JP2021096133A - Gas concentration measuring device for packaging bags - Google Patents

Gas concentration measuring device for packaging bags Download PDF

Info

Publication number
JP2021096133A
JP2021096133A JP2019226983A JP2019226983A JP2021096133A JP 2021096133 A JP2021096133 A JP 2021096133A JP 2019226983 A JP2019226983 A JP 2019226983A JP 2019226983 A JP2019226983 A JP 2019226983A JP 2021096133 A JP2021096133 A JP 2021096133A
Authority
JP
Japan
Prior art keywords
packaging bag
gas concentration
conveyor
gas
pillow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019226983A
Other languages
Japanese (ja)
Other versions
JP7505732B2 (en
Inventor
雅志 大島
Masashi Oshima
雅志 大島
直樹 長田
Naoki Osada
直樹 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Packer Co Ltd
Original Assignee
General Packer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Packer Co Ltd filed Critical General Packer Co Ltd
Priority to JP2019226983A priority Critical patent/JP7505732B2/en
Publication of JP2021096133A publication Critical patent/JP2021096133A/en
Application granted granted Critical
Publication of JP7505732B2 publication Critical patent/JP7505732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To provide a gas concentration measuring device for packaging bags, with which it is possible to measure packaging bags with a laser type gas densitometer that are individually transported on a conveyor, especially it is possible to measure gas concentration in a pillow packaging bag.SOLUTION: A gas concentration measuring device 10 is constituted so as to emit a laser beam of a specific wavelength from a main head 25 so as to pass through a pillow packaging bag B, receive the laser beam with a sub-head 26 and measure gas concentration of a specific gas remaining inside of the packaging bag, on the basis of an absorption spectrum of the specific wavelength that changes before and after passage through the packaging bag. A pair of guides 13a, 13b is arranged, across a conveyor 11 that intermittently transports packaging bas that are placed thereupon, on both sides in a width direction of the conveyor so as to face each other. When a packaging bag placed on the conveyor is transported to between the main head and the sub-head, the packaging bag is held between the two guides, with an upper part of the packaging bag thereby inflated, so that the laser beam passes through a measurement space formed inside of the inflated packaging bag.SELECTED DRAWING: Figure 1

Description

本発明は、ガス置換されて密封された包装袋内に残存する特定ガスのガス濃度を測定する包装袋用ガス濃度測定装置に関し、特に包装袋がピロー包装によるものである包装袋用ガス濃度測定装置に関するものである。 The present invention relates to a packaging bag gas concentration measuring device for measuring the gas concentration of a specific gas remaining in a gas-replaced and sealed packaging bag, and particularly for packaging bag gas concentration measurement in which the packaging bag is made by pillow packaging. It is about the device.

従来、包装工程において、被包装物の保存期間又は賞味期間を縮めるおそれのある特定の酸化原因ガスを含んだ包装袋内の空気を除去して、不活性ガス、たとえば窒素、二酸化炭素等にガス置換してから密封するガス置換包装が行われている。これによって、包装袋内部の酸化原因ガスは除去され、被包装物、特に食品は、長期の保存期間、賞味期間を確保することができる。
そして、ガス置換包装後の検査工程において、酸化原因ガス、特に酸素の濃度が既定値以下であるかどうか検査が行われている。
しかしながら、現在主流である酸素濃度の測定方法は、サンプルとして任意に選択した包装袋に注射針を刺し、包装袋内から吸引した少量のガスの組成を検査する抜き取り検査である。当該抜き取り検査では、注射痕が形成された包装袋は廃棄しなければならない。また、検査精度を上げるためにサンプル数を増やすと検査時間が長くなり、増加する廃棄量によって経済的、時間的損失が増大する不都合があった。
Conventionally, in the packaging process, the air in the packaging bag containing a specific oxidation-causing gas that may shorten the storage period or the taste period of the packaged object is removed, and the gas is converted into an inert gas such as nitrogen or carbon dioxide. Gas replacement packaging is performed after replacement and sealing. As a result, the oxidation-causing gas inside the packaging bag is removed, and the packaged object, particularly the food, can secure a long storage period and a shelf life.
Then, in the inspection step after gas replacement packaging, inspection is performed to see if the concentration of the oxidation-causing gas, particularly oxygen, is equal to or less than the predetermined value.
However, the current mainstream method for measuring oxygen concentration is a sampling test in which an injection needle is inserted into a packaging bag arbitrarily selected as a sample and the composition of a small amount of gas sucked from the packaging bag is inspected. In the sampling inspection, the packaging bag on which the injection mark is formed must be discarded. Further, if the number of samples is increased in order to improve the inspection accuracy, the inspection time becomes long, and there is a disadvantage that the economic and time loss increases due to the increased amount of waste.

これに対し、本願出願人は、包装袋を損傷することなく内部の特定ガスの濃度を測定可能なガス濃度測定装置を開発した。
特開2010−107197に開示されている包装袋のガス濃度測定装置1は、図9に示すように、発信器を有するレーザー発生部2と、当該レーザー発生部2に連接し、レーザー光が射出される主ヘッド3、並びに受信器を有するレーザー受光部4と、当該レーザ受光部4に連接し、レーザー光が入射される副ヘッド5とからなる。相対的に接近及び離隔自在に設けられた主ヘッド3と副ヘッド5は、、一対のグリップ6,6に把持された検査対象の包装袋Bを挟んで、主ヘッド3に対して副ヘッド5が正対するように配置されている。これによって、主ヘッド3から副ヘッド5へ最短距離でレーザー光が包装袋を透過することができ、包装袋内に残留している酸素等の特定ガスの濃度を測定する際に、包装袋の全数について当該包装袋を一切損傷することなく迅速に測定することができるようになった。
On the other hand, the applicant of the present application has developed a gas concentration measuring device capable of measuring the concentration of a specific gas inside without damaging the packaging bag.
As shown in FIG. 9, the packaging bag gas concentration measuring device 1 disclosed in Japanese Patent Application Laid-Open No. 2010-107197 is connected to a laser generating unit 2 having a transmitter and the laser generating unit 2, and a laser beam is emitted. It is composed of a main head 3 to be generated, a laser light receiving unit 4 having a receiver, and a sub head 5 which is connected to the laser light receiving unit 4 and receives laser light. The main head 3 and the sub head 5 provided so as to be relatively close to each other and separated from each other sandwich the packaging bag B to be inspected held by the pair of grips 6 and 6, and the sub head 5 is relative to the main head 3. Are arranged so that they face each other. As a result, the laser beam can pass through the packaging bag from the main head 3 to the sub head 5 at the shortest distance, and when measuring the concentration of a specific gas such as oxygen remaining in the packaging bag, the packaging bag All of them can be measured quickly without damaging the packaging bag at all.

特開2010−107197号公報JP-A-2010-107197

しかしながら、上記のガス濃度測定装置1は、予め成形した包装袋Bが包装機に供給され、当該包装袋Bの袋口近傍の両端をグリップ対6,6で把持し、充填物を充填する包装機に対応したものである。当該包装機の場合、包装袋一つ一つがグリップ対で把持されているため、レーザー式ガス濃度計の主ヘッドと副ヘッドの間に移送したとき、容易に固定することができ、精度の高い測定を行うことができる。
一方、包装機には、包装袋をグリップ対ではなくコンベアで移送するものがある。コンベア上を包装後の包装袋が移送される包装機の一類型として、ピロー包装機が知られている。
当該ピロー包装機は、帯状のフィルムを丸めて、重なり合った両側端を背面側でシールして筒体を形成し、当該筒体内に充填物を配置してから、当該筒体内をガス置換すると共に筒体の前後両端をシールして密封し、前後両端にシール部分を切り離したピロー包装袋を、コンベアで個別に順次移送する包装機である。
当該ピロー包装機の場合、グリップ対で包装袋を個別に把持しておらず、充填物の包装後には、包装袋が個別にコンベア上を移送されるので、ピロー包装袋を上記のガス濃度測定装置1の主ヘッドと副ヘッドの間に位置決めすることが困難である。
However, in the gas concentration measuring device 1, the preformed packaging bag B is supplied to the packaging machine, and both ends of the packaging bag B near the bag mouth are gripped by grip pairs 6 and 6, and the packaging is filled with the filling. It corresponds to the machine. In the case of the packaging machine, since each packaging bag is gripped by a pair of grips, it can be easily fixed when transferred between the main head and the sub head of the laser gas densitometer, and has high accuracy. Measurements can be made.
On the other hand, some packaging machines transfer packaging bags by a conveyor instead of a pair of grips. A pillow packaging machine is known as a type of packaging machine in which a packaging bag after packaging is transferred on a conveyor.
The pillow wrapping machine rolls a strip-shaped film, seals the overlapping both ends on the back side to form a cylinder, places a filling inside the cylinder, and then replaces the inside of the cylinder with gas. This is a wrapping machine that seals and seals both front and rear ends of a cylinder, and sequentially transfers pillow packaging bags with the sealed portions separated at both front and rear ends on a conveyor.
In the case of the pillow packaging machine, the packaging bags are not individually gripped by the grip pair, and after the filling is packaged, the packaging bags are individually transferred on the conveyor. Therefore, the pillow packaging bag is measured for the above gas concentration. It is difficult to position the device 1 between the main head and the sub head.

したがって、本発明が解決しようとする課題は、コンベア上を個別に移送される包装袋をレーザー式ガス濃度計で測定することができ、特にピロー包装袋内のガス濃度を測定することができる包装袋用ガス濃度測定装置を提供することである。 Therefore, the problem to be solved by the present invention is that the packaging bags individually transferred on the conveyor can be measured with a laser gas densitometer, and in particular, the packaging capable of measuring the gas concentration in the pillow packaging bag. It is to provide a gas concentration measuring device for a bag.

