JP2018119894A - Laser spectroscopy inspection method and laser spectroscopy inspection device - Google Patents

Laser spectroscopy inspection method and laser spectroscopy inspection device Download PDF

Info

Publication number
JP2018119894A
JP2018119894A JP2017012595A JP2017012595A JP2018119894A JP 2018119894 A JP2018119894 A JP 2018119894A JP 2017012595 A JP2017012595 A JP 2017012595A JP 2017012595 A JP2017012595 A JP 2017012595A JP 2018119894 A JP2018119894 A JP 2018119894A
Authority
JP
Japan
Prior art keywords
container
inspection
wall
laser
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017012595A
Other languages
Japanese (ja)
Inventor
孝康 横林
Takayasu Yokobayashi
孝康 横林
アレクセイ ジュラブリョフ
Alexei Zhuravlev
アレクセイ ジュラブリョフ
裕司 則末
Yuji Norisue
裕司 則末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN MACHINERY CO Ltd
JAPAN MACHINERY KK
Hitachi Zosen Corp
Original Assignee
JAPAN MACHINERY CO Ltd
JAPAN MACHINERY KK
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN MACHINERY CO Ltd, JAPAN MACHINERY KK, Hitachi Zosen Corp filed Critical JAPAN MACHINERY CO Ltd
Priority to JP2017012595A priority Critical patent/JP2018119894A/en
Priority to KR1020180008732A priority patent/KR20200067236A/en
Publication of JP2018119894A publication Critical patent/JP2018119894A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems

Abstract

PROBLEM TO BE SOLVED: To increase the repetition measurement accuracy by suppressing the reduction in analysis accuracy due to reflected light.SOLUTION: An inspection beam R1 radiated from a projection source 22A passes through outer walls Bwi and Bwo of a container B storing the gas to be analyzed, and is received by a detector 23A. The outer walls Bwi and Bwo of the container B through which the inspection beam R1 passes are disposed so as to form incident angles θ1 and θ2 with respect to the perpendicular line of an orthogonal plane of a beam axis Ro. The travel direction of the light that collides against the front surface and rear surface of the outer walls Bwi and Bwo and is reflected is deviated from the beam axis Ro, thereby eliminating or reducing the light reception of the reflected light by the detector 23A.SELECTED DRAWING: Figure 4

Description

本発明は、医薬品や飲料、食品などを収容した密閉容器で、レーザ光が透過する光学的に透明なバイアル瓶や食品容器、あるいは菌や組織の培養に供される培養器、生成設備や燃焼設備で排ガス(被分析ガス)が流送または滞留され、かつレーザ光が透過する光学的に透明な部分を有するダクトやタンクなどの収容体に対して、投光源から収容体の内部スペースにレーザ光を照射して被分析ガスを透過させ、検出器に受光させて周波数変調分光法により被分析ガスのガス成分量や濃度、圧力などを測定するレーザ分光検査方法およびレーザ分光検査装置に関する。   The present invention is a sealed container containing pharmaceuticals, beverages, foods, etc., optically transparent vials and food containers through which laser light is transmitted, or incubators, production equipment and combustion used for culture of bacteria and tissues A laser is emitted from the light source to the internal space of the container against a container such as a duct or tank that has an optically transparent portion through which exhaust gas (analyzed gas) flows or stays in the facility and through which the laser beam is transmitted. The present invention relates to a laser spectroscopic inspection method and a laser spectroscopic inspection device that measure the gas component amount, concentration, pressure, and the like of an analyte gas by irradiating light, allowing the analyte gas to pass through, and receiving the light by a detector.

周波数変調(半導体レーザ)分光法を利用して、レーザ光をたとえばバイアル瓶のヘッドスペースに透過させ、ヘッドスペースのガス分子により吸収される周波数の波形の変化に基づいて、バイアル瓶内の酸素濃度や水分濃度などを分析する技術が、たとえば特許文献1が開示されている。   Utilizing frequency modulation (semiconductor laser) spectroscopy, the laser light is transmitted through the vial headspace, for example, and the oxygen concentration in the vial based on the change in the waveform of the frequency absorbed by the gas molecules in the headspace For example, Patent Literature 1 discloses a technique for analyzing the water concentration and the like.

特許文献1では、搬送コンベヤに基準バイアル瓶と試料バイアル瓶を、たとえば交互に保持させて検査区域に搬送し、レーザ放射装置およびレーザ検出器によりそれぞれ基準バイアル瓶内の基準ガスの圧力および濃度を分析し、試料バイアル瓶の検出値を、基準バイアル瓶の検出値で校正している。   In Patent Document 1, reference vials and sample vials are held alternately on a transport conveyor, for example, and transported to an inspection area, and the pressure and concentration of the reference gas in the reference vial are set by a laser emission device and a laser detector, respectively. Analyzing and calibrating the detection value of the sample vial with the detection value of the reference vial.

特許第4445971号公報Japanese Patent No. 4445971

ところで、投光源から投光されたレーザ光は、投光源の投光窓、バイアル瓶の入射側の外壁の表面・裏面や出射側の外壁の表面・裏面、検出器の受光窓を透過する。これら透過外壁の透過時に、レーザ光の一部が反射して偏光し、検出器における偏光量を増加させる。また反射した反射レーザ光の波形が重なることで、レーザ光が共振したり、波長の変化が生じる。このように、レーザ光が投光源および受光源の投、受光窓やバイアル瓶の外壁を透過する際に生じる反射光により、共振や波長の変化が生じて外乱要因となり、分析精度を低下させるという問題があった。   By the way, the laser light projected from the light projecting light source passes through the light projecting window of the light projecting light source, the front and rear surfaces of the outer wall on the incident side of the vial, the front and rear surfaces of the outer wall on the emission side, and the light receiving window of the detector. During transmission through these transmissive outer walls, part of the laser light is reflected and polarized, increasing the amount of polarization in the detector. In addition, the reflected reflected laser light waveforms overlap, causing the laser light to resonate or change in wavelength. In this way, the reflected light generated when the laser light is projected and projected by the light projecting light source and light receiving light source, the light receiving window and the outer wall of the vial bottle causes resonance and a change in wavelength, resulting in disturbances and reducing analysis accuracy. There was a problem.

特許文献1では、基準バイアル瓶の検出値により、試料バイアル瓶の検出値を校正することで、分析精度を高めているが、基準バイアル瓶の検出頻度を多くする必要があり、検出効率が悪い。   In Patent Document 1, the analysis accuracy is improved by calibrating the detection value of the sample vial with the detection value of the reference vial, but it is necessary to increase the detection frequency of the reference vial and the detection efficiency is poor. .

本発明は、レーザ光が収容体の外壁を透過する際に生じる反射ビームによる分析精度の低下を抑制して、繰り返し測定精度が高く安定して検出を行えるレーザ分光検査方法およびレーザ分光検査装置を提供することを目的とする。   The present invention provides a laser spectroscopic inspection method and a laser spectroscopic inspection device capable of suppressing a decrease in analysis accuracy due to a reflected beam generated when laser light passes through the outer wall of a container, and performing stable detection with high repeated measurement accuracy. The purpose is to provide.

本発明に係るレーザ分光検査方法は、投光源から照射された検査ビームが、被分析ガスが収容された容器の外壁を透過して検出器に受光されるレーザ分光検査方法であって、少なくとも検査ビームが透過する前記容器の外壁が、検査ビームのビーム光軸の直交面に対して傾斜するように配置され、前記外壁の表面および裏面に反射した反射光の進行方向を、前記ビーム光軸からずらせて、検出器に受光される前記反射光を排除または減少させることを特徴とする。   A laser spectroscopic inspection method according to the present invention is a laser spectroscopic inspection method in which an inspection beam irradiated from a light projecting light source is transmitted through an outer wall of a container containing a gas to be analyzed and received by a detector. The outer wall of the container through which the beam is transmitted is disposed so as to be inclined with respect to a plane orthogonal to the beam optical axis of the inspection beam, and the traveling direction of the reflected light reflected on the front and back surfaces of the outer wall is determined from the beam optical axis. The reflected light received by the detector is eliminated or reduced so as to be shifted.

また、容器の外壁が、ビーム光軸を含む平面上で円筒形断面であり、前記ビーム光軸を、前記平面上で前記外壁に囲まれた内部スペースの中心から位置ずれさせたことが好ましい。   Moreover, it is preferable that the outer wall of the container has a cylindrical cross section on a plane including the beam optical axis, and the beam optical axis is displaced from the center of the internal space surrounded by the outer wall on the plane.

さらに、上記レーザ分光検査方法において、容器は、互いに平行に配置された入射側の外壁と出射側の外壁を有し、前記外壁が、ビーム光軸の直交面に対して傾斜するように容器を配置したことが好ましい。   Further, in the above laser spectroscopic inspection method, the container has an incident-side outer wall and an emission-side outer wall arranged in parallel to each other, and the container is arranged so that the outer wall is inclined with respect to a plane orthogonal to the beam optical axis. It is preferable to arrange.

本発明に係るレーザ分光検査装置は、投光源から照射された検査ビームが、被分析ガスが収容された容器の複数の外壁を順次透過して検出器に受光されるレーザ分光検査装置であって、少なくとも検査ビームが透過する前記容器の外壁が、ビーム光軸の直交面に対して傾斜するように前記容器が配置されたことを特徴とする。   A laser spectroscopic inspection apparatus according to the present invention is a laser spectroscopic inspection apparatus in which an inspection beam irradiated from a light projecting light source is sequentially transmitted through a plurality of outer walls of a container containing a gas to be analyzed and received by a detector. The container is arranged such that at least an outer wall of the container through which the inspection beam passes is inclined with respect to a plane orthogonal to the beam optical axis.

また、上記レーザ分光検査装置において、容器の外壁が、ビーム光軸を含む平面上で円筒形断面であり、前記ビーム光軸が、前記平面上で前記外壁に囲まれた内部スペースの中心から位置ずれするように配置されたことが好ましい。   Further, in the laser spectroscopic inspection apparatus, the outer wall of the container has a cylindrical cross section on a plane including the beam optical axis, and the beam optical axis is positioned from the center of the inner space surrounded by the outer wall on the plane. It is preferable that they are arranged so as to be displaced.

さらに、上記レーザ分光検査装置であって、前記容器の入射側の外壁と出射側の外壁が互いに平行であり、前記外壁がビーム光軸の直交面に対して傾斜するように容器が配置されたことが好ましい。   Further, in the laser spectroscopic inspection apparatus, the container is disposed such that the outer wall on the incident side and the outer wall on the emission side of the container are parallel to each other, and the outer wall is inclined with respect to a plane orthogonal to the beam optical axis. It is preferable.

さらにまた、上記レーザ分光検査装置において、検査ビームを容器に照射する検査位置に、前記容器を当該容器の軸心周りに回転させる容器回転装置を配置したことが好ましい。   Furthermore, in the laser spectroscopic inspection apparatus, it is preferable that a container rotating device for rotating the container around the axis of the container is disposed at an inspection position where the inspection beam is irradiated onto the container.

