproducibility, and highly accurate measurement can be performed. Even when the shape such as the thickness or the size is different for each sample, it is possible to set the position with good reproducibility. This enables highly accurate measurement of X-ray scattering, X-ray diffraction, EXAFS, fluorescent X-rays, etc. on the interface / surface of multi-layer thin films used for semiconductor devices, etc. to analyze the atomic / molecular arrangement of materials or ultra-trace analysis of the surface. It becomes possible to do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る実施例1の全反射X線分析装置の
構成を表わした原理図である。
FIG. 1 is a principle diagram showing a configuration of a total reflection X-ray analysis apparatus according to a first embodiment of the present invention.

【図2】本発明に係る実施例1の全反射X線分析装置の
試料台部分の側面図である。
FIG. 2 is a side view of a sample stage portion of the total internal reflection X-ray analysis apparatus according to the first embodiment of the present invention.

【図3】本発明に係る実施例1の全反射X線分析装置で
シンクロトロン放射光をX線源に用いた場合のX線光学
系の概要図である。
FIG. 3 is a schematic diagram of an X-ray optical system when synchrotron radiation light is used as an X-ray source in the total internal reflection X-ray analysis apparatus according to the first embodiment of the present invention.

【図4】本発明に係る実施例1の全反射X線分析装置を
用いて実測したシリコンウエハ表面のX線反射率とX線
入射角の関係を示す図である。
FIG. 4 is a diagram showing the relationship between the X-ray reflectance of the surface of a silicon wafer and the X-ray incident angle measured by using the total-reflection X-ray analyzer of Example 1 according to the present invention.

【図5】図4のX線反射率とX線入射角の関係を示す図
におけるX線ビームと試料の位置関係を示す原理図であ
る。
5 is a principle diagram showing the positional relationship between the X-ray beam and the sample in the diagram showing the relationship between the X-ray reflectance and the X-ray incident angle in FIG.

【図6】本発明に係る実施例1の全反射X線分析装置を
用いて測定したX線反射率とX線光子エネルギ−の関係
を示す図である。
FIG. 6 is a diagram showing the relationship between X-ray reflectance and X-ray photon energy measured using the total internal reflection X-ray analyzer of Example 1 according to the present invention.

【図7】図6のX線反射率とX線光子エネルギ−の関係
から求めたX線吸収係数とX線光子エネルギ−の関係を
示す図である。
7 is a diagram showing a relationship between an X-ray absorption coefficient and X-ray photon energy obtained from the relationship between the X-ray reflectance and X-ray photon energy in FIG.

【図8】図6から計算したSi及びSiO2の動径分布
関数の図である。
FIG. 8 is a diagram of a radial distribution function of Si and SiO 2 calculated from FIG. 6.

【図9】本発明に係る実施例2の全反射X線分析装置の
構成を表わした原理図である。
FIG. 9 is a principle diagram showing the configuration of a total reflection X-ray analysis apparatus according to a second embodiment of the present invention.

【図10】本発明に係る実施例2の全反射X線分析装置
の試料台部分の側面図である。
FIG. 10 is a side view of a sample stage portion of a total reflection X-ray analysis apparatus according to a second embodiment of the present invention.

【図11】本発明に係る実施例2の全反射X線分析装置
を用いて測定した表面のX線回折の測定図である。
FIG. 11 is a measurement view of X-ray diffraction of the surface measured by using the total reflection X-ray analyzer of Example 2 according to the present invention.