請求項1に記載の包装袋用ガス濃度測定装置は、主ヘッドから特定波長のレーザー光を、包装袋を透過するように射出し、当該レーザー光を副ヘッドで受光して前記包装袋の透過前後で変化する特定波長の吸収スペクトルに基づいて前記包装袋の内部に残留している特定ガスのガス濃度を測定するようにした包装袋用ガス濃度測定装置であって、
前記包装袋を載置して間欠移送するコンベアを挟んで、コンベアの幅方向の両側に一対のガイドを対向するように配置し、
前記コンベアに載置された包装袋が前記主ヘッドと前記副ヘッドの間に移送されたとき、両ガイドで包装袋が挟み込まれて包装袋の上部が膨らむことにより、包装袋の内部に被測定空間を形成し、
当該被測定空間を前記レーザー光が透過するようにしたことを特徴とする。
The gas concentration measuring device for a packaging bag according to claim 1 emits laser light of a specific wavelength from the main head so as to pass through the packaging bag, receives the laser light with the sub-head, and transmits the laser light to the packaging bag. A packaging bag gas concentration measuring device that measures the gas concentration of a specific gas remaining inside the packaging bag based on an absorption spectrum of a specific wavelength that changes before and after.
A pair of guides are arranged so as to face each other on both sides in the width direction of the conveyor, sandwiching the conveyor on which the packaging bag is placed and intermittently transferred.
When the packaging bag placed on the conveyor is transferred between the main head and the sub-head, the packaging bag is sandwiched between both guides and the upper part of the packaging bag swells, so that the inside of the packaging bag is measured. Form a space,
It is characterized in that the laser light is transmitted through the space to be measured.

請求項2に記載の包装袋用ガス濃度測定装置は、請求項1に記載の発明において、前記包装袋として、光が透過可能なフィルムを丸めて互いに重なり合った両側端を背面側でシールして筒体を形成し、当該筒体内に充填物を配置してから、前記筒体内をガス置換すると共に前記筒体の前後両端をシールして密封したピロー包装袋を用い、
当該ピロー包装袋を、背面側を下にして一つずつ並べて前記コンベアで間欠移送することを特徴とする。
In the invention of claim 1, the packaging bag gas concentration measuring device according to claim 2 rolls a light-transmissive film and seals both overlapping ends on the back side as the packaging bag. After forming a cylinder and placing a filling in the cylinder, a pillow packaging bag is used in which the inside of the cylinder is gas-replaced and both front and rear ends of the cylinder are sealed and sealed.
The pillow packaging bags are arranged one by one with the back side facing down and intermittently transferred by the conveyor.

請求項3に記載の包装袋用ガス濃度測定装置は、請求項1若しくは請求項2に記載の発明において、前記ガイドが、互いに接離自在に形成されたガイドプレートからなり、
当該ガイドプレートが接近して、前記ピロー包装袋を挟み込むように押さえたとき、
前記ピロー包装袋に前記被測定空間が形成されるようにしたことを特徴とする。
The gas concentration measuring device for a packaging bag according to claim 3 comprises a guide plate in which the guides are formed so as to be in contact with each other in the invention according to claim 1 or 2.
When the guide plate approaches and is pressed so as to sandwich the pillow packaging bag,
The pillow packaging bag is characterized in that the space to be measured is formed.

請求項4に記載の包装袋用ガス濃度測定装置は、請求項1若しくは請求項2に記載の発明において、前記ガイドが、前記コンベアの長手方向に沿って、上流側が前記ピロー包装袋よりも大きく拡開し、下流方向に向かって前記ガイド間の幅が前記ピロー包装袋を挟み込んで押さえるように漸次狭まって設置されたガイドプレートからなり、
前記コンベア上を移動する前記ピロー包装袋が、前記ガイドプレートに挟み込まれ、押さえられたとき、
前記ピロー包装袋に前記被測定空間が形成されるようにしたことを特徴とする。
In the invention according to claim 1 or 2, the guide for the gas concentration measuring device for a packaging bag according to claim 4 is larger on the upstream side than the pillow packaging bag along the longitudinal direction of the conveyor. It consists of a guide plate that is widened and gradually narrowed so that the width between the guides is gradually narrowed so as to sandwich and hold the pillow packaging bag toward the downstream direction.
When the pillow packaging bag moving on the conveyor is sandwiched and pressed by the guide plate,
The pillow packaging bag is characterized in that the space to be measured is formed.

請求項5に記載の包装袋用ガス濃度測定装置は、請求項3若しくは請求項4に記載の発明において、前記ガイドプレートのそれぞれに、前記レーザ光が透過可能な窓部を所定位置に設け、
前記ガイドプレートが前記ピロー包装袋を挟み込んで押さえ、前記被測定空間を形成したとき、
前記窓部に、前記ピロー包装袋の前記フィルムが密着し、
前記主ヘッドから射出されたレーザー光が、前記窓部と前記被測定空間を通過して、前記副ヘッドに入射するようにしたことを特徴とする。
In the invention according to claim 3 or 4, the packaging bag gas concentration measuring device according to claim 5 is provided with a window portion capable of transmitting the laser beam at a predetermined position on each of the guide plates.
When the guide plate sandwiches and presses the pillow packaging bag to form the space to be measured.
The film of the pillow packaging bag adheres to the window portion, and the film is brought into close contact with the window portion.
The laser beam emitted from the main head passes through the window portion and the space to be measured, and is incident on the sub head.

請求項6に記載の包装袋用ガス濃度測定装置は、請求項1若しくは請求項2に記載の発明において、前記ガイドが、互いに接離自在に形成され、前記ピロー包装袋を挟み込んで吸着固定する吸盤装置からなり、
当該吸盤装置が前記ピロー包装袋を挟み込んで吸着固定し、互いに接近して当該ピロー包装袋を押したとき、
前記ピロー包装袋に前記被測定空間が形成されるようにしたことを特徴とする。
In the invention according to claim 1 or 2, in the packaging bag gas concentration measuring device according to claim 6, the guides are formed so as to be in contact with each other, and the pillow packaging bag is sandwiched and fixed by suction. Consists of a sucker device
When the suction cup device sandwiches and fixes the pillow packaging bag and pushes the pillow packaging bag close to each other.
The pillow packaging bag is characterized in that the space to be measured is formed.

本発明に係る包装袋用ガス濃度測定装置によれば、コンベアに載置された包装袋が主ヘッドと副ヘッドの間に移送されたとき、両ガイドで包装袋が挟み込まれて包装袋の上部が膨らむことにより、包装袋の内部に形成された被測定空間ををレーザー光が透過するようにした。
これによって、充填物に遮られることなく、レーザー光を主ヘッドから副ヘッドへ透過させることができ、レーザー式ガス濃度計でコンベア上を移送される包装袋内のガス濃度を測定することができる。
さらに、包装袋は、フィルムを丸めて重なり合った両側端を背面側でシールして、充填物を充填してから前後両端をシールして切り離したピロー包装袋が好ましい。
これによって、充填物を個別包装し、コンベア上を個別に移送されるピロー包装袋の袋内をレーザ御式ガス濃度計で測定することができる。
そして、ピロー包装袋を挟み込こむ両ガイドを互いに接離自在なガイドプレートから構成することが好ましい。当該ガイドプレートがピロー包装袋を挟み込むように押さえることによって、包装袋の上部を膨らませることができ、包装袋内部に被測定空間を形成することができる。
また、ピロー包装袋を挟み込こむ両ガイドを、コンベアの長手方向に沿って上流側が大きく拡開し、下流方向に向かってガイド間の幅がピロー包装袋を挟み込んで押さえるように漸次狭まるガイドプレートから構成することが好ましい。当該ガイドプレートがピロー包装袋を挟み込むように押さえることによって、包装袋の上部を膨らませることができ、包装袋内部に被測定空間を形成することができる。
ここで、接近して押さえ込むガイドプレートまた、固定され幅が狭まるガイドプレートのいずれにも、レーザー光が透過可能な窓部を所定位置に設けるようにした。そして、ガイドプレートがピロー包装袋を挟み込んで押さえたとき、ピロー包装袋のフィルムが窓部に密着するようにした。これによって、ピロー包装袋内のガス濃度を測定するとき、大気雰囲気下の影響を極力排除することができ、より一層正確にガス濃度を測定することができる。
さらに、ピロー包装袋を挟み込む両ガイドを互いに接離自在で、当該ピロー包装袋を吸着固定する吸盤装置から構成することが好ましい。当該吸盤装置がピロー包装袋を挟み込んで吸着固定し、互いに接近してピロー包装袋を両側から押したとき、包装袋の上部を膨らませることができ、包装袋内部に被測定空間を形成することができる。
According to the packaging bag gas concentration measuring device according to the present invention, when the packaging bag placed on the conveyor is transferred between the main head and the sub head, the packaging bag is sandwiched between both guides and the upper part of the packaging bag. By swelling, the laser beam is allowed to pass through the space to be measured formed inside the packaging bag.
As a result, the laser beam can be transmitted from the main head to the sub head without being blocked by the filling material, and the gas concentration in the packaging bag transferred on the conveyor can be measured by the laser gas densitometer. ..
Further, the packaging bag is preferably a pillow packaging bag in which the films are rolled and the overlapping side ends are sealed on the back side, the filling is filled, and then the front and rear ends are sealed and separated.
As a result, the inside of the pillow packaging bag in which the filling material is individually packaged and individually transferred on the conveyor can be measured with a laser gas densitometer.
Then, it is preferable that both guides that sandwich the pillow packaging bag are composed of guide plates that can be brought into contact with each other. By pressing the guide plate so as to sandwich the pillow packaging bag, the upper portion of the packaging bag can be inflated, and a space to be measured can be formed inside the packaging bag.
In addition, the guide plates that sandwich the pillow packaging bag are widened on the upstream side along the longitudinal direction of the conveyor, and the width between the guides gradually narrows toward the downstream direction so as to sandwich and hold the pillow packaging bag. It is preferable to configure from. By pressing the guide plate so as to sandwich the pillow packaging bag, the upper portion of the packaging bag can be inflated, and a space to be measured can be formed inside the packaging bag.
Here, a window portion through which laser light can be transmitted is provided at a predetermined position on any of the guide plates that are pressed close to each other and the guide plates that are fixed and narrow in width. Then, when the guide plate sandwiches and presses the pillow packaging bag, the film of the pillow packaging bag is brought into close contact with the window portion. As a result, when measuring the gas concentration in the pillow packaging bag, the influence of the atmospheric atmosphere can be eliminated as much as possible, and the gas concentration can be measured more accurately.
Further, it is preferable that both guides for sandwiching the pillow packaging bag are detachable from each other and consist of a suction cup device for sucking and fixing the pillow packaging bag. When the sucker device sandwiches and fixes the pillow packaging bag and pushes the pillow packaging bag from both sides close to each other, the upper part of the packaging bag can be inflated to form a space to be measured inside the packaging bag. Can be done.