また、投光源および検出器と、容器の少なくとも一方を移動させる移動装置と、前記検出器で受光した受光データのうち、ビーム光軸が内部スペースの中心を通過する位置から、移動方向前方および/または移動方向後方に位置ずれした検査ビームに基づいて、被分析ガスの成分を分析する分光分析装置と、を具備したことが好ましい。   In addition, from the position where the beam optical axis passes through the center of the internal space in the light receiving data received by the detector, the light source and the detector, the moving device that moves at least one of the containers, and / or Alternatively, it is preferable to include a spectroscopic analyzer that analyzes the component of the gas to be analyzed based on the inspection beam that is displaced rearward in the moving direction.

本発明に係るレーザ分光検査装置およびレーザ分光検査方法によれば、検査ビームが透過する容器の外壁がビーム光軸の直交面に対して傾斜されていることから、検査ビームが透過する時に、容器の外壁の表面や裏面に反射した反射光がビーム光軸からずれるので、検出器では、反射光が排除されるかまたは減少され、内部スペース内の被分析ガスのみを透過した検査ビームを受光することができる。したがって、検出器に検出される検査ビームが偏光したり、偏光量が増減したり、共振や波長変化が生じることがなく、周波数変調分光法により被分析ガスの成分量や濃度、圧力などを高い分析精度で、かつ繰り返し測定精度も高く、安定して検出を行うことができる。   According to the laser spectroscopic inspection apparatus and the laser spectroscopic inspection method of the present invention, the outer wall of the container through which the inspection beam is transmitted is inclined with respect to the plane orthogonal to the beam optical axis. Since the reflected light reflected on the front and back surfaces of the outer wall of the glass is shifted from the beam optical axis, the detector receives or receives the inspection beam transmitted only through the gas to be analyzed in the internal space. be able to. Therefore, the inspection beam detected by the detector is not polarized, the amount of polarization does not increase or decrease, resonance or wavelength change does not occur, and the component amount, concentration, pressure, etc. of the gas to be analyzed are increased by frequency modulation spectroscopy. The analysis accuracy is high and the repeated measurement accuracy is high, and the detection can be performed stably.

また、外壁が円筒形断面のバイアル瓶などの容器では、オフセット距離を設定して内部スペースの中心から位置ずれさせビーム光軸を配置することにより、被分析ガスを高い分析精度で安定して検出することができる。   In addition, for containers such as vials with a cylindrical outer wall, an offset distance is set and the beam is displaced from the center of the internal space, so that the gas to be analyzed can be detected stably with high analytical accuracy. can do.

さらに、内部スペースの入射側および出射側の外壁が互いに平行な、たとえば胴部が角筒形断面などの容器の場合、ビーム光軸の直交面に対して外壁を傾斜させることで、被分析ガスを高い分析精度で安定して検出することができる。   Furthermore, in the case where the outer wall on the entrance side and the exit side of the inner space are parallel to each other, for example, the body is a container having a rectangular cross section, the outer wall is inclined with respect to the plane perpendicular to the beam optical axis, Can be detected stably with high analysis accuracy.

さらにまた、容器を内部スペースの中心周りに回転させることにより、被分析ガスを高い分析精度でかつ安定して検出することができる。   Furthermore, by rotating the container around the center of the internal space, the gas to be analyzed can be stably detected with high analysis accuracy.

また、容器を移動させて連続的に検出する場合、分光分析装置により、ビーム光軸が内部スペースの中心を通過する位置から、移動方向前方および/または移動方向後方に位置ずれした時の検査ビームに基づいて、内部スペース内の被分析ガスを分析することにより、容器内の被分析ガスの成分量や濃度、圧力などを高い分析精度で安定して検出することができる。   In addition, when continuously detecting by moving the container, the inspection beam when the beam optical axis is displaced forward and / or backward in the movement direction from the position where the beam optical axis passes through the center of the internal space by the spectroscopic analyzer. Based on the above, by analyzing the gas to be analyzed in the internal space, the component amount, concentration, pressure, etc. of the gas to be analyzed in the container can be stably detected with high analysis accuracy.

本発明に係るレーザ分光検査装置によるバイアル瓶の検査状態を説明する縦断面図である。It is a longitudinal cross-sectional view explaining the inspection state of the vial bottle by the laser spectroscopy inspection apparatus which concerns on this invention. ヘッドスペースにおける検査ビームと反射光を説明する平面視の部分断面図である。It is a fragmentary sectional view of planar view explaining the inspection beam and reflected light in the head space. (a)〜(b)は検査ビームが容器の軸心を通過する状態と検査ビームの合成波形を示し、(a)はヘッドスペースを示す平面断面を示す説明図、(b)は検査ビームと反射光による共振状態を示す波形グラフ、(c)は検査ビームと反射光による波形変形と周期変異を示す波形グラフである。(A)-(b) shows the state in which the inspection beam passes through the axis of the container and the combined waveform of the inspection beam, (a) is an explanatory view showing a plane cross section showing the head space, and (b) is the inspection beam. A waveform graph showing a resonance state by reflected light, (c) is a waveform graph showing waveform deformation and period variation by an inspection beam and reflected light. 本発明に係るレーザ分光検査方法を示し、ヘッドスペースにおけるオフセット距離を示す平面断面図である。It is a plane sectional view showing a laser spectroscopic inspection method concerning the present invention, and showing offset distance in head space. 本発明に係るレーザ分光検査装置を備えた検査設備の側面視の断面図である。It is sectional drawing of the side view of the inspection equipment provided with the laser spectroscopy inspection apparatus which concerns on this invention. 図5に示す要部の側面視の拡大断面図である。It is an expanded sectional view of the principal part shown in FIG. 5 by the side view. 検査設備の平面図である。It is a top view of inspection equipment. 検査設備の正面図である。It is a front view of an inspection facility. (a)および(b)は、実験結果と実験様態を示し、(a)は酸素濃度0%時の測定値の標準偏差とオフセット距離の関係を示すグラフ、(b)はバイアル瓶のヘッドスペースを示す半断面図である。(A) and (b) show experimental results and experimental modes, (a) is a graph showing the relationship between the standard deviation of the measured value when the oxygen concentration is 0% and the offset distance, and (b) is the headspace of the vial. FIG. 酸素濃度8%時の測定値の標準偏差とオフセット距離の関係を示すグラフである。It is a graph which shows the relationship between the standard deviation of the measured value at the time of oxygen concentration 8%, and offset distance. 酸素濃度20%時の測定値の標準偏差とオフセット距離の関係を示すグラフである。It is a graph which shows the relationship between the standard deviation of the measured value when oxygen concentration is 20%, and offset distance. 本発明に係るレーザ分光検査方法および装置の他の実施例を示し、検査ビームを密閉容器の肩部を通過させる場合の説明図である。It is explanatory drawing in the case of letting an inspection beam pass through the shoulder part of an airtight container, showing other examples of a laser spectroscopy inspection method and device concerning the present invention. 本発明に係るレーザ分光検査方法および装置の実施例2で、角筒形断面のヘッドスペースを有する密閉容器への検査ビームの照射状態を示す平面断面図である。In Example 2 of the laser spectroscopy inspection method and apparatus concerning the present invention, it is a plane sectional view showing the irradiation state of the inspection beam to the airtight container which has the head space of the square tube section. 本発明に係るレーザ分光検査方法および装置の実施例3を示し、連続移動中に、検査ビームにより円筒形断面の容器を検査する時の説明図である。FIG. 9 is a diagram illustrating a third embodiment of the laser spectral inspection method and apparatus according to the present invention, and is an explanatory view when a cylindrical cross-section container is inspected by an inspection beam during continuous movement. 本発明に係るレーザ分光検査方法および装置の実施例3の変形例を示し、連続移動中に、検査ビームにより角筒型容器を検査する時の説明図である。FIG. 10 is a diagram illustrating a modified example of Embodiment 3 of the laser spectral inspection method and apparatus according to the present invention, and is an explanatory view when inspecting a rectangular tube container with an inspection beam during continuous movement. (a)および(b)は、本発明に係るレーザ分光検査方法および装置の実施例4を示し、(a)は平面断面が円筒形の培養室の検出状態を示す説明図、(b)は平面断面が角筒形断面の培養室の検出状態を示す説明図である。(A) And (b) shows Example 4 of the laser spectroscopy inspection method and apparatus concerning this invention, (a) is explanatory drawing which shows the detection state of the culture chamber whose plane cross section is cylindrical, (b) is It is explanatory drawing which shows the detection state of the culture chamber whose plane cross section has a rectangular tube-shaped cross section. (a)および(b)は、本発明に係るレーザ分光装置の応用例を示し、(a)は平面断面が角筒形断面の収容タンクの検出状態を示す説明図、(b)は縦断面が円筒形のダクトの検出状態を示す説明図である。(A) And (b) shows the application example of the laser spectroscopy apparatus which concerns on this invention, (a) is explanatory drawing which shows the detection state of the accommodation tank whose plane cross section has a square cylindrical cross section, (b) is a longitudinal cross section FIG. 6 is an explanatory view showing a detection state of a cylindrical duct.

この検査設備は、周波数変調分光法により所定周波数の検査ビーム(レーザ光)を分析し、透過して吸収されたレーザ光の値から被分析ガスの成分量や濃度、圧力など検出するレーザ分光検査装置を具備したものである。ここで容器として摘示したバイアル瓶は、不活性雰囲気中に医療用や実験用などの薬剤を密封した密閉容器である。実施例のレーザ分光検査装置は、2つの投光源からバイアル瓶の上部で薬剤のないヘッドスペース(内部スペース)に、たとえば酸素分子が吸収する波長(763nm)の検査ビームと、水分子が吸収する波長(1400nm)の検査ビームとをそれぞれ照射して透過させ、検出器(ディテクター)にそれぞれ受光する。そして、このデータを周波数変調分光法により、波形のピーク高さに基づいて酸素濃度と水分量を分析し、また波形幅に基づいて圧力(真空度)を分析し、バイアル瓶内のリーク状態や、窒素置換率、乾燥度などを非破壊検査することができる。   This inspection facility analyzes a test beam (laser light) of a predetermined frequency by frequency modulation spectroscopy, and detects the component amount, concentration, pressure, etc. of the gas to be analyzed from the value of the laser light transmitted and absorbed. It is equipped with a device. The vial bottle shown here as a container is a sealed container in which a medicine for medical use or laboratory use is sealed in an inert atmosphere. The laser spectroscopic inspection apparatus according to the embodiment absorbs, for example, an inspection beam having a wavelength (763 nm) absorbed by oxygen molecules and a water molecule in a head space (internal space) where no drug is present at the upper portion of the vial from two projection light sources. A test beam having a wavelength (1400 nm) is irradiated and transmitted, and received by a detector (detector). Then, this data is analyzed by frequency modulation spectroscopy based on the peak height of the waveform, and the oxygen concentration and water content are analyzed, and the pressure (degree of vacuum) is analyzed based on the waveform width. In addition, non-destructive inspection such as nitrogen substitution rate and dryness can be performed.