【符号の説明】[Explanation of symbols]

1…入射X線、 2…4象限スリット、 3…入射X線検出器、 4…試料台、 5…試料、 6…反射X線、 7…反射X線検出器、 8…散乱X線、 9…散乱X線検出器、 10…回折X線、 11…回折X線検出器、 12…蛍光X線検出器、 13…電子検出器、 14…モノクロメータ、 15…X線集光鏡、 16…X線反射鏡、 20…真空容器、 21…支点、 22、23…ウォームギア、 24、25…ベベルギア、 26…ネジ、 27…ベース、 28、29、30…平ギア、 31…回転導入機構、 32…バネ、 33…窓、 34…X−Zステージ、 35…入射角設定機構、 36…試料交換室。 1 ... Incident X-ray, 2 ... 4-quadrant slit, 3 ... Incident X-ray detector, 4 ... Sample stage, 5 ... Sample, 6 ... Reflected X-ray, 7 ... Reflected X-ray detector, 8 ... Scattered X-ray, 9 ... scattered X-ray detector, 10 ... diffracted X-ray, 11 ... diffracted X-ray detector, 12 ... fluorescent X-ray detector, 13 ... electron detector, 14 ... monochromator, 15 ... X-ray condensing mirror, 16 ... X-ray reflecting mirror, 20 ... Vacuum container, 21 ... Support point, 22, 23 ... Worm gear, 24, 25 ... Bevel gear, 26 ... Screw, 27 ... Base, 28, 29, 30 ... Flat gear, 31 ... Rotation introducing mechanism, 32 ... Spring, 33 ... Window, 34 ... XZ stage, 35 ... Incident angle setting mechanism, 36 ... Sample exchange chamber.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】入射X線検出器と反射X線検出器により、
試料台上に置いた試料表面に入射するX線の反射率を測
定する全反射X線分析装置において、上記試料より散乱
するX線強度を測定する散乱X線検出器と、入射X線ビ
ームの試料への入射角を任意の角度で設定する機構と、
X線ビームと試料表面の距離を変えることによりX線ビ
ームの試料への入射位置を移動するための試料移動機構
とを備えたことを特徴とする全反射X線分析装置。
1. An incident X-ray detector and a reflected X-ray detector,
In a total reflection X-ray analyzer for measuring the reflectance of X-rays incident on the surface of a sample placed on a sample table, a scattered X-ray detector for measuring the intensity of X-rays scattered from the sample, and an incident X-ray beam A mechanism to set the incident angle to the sample at an arbitrary angle,
A total reflection X-ray analysis apparatus comprising: a sample moving mechanism for moving the incident position of the X-ray beam on the sample by changing the distance between the X-ray beam and the sample surface.
【請求項2】請求項1において、上記全反射X線分析装
置を真空排気手段を有する真空容器内に納め、上記入射
角設定機構と試料移動機構の操作を上記真空容器内の真
空度を維持しつつ、上記真空容器外から操作できる機構
を備えたことを特徴とする全反射X線分析装置。
2. The total reflection X-ray analysis apparatus according to claim 1, wherein the total reflection X-ray analyzer is housed in a vacuum container having a vacuum evacuation means, and the incident angle setting mechanism and the sample moving mechanism are operated to maintain the degree of vacuum in the vacuum container. At the same time, a total reflection X-ray analysis apparatus is provided with a mechanism that can be operated from outside the vacuum container.
【請求項3】請求項1ないし2において、上記入射X線
の試料表面への入射角をX線の全反射臨界角より小さい
角度に設定し、上記散乱X線強度検出器により検出した
散乱X線が最小になるような位置に自動的に試料を移動
することにより、最適な全反射条件をとるような制御機
構を備えたことを特徴とする全反射X線分析装置。
3. The scattered X-ray detected by the scattered X-ray intensity detector according to claim 1, wherein the incident angle of the incident X-ray on the sample surface is set to be smaller than the critical angle of total reflection of X-ray. A total internal reflection X-ray analyzer characterized by comprising a control mechanism for taking optimum total internal reflection conditions by automatically moving the sample to a position where the line is minimized.