第1実施例に係る包装袋用ガス濃度測定装置の構成の概略を示す平面図である。It is a top view which shows the outline of the structure of the gas concentration measuring apparatus for a packaging bag which concerns on 1st Example. 第1実施例に係る包装袋用ガス濃度測定装置の構成の概略を示すコンベアの長手方向に沿った側面図である。It is a side view along the longitudinal direction of the conveyor which shows the outline of the structure of the gas concentration measuring apparatus for a packaging bag which concerns on 1st Example. 第1実施例に係る包装袋用ガス濃度測定装置の構成の概略を示すコンベアの幅方向に沿った側面図である。It is a side view along the width direction of the conveyor which shows the outline of the structure of the gas concentration measuring apparatus for a packaging bag which concerns on 1st Example. 第1実施例に係る包装袋用ガス濃度測定装置のレーザー式ガス濃度計の構成の概略を説明する説明図である。It is explanatory drawing explaining the outline of the structure of the laser type gas densitometer of the gas concentration measuring apparatus for a packaging bag which concerns on 1st Example. 第1実施例に係る包装袋用ガス濃度測定装置について、他のガイドの構成の概略を示すコンベアの幅方向に沿った側面図である。It is a side view along the width direction of the conveyor which shows the outline of the structure of another guide about the gas concentration measuring apparatus for a packaging bag which concerns on 1st Example. 第1実施例に係る包装袋用ガス濃度測定装置に用いられるピロー包装袋の構成の概略を示す説明図である。It is explanatory drawing which shows the outline of the structure of the pillow packaging bag used for the gas concentration measuring apparatus for a packaging bag which concerns on 1st Example. 第2実施例に係る包装袋用ガス濃度測定装置の構成の概略を示す平面図である。It is a top view which shows the outline of the structure of the gas concentration measuring apparatus for a packaging bag which concerns on 2nd Example. 第3実施例に係る包装袋用ガス濃度測定装置の構成の概略を示す平面図である。It is a top view which shows the outline of the structure of the gas concentration measuring apparatus for a packaging bag which concerns on 3rd Example. 従来の包装袋用ガス濃度測定装置の構成の概略を示す側面図である。It is a side view which shows the outline of the structure of the conventional gas concentration measuring apparatus for a packaging bag.

本発明に係る包装袋用ガス濃度測定装置の実施例を、添付した図面にしたがって説明する。図1は本実施例に係る包装袋用ガス濃度測定装置の構成の概略を示す平面図である。図2及び図3は本実施例に係る包装袋用ガス濃度測定装置の構成の概略を示す側面図である。 An example of the gas concentration measuring device for a packaging bag according to the present invention will be described with reference to the attached drawings. FIG. 1 is a plan view showing an outline of the configuration of a gas concentration measuring device for a packaging bag according to this embodiment. 2 and 3 are side views showing an outline of the configuration of the gas concentration measuring device for a packaging bag according to the present embodiment.

包装袋用ガス濃度測定装置10は、コンベア11と、2台のレーザー式ガス濃度計12A,12Bと、一対のガイド13を有している。
コンベア11は、レーザー式ガス濃度計12A,12B、及びガイド対13,13に挟まれ、レーザー式ガス濃度計12A,12Bに包装袋Bを移送する測定コンベア11aと、当該測定コンベア11aに包装袋Bを一つずつ供給する供給コンベア11bからなる。
測定コンベア11aは、始端側に従ロータ14a、終端側に主ロータ14bを有し、当該主従ロータ14a,14b間に所定の張力で張設された測定送りベルト15を有している。
当該測定送りベルト15上には、複数個のストッパー16が所定の間隔で複数個立設配置されている。当該ストッパー16は、包装袋Bを移送し終わった後、測定送りベルト15に対して倒伏するようにしても良い。本実施例に係るストッパー16は、測定送りベルト15上に100mm間隔で配置されている。
主ロータ14bは、間欠動作するステッピングモータ14cにより順方向へ間欠回転するように形成されている。これによって、測定送りベルト15は、測定コンベア11aの始端から終端に向って包装袋Bを順方向に間欠送りすることができる。本実施例に係るステッピングモータ14cは、回動時間0.8秒、停止時間0.7秒の周期で間欠動作し、40rpmの回転数で順方向に回転するように形成されている。
The packaging bag gas concentration measuring device 10 includes a conveyor 11, two laser gas concentration meters 12A and 12B, and a pair of guides 13.
The conveyor 11 is sandwiched between the laser gas densitometers 12A and 12B and the guide pairs 13 and 13, and transfers the packaging bag B to the laser gas densitometers 12A and 12B. It is composed of a supply conveyor 11b that supplies B one by one.
The measuring conveyor 11a has a slave rotor 14a on the start end side and a main rotor 14b on the end side, and has a measurement feed belt 15 stretched between the master and slave rotors 14a and 14b with a predetermined tension.
A plurality of stoppers 16 are vertically arranged on the measurement feed belt 15 at predetermined intervals. The stopper 16 may lie down with respect to the measurement feed belt 15 after the packaging bag B has been transferred. The stoppers 16 according to this embodiment are arranged on the measurement feed belt 15 at intervals of 100 mm.
The main rotor 14b is formed so as to rotate intermittently in the forward direction by a stepping motor 14c that operates intermittently. As a result, the measurement feed belt 15 can intermittently feed the packaging bag B in the forward direction from the start end to the end of the measurement conveyor 11a. The stepping motor 14c according to this embodiment is formed so as to intermittently operate in a cycle of a rotation time of 0.8 seconds and a stop time of 0.7 seconds and to rotate in the forward direction at a rotation speed of 40 rpm.

供給コンベア11bは、始端側に主ロータ(図示略)、終端側に従ロータ20を有し、当該主従ロータ間に所定の張力で張設された供給送りベルト21を有している。供給コンベア11bの終端側は、測定コンベア11aの始端に連接している。これによって、供給コンベア11bから測定コンベア11aへ包装袋Bを送ることができる。
供給コンベア11bの主ロータは、連続動作するモータ(図示略)により順方向へ連続回転するように形成されている。これによって、供給送りベルト21は、供給コンベア11bの始端から終端に向って包装袋Bを順方向に連続送りすることができる。本実施例に係るモータは、80rpmの回転数で順方向に回転するように形成されている。
本実施例に係るコンベア11は、供給コンベア11bが、供給送りベルト21上に包装袋Bを100mmピッチで配置し、80rpmのモータ回転数にしたがって包装袋Bを測定コンベア11aへ供給するように構成されている。対して、本実施例に係る測定コンベア11aは、ストッパー16が100mm間隔で立設され、40rpmのステッピングモータ回転数にしたがって、間欠動作するように構成されているので、供給コンベア11bから100mmピッチで送られる包装袋Bが2つずつ、すなわち、100mm×2の200mmピッチで供給され、当該200mmピッチで測定送りベルト15は、測定コンベア11aの始端側から終端に向って包装袋Bを2つずつ間欠送りするように形成されている。
なお、本実施例に係る包装袋Bの送りピッチは、上記の例に限定されることなく、包装袋Bの大きさ等に合わせて任意に設定することができる。
The supply conveyor 11b has a main rotor (not shown) on the start end side and a slave rotor 20 on the end side, and has a supply feed belt 21 stretched between the master and slave rotors with a predetermined tension. The end side of the supply conveyor 11b is connected to the start end of the measurement conveyor 11a. As a result, the packaging bag B can be sent from the supply conveyor 11b to the measurement conveyor 11a.
The main rotor of the supply conveyor 11b is formed so as to continuously rotate in the forward direction by a continuously operating motor (not shown). As a result, the supply feed belt 21 can continuously feed the packaging bag B in the forward direction from the start end to the end of the supply conveyor 11b. The motor according to this embodiment is formed so as to rotate in the forward direction at a rotation speed of 80 rpm.
The conveyor 11 according to the present embodiment is configured such that the supply conveyor 11b arranges the packaging bag B on the supply feed belt 21 at a pitch of 100 mm and supplies the packaging bag B to the measuring conveyor 11a according to the motor rotation speed of 80 rpm. Has been done. On the other hand, in the measuring conveyor 11a according to the present embodiment, the stoppers 16 are erected at intervals of 100 mm and are configured to operate intermittently according to the stepping motor rotation speed of 40 rpm, so that the measuring conveyor 11a is arranged at a pitch of 100 mm from the supply conveyor 11b. Two packaging bags B are fed, that is, 100 mm × 2 at a 200 mm pitch, and the measurement feed belt 15 feeds two packaging bags B from the start end side of the measurement conveyor 11a toward the end end at the 200 mm pitch. It is formed so as to be intermittently fed.
The feed pitch of the packaging bag B according to this embodiment is not limited to the above example, and can be arbitrarily set according to the size of the packaging bag B and the like.

上記のように、本実施に係る測定コンベア11aは、包装袋Bを2つずつのピッチで間欠送りするように形成されている。そのため、本実施例に係るレーザー式ガス濃度計12A,12Bは、包装袋Bを2つずつ測定するため、測定コンベア11aに沿って2台並設されている。これによって、包装袋Bを間欠ピッチ一回ごとに2つ測定することができるので、測定効率を上げることができる。すなわち、本実施例に係るガス濃度測定装置10によれば、一回に2つずつ包装袋を測定するように構成したが、これに限定されることなく、測定効率を上げるために、間欠ピッチ1回につき、3つずつ又はそれ以上測定するように構成することも可能である。 As described above, the measuring conveyor 11a according to the present embodiment is formed so as to intermittently feed the packaging bags B at a pitch of two each. Therefore, two laser gas densitometers 12A and 12B according to the present embodiment are arranged side by side along the measuring conveyor 11a in order to measure two packaging bags B at a time. As a result, two packaging bags B can be measured for each intermittent pitch, so that the measurement efficiency can be improved. That is, according to the gas concentration measuring device 10 according to the present embodiment, it is configured to measure two packaging bags at a time, but the present invention is not limited to this, and the intermittent pitch is used to improve the measurement efficiency. It can also be configured to measure three or more at a time.