またこのレーザ分光検査装置は、検査の適用対象をバイアル瓶内の被分析ガスに替えて、検査ビームの波長を選択し、食品などを収容する密閉容器やペットボトル、動物や植物といった組織分化の著しい多細胞生物などの組織の培養や、真菌類、藻類、原生動物、細菌類などの微生物菌の培養に供されるシャーレや試験管、培養器などの、レーザ光が透過する光学的に透明な部分を有する密閉容器や真空容器、保存容器など、内容物の無い空間部の酸素量や二酸化炭素量などの検査に使用することができる。   In addition, this laser spectroscopic inspection device changes the target of inspection to the gas to be analyzed in the vial, selects the wavelength of the inspection beam, and selects the wavelength of the inspection beam. Optically transparent to transmit laser light, such as petri dishes, test tubes, and incubators used for culture of tissues such as remarkable multicellular organisms and culture of microorganisms such as fungi, algae, protozoa, and bacteria It can be used for inspection of the amount of oxygen and the amount of carbon dioxide in a space portion without contents such as a sealed container, a vacuum container, and a storage container having various parts.

さらに応用例として、生成設備や燃焼設備において、被分析ガスが流送、滞留、貯留されダクト内やタンク内などのガス成分をリアルタイムで分析する装置として適用することもできる。   Furthermore, as an application example, the gas to be analyzed can be flowed, retained, or stored in a production facility or a combustion facility, and can be applied as a device that analyzes gas components in a duct or a tank in real time.

[実施例1]
以下、本発明に係るレーザ分光検査装置を具備した検査設備の実施例1を、図1〜図8を参照して説明する。
[Example 1]
Hereinafter, Example 1 of the inspection facility equipped with the laser spectroscopic inspection apparatus according to the present invention will be described with reference to FIGS.

(容器)
図1に示すように、収容体であるバイアル瓶(密閉容器、以下容器Bという)は、医療薬品Cなどを封入するもので、上端部に密閉された口部Bpと、円筒形断面の容器本体を具備し、少なくとも容器本体の外壁Bwi,Bwoは、検査ビーム(レーザ光)R1が吸収されることなく透過する光学的に透明なガラスまたはレーザ光に吸収がない着色透明のガラスにより形成されている。そして、投光源22A(22B)から照射された検査ビームR1が、容器本体の上部で内容物の無くかつ平面視で円筒形断面の外壁Bwi,Bwoに囲まれたヘッドスペース(内部スペース)Bsを透過するように設定される。
(container)
As shown in FIG. 1, a vial (sealed container, hereinafter referred to as container B), which is a container, encloses a medical drug C and the like, and has a mouth Bp sealed at the upper end and a container having a cylindrical cross section. The main body is provided, and at least the outer walls Bwi and Bwo of the container main body are formed of optically transparent glass that transmits the inspection beam (laser light) R1 without being absorbed or colored transparent glass that does not absorb the laser light. ing. Then, the inspection beam R1 emitted from the light projecting light source 22A (22B) passes through the head space (internal space) Bs surrounded by the outer walls Bwi and Bwo having a cylindrical section in a plan view without the contents at the upper part of the container body. Set to be transparent.

ところで、図3(a)に示すように、投光源22A(22B)から投光された検査ビームR1が、容器本体の入射側の外壁BwiからヘッドスペースBsを透過し、さらに出射側の外壁Bwoを透過して検出器23A(23B)に受光される際に、検査ビームR1のレーザ光軸Roが、ヘッドスペースBsの中心である容器軸心Boを直交交差する軸線Loと一致していると、レーザ光軸Roに対して外壁Bwi,Bwoの表面や裏面(表面と平行な)がそれぞれ垂直となる。この場合、入射側および出射側の外壁Bwi,Bwoの表面および裏面や、投光源22Aの投光窓、検出器23Aの受光窓で反射した反射光R2がレーザ光軸Roに沿って検査ビームR1と共に検出器23Aに戻り、外乱の要因となる。たとえば検査ビームR1と反射光R2が合成されると、偏光量を増加させたり、また図3(b)に示すように検査ビームR1と反射光R2の波形が重なることで共振して振幅λを増加させたり、さらに図3(c)に示すように波形や振幅λ、周波数Δfの変化を生じさせる。このため、反射光R2が検査ビームR1の分析精度を低下させる要因となっていた。   By the way, as shown in FIG. 3A, the inspection beam R1 projected from the projection light source 22A (22B) passes through the head space Bs from the outer wall Bwi on the incident side of the container body, and further, the outer wall Bwo on the emission side. And the laser beam axis Ro of the inspection beam R1 coincides with the axis Lo that intersects the container axis Bo, which is the center of the head space Bs, at right angles when being received by the detector 23A (23B). The front and back surfaces (parallel to the front surface) of the outer walls Bwi and Bwo are perpendicular to the laser optical axis Ro. In this case, the reflected light R2 reflected from the front and back surfaces of the outer walls Bwi and Bwo on the incident side and the outgoing side, the light projecting window of the light projecting light source 22A, and the light receiving window of the detector 23A is inspected along the laser optical axis Ro. At the same time, it returns to the detector 23A and becomes a cause of disturbance. For example, when the inspection beam R1 and the reflected light R2 are combined, the amount of polarization is increased, or the waveforms of the inspection beam R1 and the reflected light R2 overlap as shown in FIG. Further, as shown in FIG. 3C, the waveform, amplitude λ, and frequency Δf are changed. For this reason, the reflected light R2 has been a factor of reducing the analysis accuracy of the inspection beam R1.

実施例1では、図2に示すように、レーザ光軸Roを含む平面視の断面上でレーザ光軸Roを、レーザ光軸Roが容器軸心Boと交差する軸線Loからオフセット距離δずらすことにより、レーザ光軸Roに直交する外壁Bwi,Bwoの表面と裏面に対する入射角θs1,θb1,θs2,θb2を形成し、これにより、外壁Bwi,Bwoの表面と裏面で反射した反射光R2の進行方向がレーザ光軸Roからずれ、検出器23A,23Bに入光する反射光R2を排除または減少させている。   In the first embodiment, as shown in FIG. 2, the laser optical axis Ro is shifted from the axis Lo where the laser optical axis Ro intersects the container axis Bo with an offset distance δ on a cross section in plan view including the laser optical axis Ro. To form incident angles θs1, θb1, θs2, and θb2 with respect to the front and back surfaces of the outer walls Bwi and Bwo that are orthogonal to the laser optical axis Ro, whereby the reflected light R2 reflected by the front and back surfaces of the outer walls Bwi and Bwo is formed. The direction deviates from the laser optical axis Ro, and the reflected light R2 entering the detectors 23A and 23B is eliminated or reduced.

すなわち、外壁表面の反射光のみを表示した図4に示すように、レーザ光軸Roを含む平面視で円筒形断面の外壁Bwi,Bwoを有する容器Bの場合、実施例1では、レーザ光軸Roを含む平面視の断面上で、レーザ光軸Roが容器軸心Boと交差する軸線Loから半径方向に位置ずれさせたオフセット距離δ1以上、δ2以下の範囲でレーザ光軸Roの位置を設定することにより、外壁Bwi,Bwoの表面の垂線(法線)に対してレーザ光軸Roに対する入射角θ1,θ2を形成している。   That is, as shown in FIG. 4 in which only the reflected light of the outer wall surface is displayed, in the case of the container B having the outer walls Bwi and Bwo having a cylindrical cross section in a plan view including the laser optical axis Ro, in Example 1, the laser optical axis The position of the laser optical axis Ro is set in the range of the offset distance δ1 or more and δ2 or less in which the laser optical axis Ro is displaced in the radial direction from the axis Lo intersecting the container axis Bo on the cross section in plan view including Ro. Thus, incident angles θ1 and θ2 with respect to the laser optical axis Ro are formed with respect to the normal lines (normal lines) of the surfaces of the outer walls Bwi and Bwo.

これら入射角θ1,θ2は、オフセット距離(外径比)δ1,δ2から、Sinθ1=δ1/50、Sinθ2=δ2/50から求めることができる。
(検査設備)
この検査設備を図1,図5〜図8を参照して説明する。この検査設備は、たとえば薬品の製造ラインからサンプリングした容器B(バイアル瓶)を定期的に検査するものである。図7に示すように、縦列に配置された容器Bを搬送ラインLに沿って検査位置P1,P2に間欠的に搬送する容器搬送装置10と、検査位置P1,P2にそれぞれ配設されてレーザ分析を行う検査装置21A,21Bを有するレーザ検査部20と、図5,図6に示すように、2つの検査位置P1,P2に停止された容器Bを容器軸心Bo周りにそれぞれ回転させる容器回転装置30と、容器搬送装置10およびレーザ検査部20ならびに容器回転装置30をそれぞれ駆動制御する電源装置付きの動作制御装置40と、検査装置21A,21Bにより検出された検査ビームR1に基づいて容器B内の酸素濃度と水分量、圧力(真空度)、窒素置換率などを検出する分光分析装置41と、タッチパネル式の操作画面42と、を具備している。
These incident angles θ1 and θ2 can be obtained from offset distances (outer diameter ratios) δ1 and δ2 from Sinθ1 = δ1 / 50 and Sinθ2 = δ2 / 50.
(Inspection equipment)
This inspection facility will be described with reference to FIGS. This inspection facility periodically inspects a container B (vial bottle) sampled from, for example, a chemical production line. As shown in FIG. 7, a container transport apparatus 10 that intermittently transports containers B arranged in tandem along the transport line L to inspection positions P1, P2, and lasers disposed at the inspection positions P1, P2, respectively. A laser inspection unit 20 having inspection devices 21A and 21B for performing analysis, and a container for rotating a container B stopped at two inspection positions P1 and P2 around a container axis Bo as shown in FIGS. Based on the rotation device 30, the container transport device 10, the laser inspection unit 20, the operation control device 40 with a power supply device for driving and controlling the container rotation device 30, and the inspection beam R1 detected by the inspection devices 21A and 21B. A spectroscopic analyzer 41 that detects an oxygen concentration and water content in B, a pressure (degree of vacuum), a nitrogen substitution rate, and the like, and a touch panel type operation screen 42 are provided.

なお、詳細には説明しないが、図5に示す43は窒素供給用操作器で、検査位置P1,P2で投光源22A,22Bの投光窓と容器Bの隙間と、容器Bと検出器23A,23Bの受光窓の間隙に窒素ガスを供給し、雰囲気中に含まれる酸素の影響を排除して、分析精度を高めるものである。   Although not described in detail, reference numeral 43 shown in FIG. 5 is an operating device for supplying nitrogen. At the inspection positions P1 and P2, a gap between the light projection windows 22A and 22B and the container B, and the container B and the detector 23A. , 23B, nitrogen gas is supplied to the gap between the light receiving windows to eliminate the influence of oxygen contained in the atmosphere and improve the analysis accuracy.

(容器搬送装置)
容器搬送装置10は、図6〜図8に示すように、複数の容器Bを保持するホルダ部12を有する搬送ホルダ11と、基台フレーム13に設置されて搬送ホルダ11を搬送ラインLに沿って間欠搬送する送り駆動装置14とを具備している。送り駆動装置14はたとえば単動式ロボットやリニアスライダ、ボールねじ式駆動装置などから構成される。
(Container transport device)
As shown in FIGS. 6 to 8, the container transport device 10 is installed on a transport holder 11 having a holder portion 12 that holds a plurality of containers B and a base frame 13, and moves the transport holder 11 along a transport line L. And a feed driving device 14 for intermittent conveyance. The feed drive device 14 is composed of, for example, a single-acting robot, a linear slider, a ball screw type drive device, or the like.