【請求項4】請求項1ないし2において、上記試料表面
に平行なX−Y方向への試料移動機構を備え、試料表面
における各種特性の分布を測定できる機構を備えたこと
を特徴とする全反射X線分析装置。
4. The method according to claim 1, further comprising a sample moving mechanism in the XY direction parallel to the sample surface, and a mechanism capable of measuring distribution of various characteristics on the sample surface. Reflective X-ray analyzer.
【請求項5】請求項1ないし2において、上記入射X線
の試料表面への入射角をX線の全反射臨界角より小さい
角度に設定し、さらに入射X線のエネルギーを連続的に
変化させてX線反射率のエネルギー依存性を測定できる
機構を備えたことを特徴とする全反射X線分析装置。
5. The incident angle of the incident X-ray on the sample surface according to claim 1 or 2, which is smaller than the critical angle of total reflection of X-ray, and the energy of the incident X-ray is continuously changed. A total reflection X-ray analysis apparatus comprising a mechanism capable of measuring the energy dependence of X-ray reflectance.
【請求項6】請求項1ないし2において、蛍光X線検出
器を備えて試料より発生する蛍光X線を分光測定し、試
料の蛍光X線分析を行なえる機構を備えたことを特徴と
する全反射X線分析装置。
6. The mechanism according to claim 1, further comprising a fluorescent X-ray detector, and a mechanism for spectroscopically measuring fluorescent X-rays generated from the sample and performing fluorescent X-ray analysis of the sample. Total reflection X-ray analyzer.
【請求項7】請求項5において、蛍光X線検出器を備え
て蛍光X線収率のエネルギー依存性を測定できる機構を
備えたことを特徴とする全反射X線分析装置。
7. The total reflection X-ray analysis apparatus according to claim 5, further comprising a fluorescent X-ray detector and a mechanism capable of measuring the energy dependence of the fluorescent X-ray yield.
【請求項8】請求項5において、電子検出器を備えて全
電子収率のエネルギー依存性を測定できる機構を備えた
ことを特徴とする全反射X線分析装置。
8. The total reflection X-ray analysis apparatus according to claim 5, further comprising an electron detector and a mechanism capable of measuring the energy dependence of the total electron yield.
【請求項9】請求項1ないし2において、回折X線検出
器を備えて試料からの回折X線を測定できる機構を備え
たことを特徴とする全反射X線分析装置。
9. The total internal reflection X-ray analysis apparatus according to claim 1, further comprising a mechanism for measuring a diffracted X-ray from a sample by including a diffracted X-ray detector.
【請求項10】請求項9において、回折X線検出器とし
て湾曲型位置敏感検出器を用い、試料からの複数の回折
X線を同時に測定できる機構を備えたことを特徴とする
全反射X線分析装置。
10. The total reflection X-ray according to claim 9, wherein a curved position sensitive detector is used as the diffraction X-ray detector, and a mechanism capable of simultaneously measuring a plurality of diffraction X-rays from the sample is provided. Analysis equipment.
JP4009789A 1992-01-23 1992-01-23 Total reflection x-ray analyzer Pending JPH05196583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4009789A JPH05196583A (en) 1992-01-23 1992-01-23 Total reflection x-ray analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4009789A JPH05196583A (en) 1992-01-23 1992-01-23 Total reflection x-ray analyzer