上記のように、2台のレーザー式ガス濃度計12A,12Bは、同じものであるから、以下レーザー式ガス濃度計12として説明する。
レーザー式ガス濃度計12は、図 に示すように、測定コンベア11aを挟んで対向配置された主ヘッド25と副ヘッド26を有している。主ヘッド25は、特定波長のレーザー光を射出可能に形成されている。副ヘッド26は、主ヘッド25から射出されたレーザー光が、測定コンベア11a上の包装袋Bを通過してから、受光するように構成されている。
特定波長のレーザー光が、包装袋B内に残留している測定対象の特定ガスによって吸収されたとき、副ヘッド26で受光したレーザー光の吸光度に基づいて、包装体B内に残留している特定ガスのガス濃度を測定することができる。
As described above, since the two laser gas densitometers 12A and 12B are the same, they will be described below as the laser gas densitometer 12.
As shown in the figure, the laser gas densitometer 12 has a main head 25 and a sub head 26 arranged so as to face each other with the measuring conveyor 11a in between. The main head 25 is formed so as to be capable of emitting laser light having a specific wavelength. The sub-head 26 is configured such that the laser light emitted from the main head 25 passes through the packaging bag B on the measuring conveyor 11a and then receives the light.
When the laser light of a specific wavelength is absorbed by the specific gas to be measured remaining in the packaging bag B, it remains in the packaging body B based on the absorbance of the laser light received by the sub-head 26. The gas concentration of a specific gas can be measured.

主ヘッド25は、図1及び図3に示すように、レーザー光源27と、当該光源から射出するレーザー光の波長を特定の波長に設定し、所定の光強度に調整する制御部28とを有している。
レーザー光源27は、波長が可変可能なダイオードからなる半導体レーザー素子(図示略)を備え、近赤外領域のレーザー光を出力可能に形成されている。
制御部28は、半導体レーザー素子から出力されるレーザー光の波長を測定対象の特定ガス固有の特定波長に調整して、レーザー光が所定の入射光強度で射出されるように増幅する制御を行うように形成されている。
ここで、本実施例に係るレーザー式ガス濃度計12が測定する特定ガスは、酸素ガス(O)である。当該酸素ガス固有の吸収波長帯は760nm帯であり、当該吸収波長帯に含まれる複数の吸収線のうち、一の吸収線に係る特定波長がレーザー光の出力波長として選択される。
As shown in FIGS. 1 and 3, the main head 25 includes a laser light source 27 and a control unit 28 that sets the wavelength of the laser light emitted from the light source to a specific wavelength and adjusts the wavelength to a predetermined light intensity. doing.
The laser light source 27 includes a semiconductor laser device (not shown) made of a diode having a variable wavelength, and is formed so as to be capable of outputting laser light in the near infrared region.
The control unit 28 adjusts the wavelength of the laser light output from the semiconductor laser element to a specific wavelength peculiar to the specific gas to be measured, and controls to amplify the laser light so that it is emitted at a predetermined incident light intensity. It is formed like this.
Here, the specific gas measured by the laser type gas densitometer 12 according to this embodiment is oxygen gas (O 2 ). The absorption wavelength band peculiar to the oxygen gas is the 760 nm band, and among the plurality of absorption lines included in the absorption wavelength band, a specific wavelength related to one absorption line is selected as the output wavelength of the laser light.

主ヘッド25は、レーザ光源27に連接する鏡胴29を有し、当該鏡胴29の包装袋Bと対向するレーザー出射口29aには、近赤外領域の光を通しやすいサファイヤガラスが嵌め込まれている。
鏡胴29には、ガスバルブ(図示略)が設けられている。これによって、鏡胴29内の大気を真空化又は所定のガスへガスパージすることができ、鏡胴内を真空で維持したり、或いは窒素ガス、又は二酸化炭素或いはこれらに類する不活性ガス類で満たすことができる。そのため、レーザー光は、レーザー光源27からレーザー出射口29aを通じて射出されるまでの間に、鏡胴29内で特定ガス、本実施例においては酸素ガスに吸収されることを防止することができるので、ガス濃度測定の精度を向上させることができる。
The main head 25 has a lens barrel 29 that is connected to the laser light source 27, and a sapphire glass that easily allows light in the near infrared region to pass through is fitted into the laser emission port 29a that faces the packaging bag B of the lens barrel 29. ing.
The lens barrel 29 is provided with a gas valve (not shown). Thereby, the atmosphere in the lens barrel 29 can be evacuated or gas purged to a predetermined gas, and the inside of the lens barrel can be maintained in a vacuum or filled with nitrogen gas, carbon dioxide or an inert gas similar thereto. be able to. Therefore, it is possible to prevent the laser light from being absorbed by the specific gas, in this embodiment, the oxygen gas in the lens barrel 29 before the laser light is emitted from the laser light source 27 through the laser emission port 29a. , The accuracy of gas concentration measurement can be improved.

副ヘッド26は、図1及び図3に示すように、包装袋Bを透過したレーザー光を受光する受光センサ30と、当該受光センサからの受光信号に基づいて、ガス濃度を測定する測定部31とを有している。
受光センサ30は、包装袋Bを透過したレーザー光の透過光強度を電気的な透過光信号に変換する素子、たとえば、フォトダイオード(図示略)を有している。これによって、包装袋Bを透過したレーザー光の透過光強度を電気的に処理することができる。
測定部31は、透過光強度に係る透過光信号と、主ヘッド25から出力されたレーザー光の入射光強度に係る入射光信号に基づいて透過率を計算し、当該透過率に基づいてレーザー光の特定ガスによる吸光度を求め、当該吸光度に基づいて包装袋B内の特定ガスの濃度を測定するように形成されている。
As shown in FIGS. 1 and 3, the sub-head 26 has a light receiving sensor 30 that receives the laser light transmitted through the packaging bag B, and a measuring unit 31 that measures the gas concentration based on the light receiving signal from the light receiving sensor. And have.
The light receiving sensor 30 has an element that converts the transmitted light intensity of the laser light transmitted through the packaging bag B into an electrically transmitted light signal, for example, a photodiode (not shown). Thereby, the transmitted light intensity of the laser light transmitted through the packaging bag B can be electrically processed.
The measuring unit 31 calculates the transmittance based on the transmitted light signal related to the transmitted light intensity and the incident light signal related to the incident light intensity of the laser light output from the main head 25, and the laser light is based on the transmittance. The absorbance of the specific gas is determined, and the concentration of the specific gas in the packaging bag B is measured based on the absorbance.

フォトダイオードを内蔵した受光センサ30は、包装袋Bと対向するレーザー受光口30aに、鏡胴29と同様に、近赤外領域の光を通しやすいサファイヤガラスが嵌め込まれている。
受光センサ30のケーシングにもまた、鏡胴29と同様に、ガスバルブ(図示略)が設けられている。これによって、受光センサ30内の大気を真空化又は所定のガスへガスパージすることができ、受光センサ30内を真空で維持したり、或いは窒素ガス、又は二酸化炭素或いはこれらに類する不活性ガス類で満たすことができる。そのため、レーザー光は、レーザー受光口30aからフォトダイオードで受光されるまでの間に、受光センサ30内で特定ガス、本実施例においては酸素ガスに吸収されることを防止することができるので、ガス濃度測定の精度を向上させることができる。
In the light receiving sensor 30 having a built-in photodiode, sapphire glass that easily allows light in the near infrared region to pass through is fitted in the laser light receiving port 30a facing the packaging bag B, like the lens barrel 29.
Similar to the lens barrel 29, the casing of the light receiving sensor 30 is also provided with a gas valve (not shown). Thereby, the atmosphere in the light receiving sensor 30 can be evacuated or gas purged to a predetermined gas, and the inside of the light receiving sensor 30 can be maintained in a vacuum, or nitrogen gas, carbon dioxide or an inert gas similar thereto can be used. Can be met. Therefore, it is possible to prevent the laser light from being absorbed by the specific gas, in this embodiment, the oxygen gas in the light receiving sensor 30 until the laser light is received by the photodiode from the laser light receiving port 30a. The accuracy of gas concentration measurement can be improved.

このように、レーザー式ガス濃度計12は、図1又は図3に示すように、主ヘッド25からレーザー光を射出し、当該レーザー光を測定対象の包装袋Bに透過させて、副ヘッド26で包装袋Bを透過したレーザー光を受光するように構成されている。 As described above, as shown in FIG. 1 or 3, the laser gas densitometer 12 emits laser light from the main head 25 and transmits the laser light through the packaging bag B to be measured, so that the sub head 26 Is configured to receive the laser light transmitted through the packaging bag B.

ここで、レーザー式ガス濃度計12は、波長可変半導体レーザー吸収分光法によって、所定のセル内に封じられた特定ガスのガス濃度を分析する計器である。
波長可変半導体レーザー吸収分光法(Tunable Diode Laser Absorption Spectroscopy:TDLAS)とは、図4に示すように、レーザー光源の半導体レーザー素子から出力されたレーザー光に係る所定の入射光強度と、測定対象となる特定ガスを含んだ気体を封じたセルを透過して、当該特定ガスに吸収された透過後のレーザー光に係る透過光強度とから透過率を求めて、透過率に基づくレーザー光の吸光度からガス濃度を測定する方法である。
本実施例に沿っていえば、主ヘッド25から出力したレーザー光を、酸素ガスが混入したおそれのある窒素ガスで満たされた包装袋Bを透過させて、酸素ガスに吸収された透過後のレーザー光を副ヘッド26で受光し、透過光強度から透過率を求めて、当該透過率に基づくレーザー光の吸光度からガス濃度を測定する方法である。
Here, the laser type gas concentration meter 12 is an instrument that analyzes the gas concentration of a specific gas sealed in a predetermined cell by tunable semiconductor laser absorption spectroscopy.
As shown in FIG. 4, the wavelength variable semiconductor laser absorption spectrometry (TDLAS) is a predetermined incident light intensity related to the laser light output from the semiconductor laser element of the laser light source, and the measurement target. The transmittance is obtained from the transmitted light intensity of the transmitted laser light absorbed by the specific gas after passing through the cell containing the gas containing the specific gas, and from the absorbance of the laser light based on the transmittance. This is a method for measuring the gas concentration.
According to this embodiment, the laser light output from the main head 25 is transmitted through the packaging bag B filled with nitrogen gas which may be mixed with oxygen gas, and the transmitted laser is absorbed by the oxygen gas. This is a method in which light is received by the sub-head 26, the transmittance is obtained from the transmitted light intensity, and the gas concentration is measured from the absorbance of the laser light based on the transmittance.