搬送ホルダ11には、ホルダ部12が搬送ラインLに沿って一定間隔をあけて10個が形成されている。そして、図6に示すように、各ホルダ部12は、容器Bを立設状態でかつ容器軸心Bo周りに回転可能に保持する円柱形の保持凹部12aと、保持凹部12aの底部に軸受12dを介して容器軸心Bo周りに回転自在な底部支持板12bと、底部支持板12bの下部に容器回転装置30の駆動軸心が係合される受動凹部12cとを有している。   In the transport holder 11, ten holder portions 12 are formed at regular intervals along the transport line L. As shown in FIG. 6, each holder portion 12 includes a cylindrical holding recess 12 a that holds the container B in a standing state and rotatably around the container axis Bo, and a bearing 12 d at the bottom of the holding recess 12 a. A bottom support plate 12b that can rotate around the container axis Bo via a base plate, and a passive recess 12c that engages the drive shaft of the container rotation device 30 at the bottom of the bottom support plate 12b.

(レーザ検査部)
レーザ検査部20は、図5,図8に示すように、検査位置P2の下流側近傍に立設された検査用サポートフレーム24に、昇降駆動機構(たとえばボールねじ式)からなる高さ調整装置25および接近離間駆動機構(たとえばボールねじ式)からなる投受光位置調整装置26を介して左右一対の投光用、受光用のセンサ支持フレーム27S,27Rが、容器Bに対する高さおよび距離を調整自在に設置されている。
(Laser inspection department)
As shown in FIGS. 5 and 8, the laser inspection unit 20 is provided with a height adjustment device including an elevating drive mechanism (for example, a ball screw type) on an inspection support frame 24 erected in the vicinity of the downstream side of the inspection position P2. 25 and a pair of left and right light projecting and light receiving sensor support frames 27S and 27R adjust the height and distance with respect to the container B via a light projecting / receiving position adjusting device 26 comprising an approach / separation drive mechanism (for example, a ball screw type). It is installed freely.

検査装置21A,21Bは同一構造で、搬送ラインLを挟んで、前側の2個の投光用センサ支持フレーム27Sにそれぞれ設置された半導体レーザの投光源22A,22Bと、後側の2個の受光用センサ支持フレーム27Rにそれぞれ設置されて容器Bを透過した検査ビーム(レーザ光)を受光する検出器23A,23Bと、を有している。   The inspection devices 21A and 21B have the same structure, and the laser light source 22A and 22B of the semiconductor laser respectively installed on the two front light emitting sensor support frames 27S across the transport line L, and the two rear light sources. Detectors 23A and 23B that receive inspection beams (laser beams) that are respectively installed on the light receiving sensor support frame 27R and transmitted through the container B.

ここで、搬送ラインLの上流側に設置された検査装置21Aは、酸素濃度検出用であり、搬送ラインLの下流側に設置された検査装置21Bは、水分量検出用である。   Here, the inspection device 21A installed on the upstream side of the transport line L is for oxygen concentration detection, and the inspection device 21B installed on the downstream side of the transport line L is for water content detection.

(容器回転装置)
容器回転装置30は、図6に示すように、検査位置P1,P2の中間位置に立設配置された軸昇降機32の出力ロッドに、検査位置P1,P2にわたって設置された昇降ブロック32aが取付けられ、昇降ブロック32aに検査位置P1,P2に対応して前後一対の中間軸31bが軸受31aを介して回転自在に立設されている。2本の中間軸31bには、中間部に平歯受動ギヤ33cが取付けられるとともに、上端部に、受動凹部12cに嵌合される駆動凸部31cが形成されている。
(Container rotating device)
As shown in FIG. 6, the container rotating device 30 is provided with a lifting block 32 a installed over the inspection positions P <b> 1 and P <b> 2 on the output rod of the shaft elevator 32 erected and arranged at an intermediate position between the inspection positions P <b> 1 and P <b> 2. A pair of front and rear intermediate shafts 31b are erected on the elevating block 32a via bearings 31a so as to correspond to the inspection positions P1 and P2. In the two intermediate shafts 31b, a spur passive gear 33c is attached to the intermediate part, and a driving convex part 31c fitted to the passive concave part 12c is formed at the upper end part.

軸昇降機32の奥側に回転駆動装置33aが立設配置され、この回転駆動装置33aの出力軸に、各平歯受動ギヤ33cに噛み合う平歯駆動ギヤ33bが取り付けられている。この平歯駆動ギヤ33bは、軸昇降機32により平歯受動ギヤ33cが昇降される範囲で平歯駆動ギヤ33bが噛み合うように、中間軸31bの昇降ストロークより幅の広い厚みを有している。   A rotary drive device 33a is erected on the back side of the shaft elevator 32, and a spur drive gear 33b that meshes with each spur passive gear 33c is attached to the output shaft of the rotary drive device 33a. The spur drive gear 33b has a width wider than the lift stroke of the intermediate shaft 31b so that the spur drive gear 33b meshes within a range in which the spur passive gear 33c is lifted and lowered by the shaft elevator 32.

したがって、第1検査位置P1および第2検査位置P2にそれぞれ被検査用の容器Bが保持されたホルダ部12が停止されると、軸昇降機32が起動されて駆動凸部31cが上昇され、回転駆動装置33aが起動されて平歯駆動ギヤ33bおよび平歯受動ギヤ33cを介して中間軸31bが回転される。そして、各駆動凸部31cがそれぞれ両ホルダ部12の受動凹部12cに嵌入されて、2つのホルダ部12の容器Bがそれぞれ容器軸心Bo周りに一定速度で回転される。   Therefore, when the holder portion 12 holding the container B to be inspected is stopped at the first inspection position P1 and the second inspection position P2, the shaft elevator 32 is activated, and the drive convex portion 31c is raised and rotated. The driving device 33a is activated to rotate the intermediate shaft 31b via the spur drive gear 33b and the spur passive gear 33c. And each drive convex part 31c is each inserted in the passive recessed part 12c of both the holder parts 12, and the container B of the two holder parts 12 is rotated around the container axis Bo at a constant speed, respectively.

従来、検査位置の容器の停止精度や搬送装置の部品の加工精度により、中間軸31bとホルダ部12との位置ずれが生じて、受動凹部12cに駆動凸部31cが良好に嵌合されず、ボトルBの回転不良が生じたり、ボトルBの回転速度が不均一になるという問題があった。しかし、この実施例1では、昇降ブロック32aに軸受31aを介して中間軸31bが回転自在に立設され、一方、受動凹部12cを有する底部支持板12bが軸受12dを介してホルダ部12aの底部に支持されている。これにより、2つの軸受31a,12dで中間軸31bの傾斜が吸収されることから、中間軸31bと受動凹部12cに位置ずれが生じることがあっても、回転駆動装置33aによりボトルBが容器軸心Bo周りにスムーズに回転される。このように、ボトルBが容器軸心Bo周りに一定速度で回転されることで、容器の厚み誤差による測定誤差を平均化することができるため、安定した検出値が得られ、繰り返し測定精度を高くすることができる。   Conventionally, due to the stopping accuracy of the container at the inspection position and the processing accuracy of the parts of the transport device, the positional deviation between the intermediate shaft 31b and the holder portion 12 occurs, and the driving convex portion 31c is not fitted well to the passive concave portion 12c, There is a problem that the rotation failure of the bottle B occurs or the rotation speed of the bottle B becomes uneven. However, in the first embodiment, the intermediate shaft 31b is rotatably provided on the elevating block 32a via the bearing 31a, while the bottom support plate 12b having the passive recess 12c is provided at the bottom of the holder portion 12a via the bearing 12d. It is supported by. As a result, since the inclination of the intermediate shaft 31b is absorbed by the two bearings 31a and 12d, even if the intermediate shaft 31b and the passive recess 12c are displaced, the bottle B is moved by the rotation drive device 33a. It is smoothly rotated around the center Bo. In this way, since the bottle B is rotated around the container axis Bo at a constant speed, the measurement error due to the container thickness error can be averaged, so that a stable detection value can be obtained and repeated measurement accuracy can be improved. Can be high.

(実験例)
図9〜図11は、上記検査設備を用いて、酸素濃度を0%、8%、20%に設定した3種類のバイアル瓶(収容体)を測定した実験グラフである。ここで横軸はオフセット距離(外径比%)、縦軸を標準偏差としている。3種類のバイアル瓶は、CASE1では外径30.2mm、外壁の厚み1.5mm(内径27.2mm)、CASE2では外径24.3mm、外壁の厚み1.2mm(内径21.9mm)、CASE3では外径18.0mm、外壁の厚み1.0mm(内径16.0mm)である。
(Experimental example)
9 to 11 are experimental graphs obtained by measuring three types of vials (containers) in which the oxygen concentration is set to 0%, 8%, and 20% using the above inspection equipment. Here, the horizontal axis represents the offset distance (outer diameter ratio%), and the vertical axis represents the standard deviation. The three types of vials are CASE 1 with an outer diameter of 30.2 mm, outer wall thickness of 1.5 mm (inner diameter 27.2 mm), CASE 2 with an outer diameter of 24.3 mm, outer wall thickness of 1.2 mm (inner diameter of 21.9 mm), CASE 3 Then, the outer diameter is 18.0 mm and the thickness of the outer wall is 1.0 mm (inner diameter 16.0 mm).

実験では、投光源22Bから酸素分子が吸収される波長(763nm)の検査ビームをバイアル瓶のヘッドスペースBsにそれぞれ10秒間照射して透過させ、これを検出器23Bで受光した。測定時にバイアル瓶はそれぞれ容器軸心Bo周りに回転させた。そして周波数変調分光法により、波形のピーク高さに基づいて酸素濃度を分析し、10回分の測定データのから標準偏差を求めた。   In the experiment, an inspection beam having a wavelength (763 nm) at which oxygen molecules are absorbed from the light projecting light source 22B is irradiated and transmitted through the headspace Bs of the vial for 10 seconds, and this is received by the detector 23B. At the time of measurement, each vial was rotated around the container axis Bo. Then, the oxygen concentration was analyzed based on the peak height of the waveform by frequency modulation spectroscopy, and the standard deviation was obtained from the measurement data for 10 times.

(オフセット距離)
図9〜図11をそれぞれ参照すると、オフセット距離δmin(δ1)が0%およびその近傍で、検査ビームR1が軸線Loやその近傍を透過する場合、標準偏差が高く、繰り返し測定精度が低いことがわかる。この傾向はオフセット距離δminが容器外径の約10%の範囲となるまで広がっている。またオフセット距離δmax(δ2)が30%〜40%の間で標準偏差が低く、繰り返し測定精度が向上されて、30%〜40%を超えると、再度標準偏差が上昇することがわかる。
(Offset distance)
Referring to FIGS. 9 to 11 respectively, when the offset distance δmin (δ1) is 0% and its vicinity, and the inspection beam R1 passes through the axis Lo and its vicinity, the standard deviation is high and the repeated measurement accuracy is low. Recognize. This tendency spreads until the offset distance δmin is in the range of about 10% of the outer diameter of the container. It can also be seen that the standard deviation is low when the offset distance δmax (δ2) is between 30% and 40%, and the repeated measurement accuracy is improved. When the offset distance exceeds 30% to 40%, the standard deviation increases again.