Publications (1)

Publication Number Publication Date
JPH05196583A true JPH05196583A (en) 1993-08-06

Family

ID=11729991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4009789A Pending JPH05196583A (en) 1992-01-23 1992-01-23 Total reflection x-ray analyzer

Country Status (1)

Country Link
JP (1) JPH05196583A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304310A (en) * 1995-04-28 1996-11-22 Nec Corp Method for inspecting liquid crystal orientated film, and inspection device therefor
JP2004191376A (en) * 2002-12-06 2004-07-08 Jordan Valley Applied Radiation Ltd Beam centering method and angle calibration method for x-ray reflectometer
US20100077873A1 (en) * 2007-07-13 2010-04-01 Keisuke Kishita Monitoring device of gas introducing device for analyzer
US8276470B2 (en) 2007-07-12 2012-10-02 Toyota Jidosha Kabushiki Kaisha Device and method for introducing gas for analysis device
JP2013148431A (en) * 2012-01-18 2013-08-01 Fujitsu Ltd Total reflection x-ray analysis method and total reflection x-ray analysis device
JP2015129708A (en) * 2014-01-08 2015-07-16 住友ゴム工業株式会社 polymer material analysis method
JP2016057285A (en) * 2014-09-11 2016-04-21 住友ゴム工業株式会社 Method for measuring crosslinking density in sulfur-containing polymer composite material
JP2017142261A (en) * 2017-04-13 2017-08-17 国立研究開発法人物質・材料研究機構 X-ray imaging apparatus and method of using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304310A (en) * 1995-04-28 1996-11-22 Nec Corp Method for inspecting liquid crystal orientated film, and inspection device therefor
JP2004191376A (en) * 2002-12-06 2004-07-08 Jordan Valley Applied Radiation Ltd Beam centering method and angle calibration method for x-ray reflectometer
JP4519455B2 (en) * 2002-12-06 2010-08-04 ジョーダン・バレー・セミコンダクターズ・リミテッド Beam centering method and angle calibration method for X-ray reflectometer
US8276470B2 (en) 2007-07-12 2012-10-02 Toyota Jidosha Kabushiki Kaisha Device and method for introducing gas for analysis device
US20100077873A1 (en) * 2007-07-13 2010-04-01 Keisuke Kishita Monitoring device of gas introducing device for analyzer
US8191402B2 (en) * 2007-07-13 2012-06-05 Toyota Jidosha Kabushiki Kaisha Monitoring device of gas introducing device for analyzer
JP2013148431A (en) * 2012-01-18 2013-08-01 Fujitsu Ltd Total reflection x-ray analysis method and total reflection x-ray analysis device
JP2015129708A (en) * 2014-01-08 2015-07-16 住友ゴム工業株式会社 polymer material analysis method
JP2016057285A (en) * 2014-09-11 2016-04-21 住友ゴム工業株式会社 Method for measuring crosslinking density in sulfur-containing polymer composite material
JP2017142261A (en) * 2017-04-13 2017-08-17 国立研究開発法人物質・材料研究機構 X-ray imaging apparatus and method of using the same

Similar Documents

Publication Publication Date Title
US7551719B2 (en) Multifunction X-ray analysis system
US5619548A (en) X-ray thickness gauge
US6895075B2 (en) X-ray reflectometry with small-angle scattering measurement
EP1462795B1 (en) X-Ray diffractometer for grazing incidence switchable between in-plane and out-of-plane measurements
Kleymenov et al. Five-element Johann-type x-ray emission spectrometer with a single-photon-counting pixel detector
JP5009563B2 (en) Sample inspection method and apparatus
US7600916B2 (en) Target alignment for X-ray scattering measurements
EP2042860B1 (en) X-ray diffraction apparatus and x-ray diffraction method
JPH05188019A (en) X-ray composite analysis device
JPH08184572A (en) Total-reflection x-ray analytical apparatus
WO1994008232A1 (en) Method and apparatus for surface analysis
JP5031215B2 (en) Multifunctional X-ray analysis system
JP2004045369A (en) Method for evaluating orientation of polycrystalline material
JPH05196583A (en) Total reflection x-ray analyzer
JPH05322804A (en) Method and device for measuring reflected profile of x ray
JP2821585B2 (en) In-plane distribution measuring method and apparatus
Underwood et al. Beamline for metrology of X-ray/EUV optics at the Advanced Light Source
JP4367820B2 (en) X-ray reflectivity measuring device
EP0697109B1 (en) X-ray spectrometer with a grazing take-off angle
JPH06160312A (en) X-ray evaluation apparatus
JP2002005858A (en) Total reflection x-ray fluorescence analyzer
JPH0792112A (en) X-ray evaluation system
JP2921597B2 (en) Total reflection spectrum measurement device
JPH04208900A (en) Setting of irradiation angle of energy beam
JP2012013659A (en) Measuring method for reflectivity curve of x-ray and of neutron radiation, and measuring instrument