酸素ガス、窒素ガス等の気体は、それぞれ固有の吸収波長帯を有し、当該吸収波長帯にはより強く光を吸収する波長に係る吸収線が複数本含まれていることが知られている。TDLASは、出力するレーザー光の近赤外領域の波長を、測定対象となる特定ガスの複数本の吸収線のうち、一本の吸収線に係る特定波長に合致するように変調し、増幅するように構成されている。そして、セルの透過前後で変化する特定波長の吸収スペクトルに基づいてレーザー光の吸光度を求めてガス濃度を測定している。なお、本実施例において測定対象ガスは酸素ガスであって、当該測定対象ガスを封じるセルは包装袋である。また、酸素ガス固有の吸収波長帯は760nm帯であり、当該吸収波長帯に含まれる複数の吸収線のうち、一の吸収線に係る特定波長がレーザー光の出力波長として選択される。 It is known that gases such as oxygen gas and nitrogen gas each have a unique absorption wavelength band, and the absorption wavelength band includes a plurality of absorption lines related to wavelengths that absorb light more strongly. .. TDLAS modulates and amplifies the wavelength of the output laser light in the near-infrared region so as to match the specific wavelength of one absorption line among the plurality of absorption lines of the specific gas to be measured. It is configured as follows. Then, the gas concentration is measured by obtaining the absorbance of the laser beam based on the absorption spectrum of a specific wavelength that changes before and after the transmission of the cell. In this embodiment, the gas to be measured is oxygen gas, and the cell that seals the gas to be measured is a packaging bag. Further, the absorption wavelength band peculiar to oxygen gas is the 760 nm band, and among a plurality of absorption lines included in the absorption wavelength band, a specific wavelength related to one absorption line is selected as the output wavelength of the laser light.

波長可変半導体レーザー吸収分光法(TDLAS)は、ランバート・ベールの法則に基づいてガス濃度を測定するものである。ランバート・ベールの法則とは、図4に示すように、入射光強度をI、包装袋Bを透過した透過光強度をIt、入射光に対する透過光の透過率をTとして、光路長をL、ガス濃度をCとすると,特定波長の吸収スペクトルで射出されたレーザー光の吸光度Aとの間に、数式1が成立する関係である。ここでεは測定対象となる所定のガスがレーザー光を吸収する固有の吸収係数である。 Tunable semiconductor laser absorption spectroscopy (TDLAS) measures gas concentration based on Lambert-Beer's law. As shown in FIG. 4, Lambert-Beer's law is that the incident light intensity is I 0 , the transmitted light intensity transmitted through the packaging bag B is It, the transmittance of the transmitted light with respect to the incident light is T, and the optical path length is L. Assuming that the gas concentration is C, the relationship is such that Equation 1 holds with the absorbance A of the laser light emitted in the absorption spectrum of a specific wavelength. Here, ε is a unique absorption coefficient at which a predetermined gas to be measured absorbs laser light.

Figure 2021096133
Figure 2021096133

測定コンベア11aを挟んで対向する主ヘッド25のレーザー出射口29aと副ヘッド26のレーザー受光口30aとの間の距離から、光路長Lは容易に求めることができる。そのため、入射光に対する透過光の透過率T、または包装袋B内で酸素ガスに吸収されたレーザー光の特定波長に係る吸収スペクトルの吸光度Aを得ることが出来れば、包装袋B内に残留している酸素ガスに係るガス濃度Cを求めることができる。
ここで、酸素ガスは包装袋Bに密封されているから、ガス濃度Cを定量測定する場合、入射光に対する透過光の透過率T又は吸収スペクトルの吸光度Aが大きく変化するように、すなわち、吸光度Aに比例する光路長Lを長くするとガス濃度の検知感度を向上させることができる。
すなわち、図1に示した本実施例に係るレーザー式ガス濃度計12A,12Bは、副ヘッド26のレーザー受光口30aを主ヘッド25から射出されるレーザー光の光軸上に配置したが、これに限定されず、たとえば、反射鏡を設けて、主ヘッド25と副ヘッド26間でレーザー光を複数回反射させたり、また、レーザー光線が包装袋を斜めに横断するようにレーザー光を通過させて、光路長Lを長く確保するようにしても良い。
このように検知感度を向上させることによって、たとえば数ppmレベルのガス濃度まで検知できるように検知可能範囲を広げた場合、数%レベルのガス濃度の測定は容易に行うことができ、その測定精度を大きく向上させることができる。
The optical path length L can be easily obtained from the distance between the laser emission port 29a of the main head 25 and the laser light receiving port 30a of the sub head 26 facing each other with the measurement conveyor 11a in between. Therefore, if the transmittance T of the transmitted light with respect to the incident light or the absorbance A of the absorption spectrum related to the specific wavelength of the laser light absorbed by the oxygen gas in the packaging bag B can be obtained, it remains in the packaging bag B. The gas concentration C related to the oxygen gas can be obtained.
Here, since the oxygen gas is sealed in the packaging bag B, when the gas concentration C is quantitatively measured, the transmittance T of the transmitted light with respect to the incident light or the absorbance A of the absorption spectrum changes significantly, that is, the absorbance. By increasing the optical path length L proportional to A, the detection sensitivity of the gas concentration can be improved.
That is, in the laser gas densitometers 12A and 12B according to the present embodiment shown in FIG. 1, the laser light receiving port 30a of the sub head 26 is arranged on the optical axis of the laser light emitted from the main head 25. For example, a reflecting mirror is provided to reflect the laser beam a plurality of times between the main head 25 and the sub head 26, or the laser beam is passed through the packaging bag so as to diagonally cross the packaging bag. , The optical path length L may be secured for a long time.
By improving the detection sensitivity in this way, for example, when the detectable range is expanded so that gas concentration of several ppm level can be detected, measurement of gas concentration of several% level can be easily performed, and the measurement accuracy thereof. Can be greatly improved.

ガイド13は、測定コンベア11aの幅方向の両側に対向配置され、互いに接離自在に形成された一対のガイドプレート13a,13bからなる。一のガイドプレート13aは、レーザー式ガス濃度計12A,12Bの主ヘッド25の近傍に配置され、他のガイドプレート13bは、副ヘッド26の近傍に配置されている。両ガイドプレート13a,13bは、図3に示すように、互いに上端が測定コンベア11a側に傾くように配置されている。これによって、両ガイドプレート13a,13bが互いに接近して包装袋Bに接したとき、図3に示すように、両ガイドプレート13a,13bは、ハの字状にガイド対象の包装袋Bを挟み込むように構成されている。このとき、包装袋Bは両ガイドプレート13a,13bにより測定コンベア11aの測定送りベルト15側に向って押さえ込まれるので、ガイドプレート13a,13bは、包装袋Bの上部を膨らませることができる。
このように、包装袋Bの上部を膨らませることによって、包装袋B内で充填物が妨げにならない空間を形成することができる。当該空間にレーザー光を透過させることによって、包装袋B内の酸素ガスのガス濃度を測定することができる。したがって、包装袋Bの上部を膨らませて形成される当該空間を被測定空間と称する。当該被測定空間は、図2又は図3に示すように、ガイドプレート13a,13bの上端縁から露出するように形成されている。このようにガイドプレート13a,13bの上端縁から露出した被測定空間に対してレーザー光を投射することによって、ガス濃度を測定することができる。
The guides 13 are composed of a pair of guide plates 13a and 13b which are arranged to face each other on both sides of the measuring conveyor 11a in the width direction and are formed so as to be in contact with each other. One guide plate 13a is arranged in the vicinity of the main head 25 of the laser gas densitometers 12A and 12B, and the other guide plate 13b is arranged in the vicinity of the sub head 26. As shown in FIG. 3, both guide plates 13a and 13b are arranged so that their upper ends are inclined toward the measuring conveyor 11a. As a result, when both guide plates 13a and 13b come into close contact with the packaging bag B, as shown in FIG. 3, both guide plates 13a and 13b sandwich the packaging bag B to be guided in a C shape. It is configured as follows. At this time, since the packaging bag B is pressed by both guide plates 13a and 13b toward the measurement feed belt 15 side of the measuring conveyor 11a, the guide plates 13a and 13b can inflate the upper portion of the packaging bag B.
By inflating the upper part of the packaging bag B in this way, it is possible to form a space in the packaging bag B in which the filling does not interfere. By transmitting laser light through the space, the gas concentration of oxygen gas in the packaging bag B can be measured. Therefore, the space formed by inflating the upper part of the packaging bag B is referred to as a space to be measured. As shown in FIG. 2 or 3, the space to be measured is formed so as to be exposed from the upper end edges of the guide plates 13a and 13b. By projecting the laser beam onto the space to be measured exposed from the upper end edges of the guide plates 13a and 13b in this way, the gas concentration can be measured.

また、図5に示すように、ガイドプレート13a,13bを上方へ大きく形成し、一のガイドプレート13aの所定の位置に、主ヘッド25から射出されるレーザー光が透過可能な窓部35aを設け、他のガイドプレート13bには、一のガイドプレート13aに設けた窓部35aと対向する位置に、レーザー光が透過可能な窓部35bを設けて、当該窓部35を透過したレーザー光を副ヘッド26で受光するような構成にしても良い。
このとき、一のガイドプレート13a側の窓部35aに鏡胴29先端部のレーザー射出口29aを重ね合わせて当接させると共に、他のガイドプレート13b側の窓部35bに受光センサ30先端部のレーザー受光口30aを重ね合わせて当接させるように構成することが好ましい。
これによって、ガイドプレート13a,13bが包装袋Bを押さえ込んで上部を膨らませたとき、包装袋Bを両ガイドプレート13a,13bの窓部35a,35bに密着させることができる。さらに窓部35a,35bは、鏡胴29のレザー射出口29aと受光センサ30のレーザー受光口30aにそれぞれ重ね合わされて当接されているので、レーザー光を透過させる被測定空間の前後で大気の影響を極力排除することができる。そのため、酸素ガスのガス濃度を測定するときの測定精度を向上させることができる。
Further, as shown in FIG. 5, the guide plates 13a and 13b are formed large upward, and a window portion 35a through which the laser light emitted from the main head 25 can be transmitted is provided at a predetermined position of one guide plate 13a. The other guide plate 13b is provided with a window portion 35b capable of transmitting laser light at a position facing the window portion 35a provided on one guide plate 13a, and the laser light transmitted through the window portion 35 is subordinated. The head 26 may be configured to receive light.
At this time, the laser ejection port 29a at the tip of the lens barrel 29 is overlapped and brought into contact with the window 35a on the one guide plate 13a side, and the tip of the light receiving sensor 30 is brought into contact with the window 35b on the other guide plate 13b side. It is preferable that the laser light receiving ports 30a are overlapped and brought into contact with each other.
As a result, when the guide plates 13a and 13b press the packaging bag B and inflate the upper portion, the packaging bag B can be brought into close contact with the window portions 35a and 35b of both the guide plates 13a and 13b. Further, since the windows 35a and 35b are overlapped with the leather ejection port 29a of the lens barrel 29 and the laser receiving port 30a of the light receiving sensor 30, respectively, they are in contact with each other. The effect can be eliminated as much as possible. Therefore, the measurement accuracy when measuring the gas concentration of oxygen gas can be improved.