ところで、酸素濃度が低いほど、酸素分子は減少するため、分析精度が低く検出値のバラツキが大きくなりやすくなると推定されるが、この実験では、その傾向は見られない。但し、容器外径が大きいCASE1は、容器外径が小さいCASE2やCASE3に比較して、オフセット距離δmin,δmaxに対応して標準偏差が低い範囲が広く、繰り返し測定精度が高い。これは、オフセット距離δmin、δmaxが大きくなっても、容器外径(ヘッドスペースBsの内径)が大きいと、十分な透過距離Lsが確保されるためであると考えられる。したがって、たとえば外径が75mmのように外径が大きいバイアル瓶の場合、オフセット距離δmin−δmaxが広い範囲で、標準偏差が低く繰り返し測定精度が高く確保でき、広範囲な測定可能域を有すると推測される。   By the way, it is presumed that the lower the oxygen concentration, the more oxygen molecules decrease. Therefore, it is presumed that the analysis accuracy is low and the variation in the detection value is likely to increase, but this tendency is not observed in this experiment. However, CASE 1 with a large container outer diameter has a wide range of low standard deviations corresponding to the offset distances δmin and δmax compared to CASE 2 and CASE 3 with small container outer diameters, and repeatability is high. This is considered to be because even if the offset distances δmin and δmax are increased, if the outer diameter of the container (the inner diameter of the head space Bs) is large, a sufficient transmission distance Ls is secured. Therefore, in the case of a vial with a large outer diameter such as an outer diameter of 75 mm, it is assumed that the offset distance δmin−δmax is wide, the standard deviation is low, the repeatability is high, and the measurement range is wide. Is done.

以下、繰り返し測定精度が高い標準偏差:0.050において、オフセット距離(外径比%)δmin,δmaxを表1に示し、また検査ビームR1の入射角θmin、θmaxを表2に示し、検査ビームR1の透過距離Ls.min、Ls.max(外径比%)を表3に示した。   The offset distances (outer diameter ratio%) δmin and δmax are shown in Table 1 and the incident angles θmin and θmax of the inspection beam R1 are shown in Table 2 below. The transmission distances Ls.min and Ls.max (outer diameter ratio%) of R1 are shown in Table 3.

(オフセット距離)   (Offset distance)

Figure 2018119894
Figure 2018119894

たとえば容器Bの外径が約15〜30mmにおいて、表1に示すように、標準偏差が0.050以下となるオフセット距離(外径比%)の範囲は、CASE1ではδmin=±8%以上、δmax=±38%以下であり、CASE3ではδmin=±11%以上、δmax=±32.5%以下である。したがって、実験値であることを考慮すると、オフセット距離(外径比%)δmin、δmaxは、好適値として、容器外径に対して8%以上、30%以下の範囲であり、最適値として、容器外径に対して10%以上、25%以下になることがわかる。   For example, when the outer diameter of the container B is about 15 to 30 mm, as shown in Table 1, the range of the offset distance (outer diameter ratio%) where the standard deviation is 0.050 or less is δmin = ± 8% or more in CASE1, δmax = ± 38% or less, and in CASE3, δmin = ± 11% or more and δmax = ± 32.5% or less. Therefore, in consideration of the experimental values, the offset distances (outer diameter ratio%) δmin, δmax are suitable values within the range of 8% to 30% with respect to the container outer diameter. It turns out that it will be 10% or more and 25% or less with respect to a container outer diameter.

このように、容器外径(または内径)に対応して適切なオフセット距離δmin、δmaxを設定することにより、高い分析精度で測定が可能で、バラツキが少なく繰り返し測定精度を高くできる。   As described above, by setting appropriate offset distances δmin and δmax corresponding to the outer diameter (or inner diameter) of the container, measurement can be performed with high analysis accuracy, and variation can be increased with little variation.

なお、CASE2の実験では、酸素濃度に関係なく、オフセット距離δmin=−12%の検出値時に偏差が低くバラツキが大きいことが表れているが、ここで投光源や検出器に対してレーザ光軸Roにズレが生じたか、または他のトラブルが発生していた可能性がある。   In the CASE 2 experiment, it is shown that the deviation is low and the variation is large at the detection value of the offset distance δmin = −12% regardless of the oxygen concentration. There may be a deviation in Ro or other trouble has occurred.

(入射角)   (Angle of incidence)

Figure 2018119894
Figure 2018119894

表2に示すように、オフセット距離δmin,δmax基づいて、外壁(表面)の垂線(法線)に対するレーザ光軸Roの入射角θmin,θmaxを、sinθmin=δmin/50、sinθmax=δmax/50から求めることができる。そして容器Bの外径が約15〜30mmである場合、標準偏差が0.050以下となる入射角は、CASE1ではθmin=±9.2°以上、θmax=49.5°以下となり、またCASE3ではθmin=±12.7°以上、θmax=±40.5°以下となることがわかる。   As shown in Table 2, based on the offset distances δmin and δmax, the incident angles θmin and θmax of the laser optical axis Ro with respect to the normal (normal) of the outer wall (surface) are expressed as sinθmin = δmin / 50 and sinθmax = δmax / 50. Can be sought. When the outer diameter of the container B is about 15 to 30 mm, the incident angle at which the standard deviation is 0.050 or less is θmin = ± 9.2 ° or more and θmax = 49.5 ° or less in CASE1, and CASE3 It can be seen that θmin = ± 12.7 ° or more and θmax = ± 40.5 ° or less.

したがって、この実験結果から、外壁Bwi,Bwoの表面の垂線に対するレーザ光軸Roの入射角θmin,θmaxは、好適値として9°以上、50°以下の範囲であり、最適値として、15°以上、35°以下の範囲となる。   Therefore, from this experimental result, the incident angles θmin and θmax of the laser optical axis Ro with respect to the normal lines of the outer walls Bwi and Bwo are in the range of 9 ° or more and 50 ° or less as preferable values, and 15 ° or more as optimal values. The range is 35 ° or less.

なお、ここで容器外径に対して外壁の厚みが薄い場合、外壁表面と外壁裏面の反射角の差は小さくなるために、略同一となる。   In addition, when the thickness of an outer wall is thin with respect to a container outer diameter here, since the difference of the reflection angle of an outer wall surface and an outer wall back surface becomes small, it becomes substantially the same.

(透過距離)   (Transmission distance)

Figure 2018119894
Figure 2018119894

たとえば容器外径が約15〜30mmにおいて、標準偏差が0.050となる範囲では、内径に対する透過距離の最小値Ls.minは、CASE1に65.0%が、CASE2に73.3%が、CASE3に76.0%が示されている。したがって、この実験から、透過距離Ls.minの内径比は、好適値として65%以上であり、最適値として76%以上になる。   For example, when the container outer diameter is about 15 to 30 mm and the standard deviation is 0.050, the minimum transmission distance Ls.min with respect to the inner diameter is 65.0% for CASE 1 and 73.3% for CASE 2. CASE 3 shows 76.0%. Therefore, from this experiment, the inner diameter ratio of the transmission distance Ls.min is 65% or more as a suitable value and 76% or more as an optimum value.

ところで、オフセット距離δmin、δmaxに対して、ヘッドスペースBsの透過距離Lsの減少により、標準偏差が低下する要素は、容器B(ヘッドスペースBs)の大きさに依存している。たとえば外径が75mmのバイアル瓶では、透過距離Ls.minが十分に長いことから、標準偏差の分布がさらにフラットになって透過距離Ls(min)が容器内径の30%以上であれば、高い分析精度で安定した測定が可能となると推定される。反面、バイアル瓶に替えて、注射器のシリンジを密閉容器として使用する場合、容器内径が8mm程度となるので、標準偏差が低く、低い分析精度でバラツキの多い検出となる可能性がある。したがって、この場合には、少なくとも容器内径の80〜90%以上の透過距離Ls.minを確保する必要があると考えられる。   By the way, with respect to the offset distances δmin and δmax, the factor that the standard deviation decreases due to the decrease in the transmission distance Ls of the head space Bs depends on the size of the container B (head space Bs). For example, in a vial with an outer diameter of 75 mm, the permeation distance Ls.min is sufficiently long, so that the standard deviation distribution is further flat and the permeation distance Ls (min) is 30% or more of the inner diameter of the container. It is estimated that stable measurement with analytical accuracy is possible. On the other hand, when the syringe syringe is used as a sealed container instead of a vial, the inner diameter of the container is about 8 mm, so that the standard deviation is low, and there is a possibility that detection with a lot of variation with low analysis accuracy is possible. Therefore, in this case, it is considered necessary to ensure a transmission distance Ls.min of at least 80 to 90% of the inner diameter of the container.

なお、ここで容器外径に対して外壁の厚みが薄い場合、内径に対する透過距離と外径に対する透過距離は略同一となる。   Here, when the thickness of the outer wall is thin relative to the outer diameter of the container, the transmission distance with respect to the inner diameter and the transmission distance with respect to the outer diameter are substantially the same.

(実験のまとめ)
上記実験結果から、たとえば容器外径が約15〜30mm程度の円筒形断面のバイアル瓶の場合、オフセット距離(外径比)δmin〜δmaxは、好適値として外径比で8%以上、30%以下の範囲が好ましく、最適値として外径比で10%以上、25%以下の範囲が好ましい。
(Summary of experiment)
From the above experimental results, for example, in the case of a vial with a cylindrical cross section having an outer diameter of about 15 to 30 mm, the offset distance (outer diameter ratio) δmin to δmax is preferably 8% or more and 30% as an outer diameter ratio. The following ranges are preferable, and the optimal value is preferably a range of 10% or more and 25% or less in terms of outer diameter ratio.

また、ビーム光軸Roの外壁Bwi,Bwoの垂線に対する入射角θmin〜θmaxは、好適値として9°以上、50°以下の範囲が好ましく、最適値として15°以上、35°以下の範囲が好ましい。   The incident angles θmin to θmax of the beam optical axis Ro with respect to the perpendiculars of the outer walls Bwi and Bwo are preferably in the range of 9 ° to 50 ° as a preferred value, and preferably in the range of 15 ° to 35 ° as the optimum value. .

さらに容器Bの外径に対する透過距離Ls.minは、好適値として65%以上確保されるのが好ましく、最適値として76%以上確保されるのがさらに好ましい。   Furthermore, the permeation distance Ls.min with respect to the outer diameter of the container B is preferably secured at 65% or more as a suitable value, and more preferably 76% or more as an optimum value.

(実施例の効果)
上記実施例1によれば、検査ビームR1を軸線Loから適正なオフセット距離をδ1、δ2の範囲で位置ずれさせることにより、検査ビームR1が光学的に透過する容器Bの外壁Bwi,Bwoがビーム光軸Roの直交面に対して傾斜され、投光源22A(22B)から照射された検査ビームR1が透過する時に、容器Bの外壁Bwi,Bwoの表面や裏面に反射した反射光R2がビーム光軸Boからずれる。したがって、検出器23A(23B)で受光される反射光R2が排除されるかまたは減少され、ヘッドスペースBs内の被分析ガスのみを透過した検査ビームR1を受光することができる。これにより、検出器23A(23B)に検出される検査ビームR1が偏光したり、偏光量が増減したり、共振や波長変化が生じることがなく、周波数変調分光法により被分析ガスの成分量や濃度、圧力などを高い分析精度で、かつ繰り返し測定精度を高く測定することができる。
(Effect of Example)
According to the first embodiment, the outer walls Bwi and Bwo of the container B through which the inspection beam R1 is optically transmitted can be formed by shifting the inspection beam R1 from the axis Lo within a range of δ1 and δ2 with an appropriate offset distance. The reflected light R2 reflected from the front and back surfaces of the outer walls Bwi and Bwo of the container B is transmitted when the inspection beam R1 that is inclined with respect to the plane orthogonal to the optical axis Ro and irradiated from the light projecting light source 22A (22B) is transmitted. Deviated from the axis Bo. Therefore, the reflected light R2 received by the detector 23A (23B) is eliminated or reduced, and the inspection beam R1 transmitted only through the gas to be analyzed in the head space Bs can be received. As a result, the inspection beam R1 detected by the detector 23A (23B) is not polarized, the amount of polarization is increased or decreased, and resonance or wavelength change does not occur. Concentration, pressure, etc. can be measured with high analytical accuracy and repeated measurement accuracy.