さらに、図3に示すように、ガイドプレート13a,13bが互いに接近するタイミングに合わせて、レーザー式ガス濃度計12A,12Bの主ヘッド25に対して副ヘッド26を接近させるように構成しても良い。このように、主ヘッド25及び副ヘッド26と包装袋Bの外装フィルムとの隙間を小さくすることによって、被測定空間の光路長に対して、被測定空間以外の光路長を短くすることができる。このように構成することで、レーザー光を透過させる被測定空間の前後で大気の影響を極力排除することができるので、酸素ガスのガス濃度を測定するときの測定精度を向上させることができる。 Further, as shown in FIG. 3, the sub-head 26 may be configured to approach the main head 25 of the laser gas densitometers 12A and 12B at the timing when the guide plates 13a and 13b approach each other. good. By reducing the gap between the main head 25 and the sub-head 26 and the outer film of the packaging bag B in this way, the optical path length other than the measurement space can be shortened with respect to the optical path length of the measurement space. .. With this configuration, the influence of the atmosphere can be eliminated as much as possible before and after the space to be measured through which the laser beam is transmitted, so that the measurement accuracy when measuring the gas concentration of oxygen gas can be improved.

ここで、本実施例に係る包装袋Bは、図6に示すように、ピロー包装袋と呼ばれるものであることが好ましい。ピロー包装袋Bは、帯状のフィルムから形成されている。当該フィルムは光、特に本実施例に係る近赤外領域のレーザー光が透過可能であることが好ましい。帯状のフィルムは図1に示す供給コンベア11bの幅方向両端側から丸められ、重なり合った両側端を背面側でシールして、背面シール部40を有する筒体が形成される。そして、当該筒体内には、充填物が所定間隔で充填され、図1に示す供給コンベア11bの長手方向に沿って配置される。その後、筒体内を窒素ガス等の不活性ガスでガス置換(ガスパージ)するとともに、筒体は、図1に示す供給コンベア11bの長手方向に沿って、充填物の前後間がシールされ密封される。充填物の前後に形成され、連接している前シール部41と後シール部42を切り離して、図6に示すような、背面側に背面シール部40を有し、充填物の前後に前シール部41と後シール部42を有するピロー包装袋Bが形成される。
充填物が充填されたピロー包装袋Bは、図1に示すように、供給コンベア11bに背面側の背面シール部40を下にして載置され、供給コンベア11bから測定コンベア11aに移動したときもまた、背面側を下にして移動し、され、測定コンベア11aの測定送りベルト上を背面側を下に向けて移送される。
これによって、フィルムが重なり合っている背面シール部40でレーザー光が散乱されたり、また乱反射することを防止することができるので、測定精度を向上させることができる。また加えて、フィルムを重ね合わせた背面シール部40を下に向けたのは、これは当該背面シール部40が上を向いている場合に、ガイドプレート13a,13bでピロー包装袋Bを挟み込んだとき、背面シール部40の剛性が他のフィルム部分よりも高いために撓み難く、ピロー包装袋Bの上部を上手く膨らませることが出来なくなるおそれがあるからである。
Here, the packaging bag B according to the present embodiment is preferably what is called a pillow packaging bag, as shown in FIG. The pillow packaging bag B is formed of a strip-shaped film. It is preferable that the film can transmit light, particularly laser light in the near infrared region according to this embodiment. The strip-shaped film is rolled from both ends in the width direction of the supply conveyor 11b shown in FIG. 1, and the overlapping both ends are sealed on the back side to form a cylinder having the back seal portion 40. Then, the inside of the cylinder is filled with fillings at predetermined intervals and arranged along the longitudinal direction of the supply conveyor 11b shown in FIG. After that, the inside of the cylinder is replaced with an inert gas such as nitrogen gas (gas purge), and the cylinder is sealed between the front and back of the filling along the longitudinal direction of the supply conveyor 11b shown in FIG. .. The front seal portion 41 and the rear seal portion 42 formed before and after the filling are separated from each other, and the back sealing portion 40 is provided on the back side as shown in FIG. A pillow packaging bag B having a portion 41 and a rear seal portion 42 is formed.
As shown in FIG. 1, the pillow packaging bag B filled with the filling is placed on the supply conveyor 11b with the back seal portion 40 on the back side facing down, and even when the pillow packaging bag B is moved from the supply conveyor 11b to the measurement conveyor 11a. Further, it is moved with the back side facing down, and is transferred on the measurement feed belt of the measuring conveyor 11a with the back side facing down.
As a result, it is possible to prevent the laser light from being scattered or diffusely reflected by the back surface sealing portion 40 on which the films overlap, so that the measurement accuracy can be improved. In addition, the reason why the back seal portion 40 on which the films are overlapped is directed downward is that the pillow packaging bag B is sandwiched between the guide plates 13a and 13b when the back seal portion 40 is facing upward. At this time, since the rigidity of the back seal portion 40 is higher than that of the other film portions, it is difficult to bend, and there is a possibility that the upper portion of the pillow packaging bag B cannot be inflated well.

上記の構成を有するガス濃度測定装置10は、以下のように動作する。
充填物が充填されたピロー包装袋Bは、80rpmで回転する主ロータによって送られる供給送りベルト21上を100mmピッチで整列して供給コンベア11bの終端に向って移送される。
そして、ピロー包装袋Bは、100mm間隔で立設されたストッパー16で区画形成され、40rpmで回転する主ロータ14bによって送られる測定送りベルト15に対して、供給コンベア11bの終端から測定コンベア11aの始端へ、100mmピッチ×2のタイミングで2つずつ送られる。これによって、ストッパー16で区画形成されたエリア毎に1つずつピロー包装袋Bを配置させることができる。
The gas concentration measuring device 10 having the above configuration operates as follows.
The pillow packaging bag B filled with the filling is aligned on the supply feed belt 21 sent by the main rotor rotating at 80 rpm at a pitch of 100 mm and transferred toward the end of the supply conveyor 11b.
Then, the pillow packaging bag B is partitioned by stoppers 16 erected at intervals of 100 mm, and the measurement feed belt 15 is fed by the main rotor 14b rotating at 40 rpm from the end of the supply conveyor 11b to the measurement conveyor 11a. Two are sent to the start end at a timing of 100 mm pitch x 2. As a result, one pillow packaging bag B can be arranged for each area formed by the stopper 16.

測定コンベア11aに載置されたピロー包装袋Bは、図1に示すように、測定送りベルト15を挟んで2台連なって配置されているレーザー式ガス濃度計12A,12Bの主ヘッド25と副ヘッド26の間に移送される。
2つずつ間欠移送されるピロー包装袋Bのうち、一のピロー包装袋Bが、レーザー式ガス濃度計12Aの主ヘッド25と副ヘッド26の間に移送され、他のピロー包装袋Bが、レーザー式ガス濃度計12Bの主ヘッド25と副ヘッド26の間に移送されたとき、両ガイドプレート13a,13bが互いに接近して、両ピロー包装袋Bを挟み込み、両ピロー包装袋Bの上部が膨らまされて、被測定空間が形成される。
As shown in FIG. 1, the pillow packaging bag B placed on the measurement conveyor 11a is arranged in a row with the measurement feed belt 15 sandwiched between the main head 25 and the sub of the laser gas densitometers 12A and 12B. It is transferred between the heads 26.
Of the two pillow packaging bags B that are intermittently transferred, one pillow packaging bag B is transferred between the main head 25 and the sub head 26 of the laser gas concentration meter 12A, and the other pillow packaging bag B is transferred. When transferred between the main head 25 and the sub head 26 of the laser gas densitometer 12B, both guide plates 13a and 13b approach each other, sandwich both pillow packaging bags B, and the upper part of both pillow packaging bags B It is inflated to form a space to be measured.

図3に示すように、ガイドプレート13a,13bが互いに接近するタイミングにあわせて、レーザー式ガス濃度計12A,12Bの主ヘッド25に対して副ヘッド26が接近するように構成されているので、図3に示すように、ガイドプレート13a,13bが互いに接近したとき、主ヘッド25と副ヘッド26が被測定空間を挟んで対向する。そして、間欠移送している測定コンベア11aが停止している間、主ヘッド25からレーザー光が射出され、被測定空間を透過して、副ヘッド26で受光される。その後、ピロー包装袋B内部の残留酸素ガスのガス濃度が計測され、当該ガス濃度が基準値を超えるようなピロー包装袋Bは、不合格として本実施例に係るガス濃度測定装置10を備えたピロー包装袋Bの検査工程から排出される。 As shown in FIG. 3, the sub-head 26 is configured to approach the main head 25 of the laser gas densitometers 12A and 12B at the timing when the guide plates 13a and 13b approach each other. As shown in FIG. 3, when the guide plates 13a and 13b are close to each other, the main head 25 and the sub head 26 face each other with the measurement space in between. Then, while the measuring conveyor 11a that is intermittently transferred is stopped, the laser beam is emitted from the main head 25, passes through the space to be measured, and is received by the sub head 26. After that, the gas concentration of the residual oxygen gas inside the pillow packaging bag B is measured, and the pillow packaging bag B having the gas concentration exceeding the reference value is regarded as rejected and provided with the gas concentration measuring device 10 according to the present embodiment. It is discharged from the inspection process of the pillow packaging bag B.

次に、第1実施例と相違する構成を有するガス濃度測定装置の実施例を添付した図面にしたがって説明する。図7は、第2実施例に係るガス濃度測定装置の構成の概略を示す平面図である。
ここで、第1実施例に係るガス濃度測定装置10と第2実施例に係るガス濃度測定装置10Aの相違点は、ガイドの構成に関する点である。なお、コンベア11、レーザー式ガス濃度計12A,12Bの構成については第1実施例と同様であるから、説明を省略する。
Next, an example of a gas concentration measuring device having a configuration different from that of the first embodiment will be described with reference to the attached drawings. FIG. 7 is a plan view showing an outline of the configuration of the gas concentration measuring device according to the second embodiment.
Here, the difference between the gas concentration measuring device 10 according to the first embodiment and the gas concentration measuring device 10A according to the second embodiment is related to the configuration of the guide. Since the configurations of the conveyor 11 and the laser gas densitometers 12A and 12B are the same as those in the first embodiment, the description thereof will be omitted.