また、外壁Bwi,Bwoが円筒形断面の容器Bでは、ヘッドスペースBsの容器軸心Boからオフセット距離δ1、δ2の範囲にビーム光軸Roを配置することにより、被分析ガスを高い分析精度で安定して検出、分析することができる。さらにまた、容器Bを容器軸心Bo周りに回転させることにより、被分析ガスをより高い分析精度で安定して検出することができる。   Further, in the case of the container B having outer cylindrical surfaces Bwi and Bwo having a cylindrical cross section, by arranging the beam optical axis Ro within the range of the offset distances δ1 and δ2 from the container axis Bo of the head space Bs, the gas to be analyzed can be analyzed with high accuracy. It can be detected and analyzed stably. Furthermore, by rotating the container B around the container axis Bo, the gas to be analyzed can be stably detected with higher analysis accuracy.

なお、上記実施例1では、検査ビームR1が透過する平面視の断面上でのオフセット距離δ1,δ2および入射角θ1,θ2を用いて説明したが、図12に示すように、たとえば検査ビームR1が容器Bの肩部(傾斜部)を、容器軸心Boに交差して透過させ、検査ビームR1に対して、縦断面視における外壁Bwi,Bwoの垂線に対して入射角γ1,γ2を持たせるようにしてもよい。この場合には、透過距離Lsが短くなる傾向にあり、十分な長さの透過距離Lsを確保する必要がある。   In the first embodiment, the offset distances δ1 and δ2 and the incident angles θ1 and θ2 on the cross section in plan view through which the inspection beam R1 passes are described. However, as shown in FIG. 12, for example, the inspection beam R1 Transmits the shoulder (inclined portion) of the container B across the container axis Bo, and has incident angles γ1 and γ2 with respect to the normal of the outer walls Bwi and Bwo in the longitudinal sectional view with respect to the inspection beam R1. You may make it let. In this case, the transmission distance Ls tends to be short, and it is necessary to ensure a sufficiently long transmission distance Ls.

[実施例2]
図13に示すように、検査位置P1,P2で、少なくとも互いに平行な外壁Bwi,Bwoに囲まれたヘッドスペースBsに検査ビームR1を透過させて、たとえば角筒形断面の角型容器B1(容器)を検査する場合、検査ビームR1のビーム光軸Roに対して、角型容器B1を容器軸心Bo周りに所定角度範囲で傾斜させることで、外壁Bwi,Bwoの垂線に対する入射角θ1、θ2を形成すればよい。この入射角θ1、θ2は、実施例1の実験における表2のデータを参考にすることができる。もちろん、ビーム光軸Roを容器軸心Boに交差する必要はない。
[Example 2]
As shown in FIG. 13, at the inspection positions P1 and P2, the inspection beam R1 is transmitted through the head space Bs surrounded by at least the outer walls Bwi and Bwo that are parallel to each other, for example, a rectangular container B1 (container) ) With respect to the beam optical axis Ro of the inspection beam R1, the angle of incidence θ1, θ2 with respect to the normal of the outer walls Bwi, Bwo is inclined by tilting the rectangular container B1 around the container axis Bo within a predetermined angle range. May be formed. The incident angles θ1 and θ2 can be referred to the data in Table 2 in the experiment of Example 1. Of course, it is not necessary to intersect the beam optical axis Ro with the container axis Bo.

すなわち、表2のデータでは、円筒形断面の容器Bの場合、外壁Bwi,Bwoの表面の垂線(法線)に対するレーザ光軸Roの入射角θ1、θ2は、好適値が9°以上、50°以下であり、最適値は15°以上、35°以下である。したがって、角型容器B1も同様に、その入射角θは9°以上、50°以下が好ましく、さらに15°以上、35°以下がさらに好ましい。   That is, in the data of Table 2, in the case of the container B having a cylindrical cross section, the incident angles θ1 and θ2 of the laser optical axis Ro with respect to the normal lines (normal lines) of the outer walls Bwi and Bwo have preferable values of 9 ° or more and 50 The optimum value is 15 ° or more and 35 ° or less. Therefore, the incident angle θ of the rectangular container B1 is preferably 9 ° or more and 50 ° or less, and more preferably 15 ° or more and 35 ° or less.

これにより、検査ビームR1が透過する時に、角型容器B1の外壁Bwi,Bwoの表面や裏面に反射した反射光R2がビーム光軸Roからずれる方向に反射されるので、検出器23A,23Bに受光される反射光R2が排除されるかまたは減少され、周波数変調分光法によりヘッドスペースBs内の被分析ガスの成分量や濃度、圧力などを高い分析精度で、かつ繰り返し測定精度が高く、安定して測定することができる。   Thereby, when the inspection beam R1 is transmitted, the reflected light R2 reflected on the front and back surfaces of the outer walls Bwi and Bwo of the rectangular container B1 is reflected in a direction deviating from the beam optical axis Ro, so that it is reflected on the detectors 23A and 23B. The reflected light R2 that is received is eliminated or reduced, and the component amount, concentration, pressure, etc. of the analyte gas in the head space Bs are highly analyzed with high accuracy and stable by frequency modulation spectroscopy. Can be measured.

なお、角型容器B1の場合、角型容器B1を容器軸心Bo周りに傾斜させることで、ヘッドスペースBs内の透過距離Lsが増加され、減少されることがないので、円筒形断面の容器Bに比較して、検出値の標準偏差がよりフラットになる。   In the case of the rectangular container B1, since the transmission distance Ls in the head space Bs is not increased or decreased by inclining the rectangular container B1 around the container axis Bo, the container having a cylindrical cross section. Compared to B, the standard deviation of the detected value becomes flatter.

[実施例3]
実施例1では、間欠搬送した容器Bを検査位置P1,P2で一旦停止させ、検査ビームRを照射して検出した。実施例3では、図14に示すように、連続して容器Bを搬送し、容器Bが検査位置P1,P2を通過中に、検査ビームR1を照射してヘッドスペースBs内の被分析ガスを検出する。
[Example 3]
In Example 1, the intermittently transported container B was temporarily stopped at the inspection positions P1 and P2, and the inspection beam R was irradiated and detected. In Example 3, as shown in FIG. 14, the container B is continuously transported, and while the container B passes through the inspection positions P1 and P2, the inspection beam R1 is irradiated and the gas to be analyzed in the head space Bs is irradiated. To detect.

この場合、一定速度で検査位置P1,P2を移動する容器Bに対して、投光源22A(22B)から連続的に容器BのヘッドスペースBsに、平面視の断面の全域にわたって検査ビームR1が照射されて検出器23A(23B)に受光される。この時、分光分析装置41では、検出器23に受光される容器Bの外径全体にわたって検査ビームR1のデータが取得されるが、このデータのうち、ビーム光軸RoがヘッドスペースBsの容器軸心Boを通過する軸線Loから、少なくとも移動方向前方の所定範囲で位置ずれした範囲Δ1、および移動方向後方の所定範囲に位置ずれした範囲Δ2、の一方または両方の検査ビームR1のデータが選択されて、ヘッドスペースBs内の被分析ガスが分析される。   In this case, the inspection beam R1 is radiated to the head space Bs of the container B continuously from the projection light source 22A (22B) to the container B moving in the inspection positions P1 and P2 at a constant speed over the entire cross section in a plan view. Then, the light is received by the detector 23A (23B). At this time, in the spectroscopic analyzer 41, data of the inspection beam R1 is acquired over the entire outer diameter of the container B received by the detector 23. Of this data, the beam optical axis Ro is the container axis of the head space Bs. From the axis Lo passing through the center Bo, data of one or both of the inspection beams R1 of at least a range Δ1 displaced in a predetermined range ahead of the moving direction and a range Δ2 displaced in a predetermined range rearward of the moving direction is selected. Thus, the gas to be analyzed in the head space Bs is analyzed.

ここで移動方向前方の範囲Δ1および移動方向後方の範囲Δ2は、表1のオフセット距離δ1、δ2のデータを参照することができる。すなわち、たとえば容器外径が約15〜30mmにおいて、前方の範囲Δ1が、外径比で30%以下、8%以上の範囲、後方の適正範囲Δ2が、外径比で8%以上、30%以下が好適であり、前方の範囲Δ1は、外径比で25%以下、10%以下の範囲、後方の範囲Δ2は、外径比で10%以上、25%以下の範囲が最適であるといえる。   Here, the data of the offset distances δ1 and δ2 in Table 1 can be referred to for the range Δ1 ahead of the moving direction and the range Δ2 behind the moving direction. That is, for example, when the outer diameter of the container is about 15 to 30 mm, the front range Δ1 is an outer diameter ratio of 30% or less and a range of 8% or more, and the rear appropriate range Δ2 is an outer diameter ratio of 8% or more and 30%. The following range is preferable, and the front range Δ1 is the optimal range of the outer diameter ratio of 25% or less and 10% or less, and the rear range Δ2 is the optimal range of the outer diameter ratio of 10% or more and 25% or less. I can say that.

もちろん、検査位置P1,P2を移動中に容器Bを容器軸心Boまわりに回転させることにより、より高い分析精度で、安定したバラツキのない安定した検出値が得ることができる。   Of course, by rotating the container B around the container axis Bo while moving the inspection positions P1 and P2, it is possible to obtain a stable detection value with higher analysis accuracy and without any variation.

なお、実施例3では、投光源22A(22B)と検出器23A(23B)とを固定し、容器Bを移動したが、容器Bを固定状態で、投光源22A(22B)と検出器23A(23B)とを同期して移動させるものであってもよい。   In Example 3, the light projecting light source 22A (22B) and the detector 23A (23B) are fixed and the container B is moved, but the light source 22A (22B) and the detector 23A ( 23B) may be moved in synchronization with each other.

また図15に示すように、角型容器B1を移動させる場合、検査位置P1,P2で検査ビームR1を容器軸心Boおよびその近傍を透過させても、入射角θが均等になるので、繰り返し測定精度が低下することがない。この時の入射角θ1,θ2は表2を参照することができる。したがって、入射角θ1,θ2の好適値は9°以上、50°以下であり、最適値は15°以上、35°以下となる。この入射角θ1,θ2となるように、角型容器B1を容器軸心Bo周りに傾斜して配置し、入射角が変動しない検査範囲Δのデータを選択し、その検査範囲Δに基づいて分光し検査することができる。   As shown in FIG. 15, when the rectangular container B1 is moved, even if the inspection beam R1 is transmitted through the container axis Bo and its vicinity at the inspection positions P1 and P2, the incident angle θ becomes uniform, so that it is repeated. Measurement accuracy is not reduced. Table 2 can be referred to for the incident angles θ1 and θ2 at this time. Therefore, the suitable values of the incident angles θ1 and θ2 are 9 ° or more and 50 ° or less, and the optimum values are 15 ° or more and 35 ° or less. The rectangular container B1 is arranged to be inclined around the container axis Bo so that the incident angles θ1 and θ2 are obtained, and data of the inspection range Δ in which the incident angle does not vary is selected, and the spectral analysis is performed based on the inspection range Δ. Can be inspected.

[実施例4]
実施例1では、収容体をバイアル瓶としたが、図16(a),(b)に示すように、たとえば微生物や菌類の培養に供されるシャーレや試験管、培養器など、レーザ光が透過する光学的に透明な部分を有する真空容器(容器)B2,B3とすることもできる。
[Example 4]
In Example 1, the container is a vial. However, as shown in FIGS. 16 (a) and 16 (b), for example, a petri dish, a test tube, an incubator, etc. used for culturing microorganisms and fungi is irradiated with laser light. It can also be set as the vacuum containers (containers) B2 and B3 which have the optically transparent part which permeate | transmits.

図16(a)に示すように、光学的に透明な外壁Bwに囲まれた平面視が円筒形断面で培養室Bsを形成する真空容器B2の場合、真空容器B2の容器軸心Boから所定のオフセット距離δだけ位置ずれして検査ビームR1が透過するように、投光源22、レーザ光軸Ro、検出器23を設置すればよい。この時のオフセット距離δは、表1を参照することができる。オフセット距離δは、外径比で8%以上、30%以下が好ましく、外径比で10%以上、25%以下が最適である。また十分な透過距離Lsが確保できれば、さらに広い範囲で安定した検出が可能となる。   As shown in FIG. 16 (a), in the case of the vacuum vessel B2 in which the planar view surrounded by the optically transparent outer wall Bw forms a culture chamber Bs with a cylindrical cross section, it is predetermined from the vessel axis Bo of the vacuum vessel B2. The projection light source 22, the laser optical axis Ro, and the detector 23 may be installed so that the inspection beam R1 is transmitted with a position shift of the offset distance δ. Table 1 can be referred to for the offset distance Δ at this time. The offset distance δ is preferably 8% or more and 30% or less in terms of the outer diameter ratio, and is optimally 10% or more and 25% or less in terms of the outer diameter ratio. If a sufficient transmission distance Ls can be secured, stable detection can be performed in a wider range.

図16(b)に示すように、互いに平行な外壁に光学的に透明な監視窓(外壁)Bwを有する角筒形断面の培養室Bsを形成する角型真空容器B3の場合、実施例2と同様に、監視窓Bwの表面および裏面の垂線に対するレーザ光軸Roの入射角θを形成する。この時の入射角θは、表2のデータを参照にすることができる。したがって、監視窓Bwの垂線に対する入射角θの好適値は、9°以上、50°以下であり、最適値は、15°以上、35°以下である。これにより、監視窓Bwの表面や裏面に反射した反射光が排除されるかまたは減少され、培養室Bs内の被分析ガスの成分量や濃度、圧力などを高い分析精度で、かつ繰り返し測定精度が高く、安定して効率よく測定することができる。   As shown in FIG. 16 (b), in the case of the rectangular vacuum vessel B3 in which the culture chamber Bs having a rectangular tube cross section having the optically transparent monitoring window (outer wall) Bw on the outer walls parallel to each other is shown in Example 2. Similarly, the incident angle θ of the laser optical axis Ro with respect to the normal line on the front surface and the back surface of the monitoring window Bw is formed. The incident angle θ at this time can be referred to the data in Table 2. Therefore, the preferable value of the incident angle θ with respect to the perpendicular of the monitoring window Bw is 9 ° or more and 50 ° or less, and the optimum value is 15 ° or more and 35 ° or less. Thereby, the reflected light reflected on the front and back surfaces of the monitoring window Bw is eliminated or reduced, and the component amount, concentration, pressure, etc. of the gas to be analyzed in the culture chamber Bs are measured with high analytical accuracy and repeated measurement accuracy. Is high and can be measured stably and efficiently.

[応用例]
上記実施例1〜4では、バイアル瓶や密閉容器、真空容器に密閉された被分析ガスを検査対象としたが、応用例として、生成設備や製造装置、燃焼機関、燃焼炉などから排出される生成ガスや排ガスなどの被分析ガスをリアルタイムで検査するレーザ光分光検査装置に適用することができる。
[Application example]
In the above Examples 1 to 4, the analysis target gas sealed in a vial, a sealed container, or a vacuum container was used as an inspection object. However, as an application example, it is discharged from a production facility, a manufacturing apparatus, a combustion engine, a combustion furnace, or the like. The present invention can be applied to a laser light spectroscopic inspection apparatus that inspects a gas to be analyzed such as a generated gas or exhaust gas in real time.

すなわち、図17(a)に示すように、たとえばガスダクトに、被分析ガスを一旦滞留させる矩形断面の検出用のタンクTを設け、このタンクTで互いに平行な外壁に、光学的に透明な監視窓Twを形成し、実施例2,4と同様に、監視窓Twの表面および裏面の垂線に対するレーザ光軸Roの入射角θを形成する。入射角θは、表2のデータを参照にすることができる。すなわち、監視窓Twの垂線に対する入射角θの好適値は、9°以上、50°以下であり、最適値は、15°以上、35°以下である。これにより、監視窓Twの表面や裏面に反射した反射光が排除されるかまたは減少され、タンクT内の被分析ガスの成分量や濃度、圧力などを高い分析精度で、かつ繰り返し測定精度が高く、安定して効率よく測定することができる。   That is, as shown in FIG. 17A, for example, a detection tank T having a rectangular cross-section for temporarily retaining the gas to be analyzed is provided in a gas duct, and an optically transparent monitor is provided on the outer walls parallel to each other. The window Tw is formed, and the incident angle θ of the laser optical axis Ro with respect to the normal to the front surface and the back surface of the monitoring window Tw is formed as in the second and fourth embodiments. The incident angle θ can be referred to the data in Table 2. That is, the suitable value of the incident angle θ with respect to the vertical line of the monitoring window Tw is 9 ° or more and 50 ° or less, and the optimum value is 15 ° or more and 35 ° or less. As a result, the reflected light reflected on the front and back surfaces of the monitoring window Tw is eliminated or reduced, and the component amount, concentration, pressure, etc. of the gas to be analyzed in the tank T can be analyzed with high accuracy and repeated measurement accuracy. High, stable and efficient measurement.

また図17(b)に示すように、円筒形断面のガスダクトD内を通過する被分析ガスを検査するレーザ分光検査装置に適用する場合、ガスダクトDの外壁の対向部分に、光学的に透明な監視窓Dwを形成する。そしてガスダクトDの空間部Dsでその軸心Doから所定のオフセット距離δだけオフセット(位置ずれ)して検査ビームR1が透過するように、投光源22、レーザ光軸Ro、検出器23を設置すればよい。   In addition, as shown in FIG. 17B, when applied to a laser spectroscopic inspection apparatus that inspects a gas to be analyzed that passes through a gas duct D having a cylindrical cross section, an optically transparent portion is opposed to the outer wall of the gas duct D. A monitoring window Dw is formed. Then, the light projecting light source 22, the laser optical axis Ro, and the detector 23 are installed so that the inspection beam R1 is transmitted through the space Ds of the gas duct D with a predetermined offset distance δ from the axis Do. That's fine.

この時のオフセット距離δは、表1のデータを参照にすることができる。したがって、オフセット距離δの好適範囲はガスダクトDの外径比で8%以上、30%以下が好ましく、外径比で10%以上、25%以下が最適範囲であるが、ガスダクトDの内径が大きく、十分な透過距離Lsが確保できれば、さらに広い範囲で安定した検出が可能となる。   The offset distance δ at this time can be referred to the data in Table 1. Accordingly, the preferred range of the offset distance δ is preferably 8% or more and 30% or less in terms of the outer diameter ratio of the gas duct D, and the optimum range is 10% or more and 25% or less in terms of the outer diameter ratio, but the inner diameter of the gas duct D is large. If a sufficient transmission distance Ls can be ensured, stable detection can be performed in a wider range.

δ1、δ2 オフセット距離
θ1,θ2 入射角
Δ1 前方の範囲
Δ2 後方の範囲
B 容器(バイアル瓶)
Bs ヘッドスペース
Bwi 入射側の外壁
Bwo 出射側の外壁
P1,P2 検査位置
L 搬送ライン
Lo 軸線
R1 検査ビーム
R2 反射光
Ro ビーム光軸
10 容器搬送装置
11 搬送ホルダ
12 ホルダ部
13 基台フレーム
14 送り駆動装置
20 レーザ検査部
21A,21B 検査装置
22A,22B,22 投光源
23A,23B,23 検出器
24 検査用サポートフレーム
25 高さ調整装置
26 投受光位置調整装置
30 容器回転装置
40 動作制御装置
41 分光分析装置
42 操作画面
43 窒素供給用操作器
δ1, δ2 Offset distance θ1, θ2 Incident angle Δ1 Front range Δ2 Rear range B Container (vial bottle)
Bs Headspace Bwi Incident side outer wall Bwo Emission side outer wall P1, P2 Inspection position L Transport line Lo Axis R1 Inspection beam R2 Reflected light Ro Beam optical axis 10 Container transport device 11 Transport holder 12 Holder unit 13 Base frame 14 Feed drive Device 20 Laser inspection unit 21A, 21B Inspection device 22A, 22B, 22 Projection light source 23A, 23B, 23 Detector 24 Inspection support frame 25 Height adjustment device 26 Projection / reception position adjustment device 30 Container rotation device 40 Operation control device 41 Spectroscopy Analyzer 42 Operation screen 43 Nitrogen supply controller

Claims (8)