第2実施例に係るガス濃度測定装置10Aが有するガイドは、一対のガイドプレート13c,13dからなる。ガイドプレート13c,13dは、図7に示すように、上端縁が大きく弓なりに反りつつ、捻じれるように形成されている。
そのため、一のガイドプレート13cを、主ヘッド25側の測定コンベア11a脇に固定し、他のガイドプレート13dを、副ヘッド26側の測定コンベア11a脇に固定したとき、両ガイドプレート13c,13dは、上端縁部の間隔が測定コンベア11aの長手方向に沿って、上流側がピロー包装袋Bよりも大きく拡開し、下流方向に向かって漸次狭まるように構成され、かつ、レーザー式ガス濃度計12A,12Bの主ヘッド25と副ヘッド26の間へ近づくにつれて、ピロー包装袋Bを挟み込んで押さえるように、互いに対向するガイドプレート13c,13dの上端縁が測定コンベア11a側に倒れ込むように構成されている。
したがって、両ガイドプレート13c,13dは、当該ガイドプレート13c,13d間を移送されるピロー包装袋Bが下流方向へ進むにつれて前後シール部41,42を折り畳んで挟み込み、当該ピロー包装袋Bの上部を膨らませることができるので、主ヘッド25と副ヘッド26の間にピロー包装袋Bが移送されたとき、当該ピロー包装袋Bの内部に被測定空間を形成することができる。
The guide included in the gas concentration measuring device 10A according to the second embodiment is composed of a pair of guide plates 13c and 13d. As shown in FIG. 7, the guide plates 13c and 13d are formed so as to be twisted while the upper end edge is greatly warped in a bow shape.
Therefore, when one guide plate 13c is fixed to the side of the measuring conveyor 11a on the main head 25 side and the other guide plate 13d is fixed to the side of the measuring conveyor 11a on the sub head 26 side, both guide plates 13c and 13d are fixed. Along the longitudinal direction of the measuring conveyor 11a, the distance between the upper end edges is configured so that the upstream side expands more than the pillow packaging bag B and gradually narrows toward the downstream direction, and the laser gas densitometer 12A , The upper end edges of the guide plates 13c and 13d facing each other are configured to fall toward the measuring conveyor 11a so as to sandwich and hold the pillow packaging bag B as it approaches between the main head 25 and the sub head 26 of 12B. There is.
Therefore, both guide plates 13c and 13d fold and sandwich the front and rear sealing portions 41 and 42 as the pillow packaging bag B transferred between the guide plates 13c and 13d advances in the downstream direction, and the upper portion of the pillow packaging bag B is sandwiched. Since it can be inflated, when the pillow packaging bag B is transferred between the main head 25 and the sub head 26, a space to be measured can be formed inside the pillow packaging bag B.

本実施例に係るガイドプレート13c、13dもまた、第1実施例のガイドプレート13a,13bのバリエーションのように、一のガイドプレート13cの所定の位置に、主ヘッド25から射出されるレーザー光が透過可能な窓部を設け、他のガイドプレート13dには一のガイドプレート13cに設けた窓部と対向する位置に、レーザー光が透過可能な窓部を設けて、当該窓部を透過したレーザー光を副ヘッド26で受光する構成にしても良い。
さらに、一のガイドプレート13c側の窓部に鏡胴29のレーザー射出口29aを重ね合わせて当接させると共に、他のガイドプレート13d側の窓部に受光センサ30のレーザー受光口30aを重ね合わせて当接させるように構成することが好ましい。
これによって、両ガイドプレート13c,13dがピロー包装袋Bを押さえ込んで上部を膨らませたとき、ピロー包装袋Bのフィルムを両ガイドプレート13c,13dに設けた窓部に密着させることができる。さらに窓部は、鏡胴29のレザー射出口29aと受光センサ30のレーザー受光口30aにそれぞれ当接していることから、レーザー光を透過させる被測定空間の前後で大気の影響を極力排除することができる。そのため、酸素ガスのガス濃度を測定するときの測定精度を向上させることができる。
The guide plates 13c and 13d according to the present embodiment also have the laser beam emitted from the main head 25 at a predetermined position of one guide plate 13c as in the variation of the guide plates 13a and 13b of the first embodiment. A transparent window portion is provided, and the other guide plate 13d is provided with a window portion capable of transmitting laser light at a position facing the window portion provided on one guide plate 13c, and a laser transmitted through the window portion is provided. The sub-head 26 may be configured to receive light.
Further, the laser emission port 29a of the lens barrel 29 is overlapped and brought into contact with the window portion on the one guide plate 13c side, and the laser light receiving port 30a of the light receiving sensor 30 is overlapped on the window portion on the other guide plate 13d side. It is preferable that they are configured to come into contact with each other.
As a result, when both the guide plates 13c and 13d press the pillow packaging bag B and inflate the upper portion, the film of the pillow packaging bag B can be brought into close contact with the window portion provided on both the guide plates 13c and 13d. Further, since the window portion is in contact with the leather injection port 29a of the lens barrel 29 and the laser light receiving port 30a of the light receiving sensor 30, the influence of the atmosphere should be eliminated as much as possible before and after the space to be measured through which the laser light is transmitted. Can be done. Therefore, the measurement accuracy when measuring the gas concentration of oxygen gas can be improved.

上記の構成を有するガス濃度測定装置10Aの動作は、測定コンベア11a上を移送されてきたピロー包装袋Bがレーザー式ガス濃度計12A,12Bの主ヘッド25と副ヘッド26の間に移送されたとき、当該ピロー包装袋Bの上部に形成された被測定空間をレーザー光が透過して、ピロー包装袋B内の残留酸素ガス濃度を測定する一連の流れについては、第1実施例に係るガス濃度測定装置10と同様である。
しかし、第2実施例に係るガス濃度測定装置10Aでは、測定コンベア11a上をピロー包装袋Bが移送されるにつれて、測定コンベア11aを挟んで対向配置され、当該測定コンベア11a脇に固定されたガイドプレート13c,13dの間にピロー包装袋が次第に挟み込まれ、レーザー式ガス濃度計12A,12Bの主ヘッド25と副ヘッド26の間に移送されたときには、ピロー包装袋Bの上部に被測定空間が形成されるように構成した。
このように、第2実施例に係るガス濃度測定装置10Aは、互いに接離自在に形成された第1実施例に係るガイドプレート13a,13bと比して、装置の部品点数を少なくすることができる。すなわち、充填する製品によってピロー包装袋Bの大きさが長期間変わらないような場合は、本実施例のように固定型のガイドプレート13c,13dを用いることによって、部品点数を抑えてメンテナンスフリーとすることができるので、コストを抑えることができる。
In the operation of the gas concentration measuring device 10A having the above configuration, the pillow packaging bag B transferred on the measuring conveyor 11a is transferred between the main head 25 and the sub head 26 of the laser type gas concentration meters 12A and 12B. At that time, with respect to a series of flows for measuring the residual oxygen gas concentration in the pillow packaging bag B by transmitting laser light through the space to be measured formed on the upper portion of the pillow packaging bag B, the gas according to the first embodiment. This is the same as the concentration measuring device 10.
However, in the gas concentration measuring device 10A according to the second embodiment, as the pillow packaging bag B is transferred on the measuring conveyor 11a, the guides are arranged so as to face each other with the measuring conveyor 11a in between and fixed to the side of the measuring conveyor 11a. When the pillow packaging bag is gradually sandwiched between the plates 13c and 13d and transferred between the main head 25 and the sub head 26 of the laser gas densitometers 12A and 12B, the space to be measured is created above the pillow packaging bag B. It was configured to be formed.
As described above, the gas concentration measuring device 10A according to the second embodiment can reduce the number of parts of the device as compared with the guide plates 13a and 13b according to the first embodiment formed so as to be in contact with each other. it can. That is, when the size of the pillow packaging bag B does not change for a long period of time depending on the product to be filled, by using the fixed guide plates 13c and 13d as in this embodiment, the number of parts can be reduced and maintenance-free. Because it can be done, the cost can be suppressed.

次に、第1実施例又は第2実施例と相違する構成を有するガス濃度測定装置の実施例を添付した図面にしたがって説明する。図8は、第3実施例に係るガス濃度測定装置の構成の概略を示す側面図である。
ここで、第1実施例及び第2実施例に係るガス濃度測定装置10,10Aと、第3実施例に係るガス濃度測定装置10Bの相違点は、ガイド13の構成に関する点である。なお、コンベア11、レーザー式ガス濃度計12A,12Bの構成については第1実施例と同様であるから、説明を省略する。
Next, an example of a gas concentration measuring device having a configuration different from that of the first embodiment or the second embodiment will be described with reference to the attached drawings. FIG. 8 is a side view showing an outline of the configuration of the gas concentration measuring device according to the third embodiment.
Here, the difference between the gas concentration measuring devices 10 and 10A according to the first embodiment and the second embodiment and the gas concentration measuring device 10B according to the third embodiment is related to the configuration of the guide 13. Since the configurations of the conveyor 11 and the laser gas densitometers 12A and 12B are the same as those in the first embodiment, the description thereof will be omitted.

第3実施例に係るガス濃度測定装置が有するガイド13は、一対の吸盤装置13e,13fからなる。一の吸盤装置13eは、図1に示すレーザー式ガス濃度計12A,12Bの主ヘッド25近傍に配置され、他吸盤装置12fは、レーザー式ガス濃度計12A,12Bの副ヘッド26近傍に配置される。吸盤装置13e,13fは、少なくとも一つ、好ましくは複数個の進退自在に形成された吸盤45を有している。吸盤45は、吸着対象のピロー包装袋Bを脱着自在に構成されている。これによって、吸盤装置13e,13fは、ピロー包装袋Bを所定の位置で自在に脱着することができる。すなわち、ピロー包装袋Bが主ヘッド25と副ヘッド26の間に移送されたとき、吸盤45がピロー包装袋Bの所定箇所を吸着することによって、吸盤装置13e,13fはピロー包装袋Bを主ヘッド25と副ヘッド26の間で固定することができる。
互いに対向する吸盤装置13e,13fがピロー包装袋を吸着固定し、進退自在に形成された吸盤45が測定コンベア11aの幅方向両端から中央に向って双方からピロー包装袋Bを押し合うことによって、ピロー包装袋Bの上部を膨らませることができ、ピロー包装袋B内部に被測定空間を形成することができる。
The guide 13 included in the gas concentration measuring device according to the third embodiment includes a pair of suction cup devices 13e and 13f. One suction cup device 13e is arranged near the main head 25 of the laser gas densitometers 12A and 12B shown in FIG. 1, and the other suction cup device 12f is arranged near the sub head 26 of the laser gas densitometers 12A and 12B. To. The suction cup devices 13e and 13f have at least one, preferably a plurality of suction cups 45 formed so as to be able to move forward and backward. The suction cup 45 is configured so that the pillow packaging bag B to be adsorbed can be detachably attached. As a result, the suction cup devices 13e and 13f can freely attach / detach the pillow packaging bag B at a predetermined position. That is, when the pillow packaging bag B is transferred between the main head 25 and the sub head 26, the suction cup 45 sucks a predetermined portion of the pillow packaging bag B, so that the suction cup devices 13e and 13f mainly use the pillow packaging bag B. It can be fixed between the head 25 and the sub head 26.
The suction cups 13e and 13f facing each other attract and fix the pillow packaging bag, and the suction cups 45 formed so as to advance and retreat push the pillow packaging bag B from both sides toward the center from both ends in the width direction of the measuring conveyor 11a. The upper part of the pillow packaging bag B can be inflated, and a space to be measured can be formed inside the pillow packaging bag B.