投光源から照射された検査ビームが、被分析ガスが収容された容器の外壁を透過して検出器に受光されるレーザ分光検査方法であって、
少なくとも検査ビームが透過する前記容器の外壁が、検査ビームのビーム光軸の直交面に対して傾斜するように配置され、
前記外壁の表面および裏面に反射した反射光の進行方向を、前記ビーム光軸からずらせて、検出器に受光される前記反射光を排除または減少させる
ことを特徴とするレーザ分光検査方法。
A laser spectroscopic inspection method in which an inspection beam irradiated from a light projecting light source is transmitted through an outer wall of a container containing a gas to be analyzed and received by a detector,
At least an outer wall of the container through which the inspection beam is transmitted is disposed so as to be inclined with respect to a plane perpendicular to the beam optical axis of the inspection beam;
The laser spectroscopic inspection method, wherein the traveling direction of the reflected light reflected on the front and back surfaces of the outer wall is shifted from the beam optical axis to eliminate or reduce the reflected light received by the detector.
請求項1記載のレーザ分光検査方法であって、
容器の外壁が、ビーム光軸を含む平面上で円筒形断面であり、
前記ビーム光軸を、前記平面上で前記外壁に囲まれた内部スペースの中心から位置ずれさせた
ことを特徴とするレーザ分光検査方法。
The laser spectroscopic inspection method according to claim 1,
The outer wall of the container has a cylindrical cross section on a plane containing the beam optical axis;
The laser beam spectroscopic inspection method, wherein the beam optical axis is displaced from the center of the internal space surrounded by the outer wall on the plane.
請求項1記載のレーザ分光検査方法であって、
容器は、互いに平行に配置された入射側の外壁と出射側の外壁を有し、
前記外壁が、ビーム光軸の直交面に対して傾斜するように容器を配置した
ことを特徴とするレーザ分光検査方法。
The laser spectroscopic inspection method according to claim 1,
The container has an outer wall on the incident side and an outer wall on the outgoing side that are arranged in parallel to each other,
A laser spectroscopic inspection method characterized in that the container is arranged so that the outer wall is inclined with respect to a plane orthogonal to the beam optical axis.
投光源から照射された検査ビームが、被分析ガスが収容された容器の複数の外壁を順次透過して検出器に受光されるレーザ分光検査装置であって、
少なくとも検査ビームが透過する前記容器の外壁が、ビーム光軸の直交面に対して傾斜するように前記容器が配置された
ことを特徴とするレーザ分光検査装置。
A laser spectroscopic inspection apparatus in which an inspection beam irradiated from a light projecting light source is sequentially transmitted through a plurality of outer walls of a container containing a gas to be analyzed and received by a detector,
The laser spectroscopic inspection apparatus, wherein the container is arranged so that at least an outer wall of the container through which the inspection beam passes is inclined with respect to a plane orthogonal to the beam optical axis.
請求項4記載のレーザ分光検査装置であって、
容器の外壁が、ビーム光軸を含む平面上で円筒形断面であり、
前記ビーム光軸が、前記平面上で前記外壁に囲まれた内部スペースの中心から位置ずれするように配置された
ことを特徴とするレーザ分光検査装置。
The laser spectroscopic inspection device according to claim 4,
The outer wall of the container has a cylindrical cross section on a plane containing the beam optical axis;
The laser spectroscopic inspection device, wherein the beam optical axis is arranged so as to be displaced from a center of an internal space surrounded by the outer wall on the plane.
請求項4記載のレーザ分光検査装置であって、
前記容器の入射側の外壁と出射側の外壁が互いに平行であり、
前記外壁がビーム光軸の直交面に対して傾斜するように容器が配置された
ことを特徴とするレーザ分光検査装置。
The laser spectroscopic inspection device according to claim 4,
The outer wall on the incident side and the outer wall on the output side of the container are parallel to each other,
A laser spectroscopic inspection apparatus characterized in that a container is arranged such that the outer wall is inclined with respect to a plane orthogonal to a beam optical axis.
請求項5記載のレーザ分光検査装置であって、
検査ビームを容器に照射する検査位置に、前記容器を当該容器の軸心周りに回転させる容器回転装置を配置した
ことを特徴とするレーザ分光検査装置。
The laser spectroscopic inspection device according to claim 5,
A laser spectroscopic inspection apparatus, wherein a container rotating device that rotates the container around the axis of the container is disposed at an inspection position where the inspection beam is irradiated onto the container.
請求項4乃至7のいずれか一項に記載のレーザ分光検査装置であって、
投光源および検出器と、容器の少なくとも一方を移動させる移動装置と、
前記検出器で受光した受光データのうち、ビーム光軸が内部スペースの中心を通過する位置から、移動方向前方および/または移動方向後方に位置ずれした検査ビームに基づいて、被分析ガスの成分を分析する分光分析装置と、を具備した
ことを特徴とするレーザ分光検査装置。
The laser spectroscopic inspection device according to any one of claims 4 to 7,
A light source and a detector, and a moving device for moving at least one of the containers;
Of the received light data received by the detector, the component of the gas to be analyzed is determined based on the inspection beam that is displaced forward and / or backward in the movement direction from the position where the beam optical axis passes through the center of the internal space. A laser spectroscopic inspection device comprising: a spectroscopic analysis device for analysis.
JP2017012595A 2017-01-27 2017-01-27 Laser spectroscopy inspection method and laser spectroscopy inspection device Pending JP2018119894A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017012595A JP2018119894A (en) 2017-01-27 2017-01-27 Laser spectroscopy inspection method and laser spectroscopy inspection device
KR1020180008732A KR20200067236A (en) 2017-01-27 2018-01-24 Laser spectroscopic inspection method and laser spectroscopic inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017012595A JP2018119894A (en) 2017-01-27 2017-01-27 Laser spectroscopy inspection method and laser spectroscopy inspection device

Publications (1)

Publication Number Publication Date
JP2018119894A true JP2018119894A (en) 2018-08-02

Family

ID=63045002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017012595A Pending JP2018119894A (en) 2017-01-27 2017-01-27 Laser spectroscopy inspection method and laser spectroscopy inspection device

Country Status (2)

Country Link
JP (1) JP2018119894A (en)
KR (1) KR20200067236A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161589A1 (en) * 2020-02-14 2021-08-19 日立造船株式会社 Device for measuring properties of gas in container
JP2021156856A (en) * 2020-03-30 2021-10-07 横河電機株式会社 Inspection system, inspection method and program
WO2022244647A1 (en) * 2021-05-17 2022-11-24 ゼネラルパッカー株式会社 Packaging bag gas concentration measuring device, and packaging bag gas concentration measuring method
WO2022244648A1 (en) * 2021-05-17 2022-11-24 ゼネラルパッカー株式会社 Device for measuring gas concentration in packaging bag and method for measuring gas concentration in packaging bag
WO2022244646A1 (en) * 2021-05-17 2022-11-24 ゼネラルパッカー株式会社 Device for measuring gas concentration of packaging bag, packaging machine equipped with same, and method for measuring gas concentration of packaging bag

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024052440A1 (en) * 2022-09-09 2024-03-14 F. Hoffmann-La Roche Ag Inspection system and method for a closed medical container

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022687A (en) * 1973-06-27 1975-03-11
JPS61284642A (en) * 1985-06-12 1986-12-15 Mitsubishi Metal Corp Sample cooler for spectroscopic measurement
JPS63107845U (en) * 1987-01-05 1988-07-12
JPS6441835A (en) * 1987-08-08 1989-02-14 Fujitsu Ltd Light transmission type gas cell
JPH02203253A (en) * 1989-02-01 1990-08-13 Aloka Co Ltd Absorptiometer
JPH0670794A (en) * 1992-04-24 1994-03-15 Becton Dickinson & Co Method and device for detecting microorganism in blood culture vial
JP2002340752A (en) * 2001-05-10 2002-11-27 Aloka Co Ltd Expiration gas container
JP2007508567A (en) * 2003-10-15 2007-04-05 ライトハウス インスツルメンツ, エルエルシー System and method for automated headspace analysis
US20080230720A1 (en) * 2005-10-15 2008-09-25 Udviklingsselskabet Innoscan K/S Method and System For Irradiating and Inspecting Liquid-Carrying Containers
WO2016051341A1 (en) * 2014-09-30 2016-04-07 Ft System S.R.L. Group and method for measuring the pressure in closed containers
JP2016540998A (en) * 2013-12-06 2016-12-28 バクテリオスキャン エルティーディー Optical measurement cuvette with sample chamber

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022687A (en) * 1973-06-27 1975-03-11
JPS61284642A (en) * 1985-06-12 1986-12-15 Mitsubishi Metal Corp Sample cooler for spectroscopic measurement
JPS63107845U (en) * 1987-01-05 1988-07-12
JPS6441835A (en) * 1987-08-08 1989-02-14 Fujitsu Ltd Light transmission type gas cell
JPH02203253A (en) * 1989-02-01 1990-08-13 Aloka Co Ltd Absorptiometer
JPH0670794A (en) * 1992-04-24 1994-03-15 Becton Dickinson & Co Method and device for detecting microorganism in blood culture vial
JP2002340752A (en) * 2001-05-10 2002-11-27 Aloka Co Ltd Expiration gas container
JP2007508567A (en) * 2003-10-15 2007-04-05 ライトハウス インスツルメンツ, エルエルシー System and method for automated headspace analysis
US20080230720A1 (en) * 2005-10-15 2008-09-25 Udviklingsselskabet Innoscan K/S Method and System For Irradiating and Inspecting Liquid-Carrying Containers
JP2016540998A (en) * 2013-12-06 2016-12-28 バクテリオスキャン エルティーディー Optical measurement cuvette with sample chamber
WO2016051341A1 (en) * 2014-09-30 2016-04-07 Ft System S.R.L. Group and method for measuring the pressure in closed containers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161589A1 (en) * 2020-02-14 2021-08-19 日立造船株式会社 Device for measuring properties of gas in container
JP2021156856A (en) * 2020-03-30 2021-10-07 横河電機株式会社 Inspection system, inspection method and program
WO2022244647A1 (en) * 2021-05-17 2022-11-24 ゼネラルパッカー株式会社 Packaging bag gas concentration measuring device, and packaging bag gas concentration measuring method
WO2022244648A1 (en) * 2021-05-17 2022-11-24 ゼネラルパッカー株式会社 Device for measuring gas concentration in packaging bag and method for measuring gas concentration in packaging bag
WO2022244646A1 (en) * 2021-05-17 2022-11-24 ゼネラルパッカー株式会社 Device for measuring gas concentration of packaging bag, packaging machine equipped with same, and method for measuring gas concentration of packaging bag

Also Published As

Publication number Publication date
KR20200067236A (en) 2020-06-12

Similar Documents

Publication Publication Date Title
JP2018119894A (en) Laser spectroscopy inspection method and laser spectroscopy inspection device
US8912007B2 (en) Optical measuring apparatus and method for the analysis of samples contained in liquid drops
JP4445971B2 (en) System and method for automated headspace analysis
US20170267964A1 (en) Method for use in monitoring biological material
EP2861984B1 (en) Method and system for use in monitoring biological material
US9488579B2 (en) Optical measuring apparatus and method for the analysis of samples contained in liquid drops
JP5137740B2 (en) Nondestructive inspection device for oxygen concentration in bag-like containers
JP4828168B2 (en) Stabilizing the cuvette during measurement
JP5686662B2 (en) Nondestructive inspection device for oxygen concentration in bag-like containers
EP1724335B1 (en) System for optically detecting the growth of microorganisms in a sample
JP2003130827A (en) System and method for optically monitoring concentration of gas in sample vial using photo-thermal spectroscopy to detect propagation of sample
US9488576B2 (en) Optical measuring apparatus and method for the analysis of samples contained in liquid drops
JP2014173967A (en) Sample inspection device
JP4948145B2 (en) Gas detector
EP3803352B1 (en) Apparatus for detecting a gas in a headspace of a container
CN108139414B (en) Automatic analyzer
CN115266579A (en) Penicillin bottle leakage detection device and method for miniaturized multi-optical-path pool
JP2021156813A (en) Gas detector
Liu et al. MgF 2–Au–MgF 2-polydopamine based surface plasmon resonance sensor and its application in biomedical systems
US11754431B2 (en) Apparatus for determining a vertical position of at least one interface between a first component and at least one second component
WO2021161589A1 (en) Device for measuring properties of gas in container
JP7208684B1 (en) Optical property measurement system
JP2023119480A (en) Inspection device
US20210309957A1 (en) Apparatus for monitoring gas molecules in fermentation based processes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210831