上記の構成を有するガス濃度測定装置10Bの動作は、測定コンベア11a上を移送されてきたピロー包装袋Bがレーザー式ガス濃度計12A,12Bの主ヘッド25と副ヘッド26の間に移送されたとき、当該ピロー包装袋Bの上部に形成された被測定空間をレーザー光が透過して、ピロー包装袋B内の残留酸素ガス濃度を測定する一連の流れについては、第1実施例に係るガス濃度測定装置10と同様である。
しかし、第3実施例に係るガス濃度測定装置10Bでは、測定コンベア11aを挟んで対向配置された吸盤装置13e,13fの間にピロー包装袋Bが移送されてきたとき、当該ピロー包装袋Bを吸盤45が吸着固定して、測定コンベア11aの幅方向両端の双方から押し合うことにより、ピロー包装袋Bの上部に被測定空間が形成されるように構成した。
このように、第3実施例に係るガス濃度測定装置10Bは、第1実施例に係るガイドプレート13a,13bでピロー包装袋Bを挟み込んだり、また第2実施例に係るガイドプレート13c,13d間でピロー包装袋Bを摺動させて挟み込んだりするようにした構成と比べて、測定コンベア11a上に載置されているピロー包装袋Bの表裏や前後左右の向きに関わらず、どのような向きであっても、吸盤45にピロー包装袋Bを吸着固定することが可能であれば、図2に示すようにストッパー16でピロー包装袋Bが一つずつ移送されている場合に、当該ピロー包装袋Bをそれぞれ吸着固定して被測定空間を形成することができる。すなわち、コンベア11上を多種多様なピロー包装袋Bが移送されるような場合は、本実施例のように吸盤装置13e,13fで吸着固定することによって、容易に対応させることができる。
In the operation of the gas concentration measuring device 10B having the above configuration, the pillow packaging bag B transferred on the measuring conveyor 11a is transferred between the main head 25 and the sub head 26 of the laser type gas concentration meters 12A and 12B. At that time, with respect to a series of flows for measuring the residual oxygen gas concentration in the pillow packaging bag B by transmitting laser light through the space to be measured formed on the upper portion of the pillow packaging bag B, the gas according to the first embodiment. This is the same as the concentration measuring device 10.
However, in the gas concentration measuring device 10B according to the third embodiment, when the pillow packaging bag B is transferred between the suction cup devices 13e and 13f arranged so as to sandwich the measuring conveyor 11a, the pillow packaging bag B is used. The suction cup 45 is suction-fixed and pressed from both ends of the measuring conveyor 11a in the width direction so that a space to be measured is formed in the upper part of the pillow packaging bag B.
As described above, in the gas concentration measuring device 10B according to the third embodiment, the pillow packaging bag B is sandwiched between the guide plates 13a and 13b according to the first embodiment, and between the guide plates 13c and 13d according to the second embodiment. In comparison with the configuration in which the pillow packaging bag B is slid and sandwiched between the two, the orientation of the pillow packaging bag B mounted on the measuring conveyor 11a is not limited to the front and back or the front, back, left and right directions. Even so, if it is possible to suck and fix the pillow packaging bag B to the sucker 45, when the pillow packaging bags B are transferred one by one by the stopper 16 as shown in FIG. 2, the pillow packaging is concerned. Each bag B can be sucked and fixed to form a space to be measured. That is, when a wide variety of pillow packaging bags B are transferred on the conveyor 11, they can be easily dealt with by suction-fixing them with suction cup devices 13e and 13f as in this embodiment.

なお、上記各実施例について、使用する包装袋をピロー包装袋としたが、これに限定されるものではなく、コンベア上を移送され、ガイドで挟み込める形状の包装袋であれば、上記各実施例に係るガス濃度測定装置に適用することができる。 In each of the above embodiments, the packaging bag to be used is a pillow packaging bag, but the present invention is not limited to this, and any packaging bag having a shape that can be transferred on a conveyor and sandwiched between guides is used. It can be applied to the gas concentration measuring device according to the example.

B…包装袋、ピロー包装袋、
10,10A,10B…ガス濃度測定装置、11…コンベア、11a…測定コンベア、11b…供給コンベア、12,12A,12B…レーザー式ガス濃度計、13…ガイド、
13a,13b…第1実施例に係るガイドプレート、13c,13d…第2実施例に係るガイドプレート、13e,13f…吸盤装置、
14a…測定コンベアの従ロータ、14b…測定コンベアの主ロータ、14c…測定コンベアのステッピングモータ、
15…測定送りベルト、16…ストッパー、
20…供給コンベアの従ロータ、21…供給送りベルト、
25…主ヘッド、26…副ヘッド、
27…レーザー光源、28…制御部、29…鏡胴、29a…レーザー射出口、
30…受光センサ、30a…レーザー受光口、31…測定部、
40…背面シール部、41…前シール部、42…後シール部、
45…吸盤。

1…従来のガス濃度測定装置、2…従来のレーザー発生部、3…従来の主ヘッド、4…従来のレーザー受光部、5…従来の副ヘッド、6…グリップ。
B ... Packaging bag, pillow packaging bag,
10, 10A, 10B ... Gas concentration measuring device, 11 ... Conveyor, 11a ... Measuring conveyor, 11b ... Supply conveyor, 12, 12A, 12B ... Laser gas concentration meter, 13 ... Guide,
13a, 13b ... Guide plate according to the first embodiment, 13c, 13d ... Guide plate according to the second embodiment, 13e, 13f ... Sucker device,
14a ... Sub-rotor of measurement conveyor, 14b ... Main rotor of measurement conveyor, 14c ... Stepping motor of measurement conveyor,
15 ... Measurement feed belt, 16 ... Stopper,
20 ... Sub-rotor of supply conveyor, 21 ... Supply feed belt,
25 ... main head, 26 ... sub head,
27 ... laser light source, 28 ... control unit, 29 ... lens barrel, 29a ... laser ejection port,
30 ... light receiving sensor, 30a ... laser light receiving port, 31 ... measuring unit,
40 ... back seal part, 41 ... front seal part, 42 ... rear seal part,
45 ... Sucker.

1 ... Conventional gas concentration measuring device, 2 ... Conventional laser generator, 3 ... Conventional main head, 4 ... Conventional laser light receiving unit, 5 ... Conventional sub head, 6 ... Grip.

Claims (6)

主ヘッドから特定波長のレーザー光を、包装袋を透過するように射出し、当該レーザー光を副ヘッドで受光して前記包装袋の透過前後で変化する特定波長の吸収スペクトルに基づいて前記包装袋の内部に残留している特定ガスのガス濃度を測定するようにした包装袋用ガス濃度測定装置であって、
前記包装袋を載置して間欠移送するコンベアを挟んで、コンベアの幅方向の両側に一対のガイドを対向するように配置し、
前記コンベアに載置された包装袋が前記主ヘッドと前記副ヘッドの間に移送されたとき、両ガイドで包装袋が挟み込まれて包装袋の上部が膨らむことにより、包装袋の内部に被測定空間を形成し、
当該被測定空間を前記レーザー光が透過するようにしたことを特徴とする包装袋用ガス濃度測定装置。
A laser beam of a specific wavelength is emitted from the main head so as to pass through the packaging bag, the laser beam is received by the sub head, and the packaging bag is based on an absorption spectrum of a specific wavelength that changes before and after transmission of the packaging bag. It is a gas concentration measuring device for packaging bags that measures the gas concentration of a specific gas remaining inside the bag.
A pair of guides are arranged so as to face each other on both sides in the width direction of the conveyor, sandwiching the conveyor on which the packaging bag is placed and intermittently transferred.
When the packaging bag placed on the conveyor is transferred between the main head and the sub-head, the packaging bag is sandwiched between both guides and the upper part of the packaging bag swells, so that the inside of the packaging bag is measured. Form a space,
A gas concentration measuring device for a packaging bag, characterized in that the laser beam is transmitted through the space to be measured.
前記包装袋として、光が透過可能なフィルムを丸めて互いに重なり合った両側端を背面側でシールして筒体を形成し、当該筒体内に充填物を配置してから、前記筒体内をガス置換すると共に前記筒体の前後両端をシールして密封したピロー包装袋を用い、
当該ピロー包装袋を、背面側を下にして一つずつ並べて前記コンベアで間欠移送することを特徴とする請求項1に記載の包装袋用ガス濃度測定装置。
As the packaging bag, a film that allows light to pass through is rolled up and both overlapping ends are sealed on the back side to form a cylinder, and a filling material is placed inside the cylinder, and then the inside of the cylinder is replaced with gas. At the same time, use a pillow packaging bag that seals and seals both front and rear ends of the cylinder.
The gas concentration measuring device for a packaging bag according to claim 1, wherein the pillow packaging bags are arranged one by one with the back side facing down and intermittently transferred by the conveyor.
前記ガイドが、互いに接離自在に形成されたガイドプレートからなり、
当該ガイドプレートが接近して、前記ピロー包装袋を挟み込むように押さえたとき、
前記ピロー包装袋に前記被測定空間が形成されるようにしたことを特徴とする請求項1若しくは請求項2に記載の包装袋用ガス濃度測定装置。
The guides consist of guide plates formed so as to be in contact with each other.
When the guide plate approaches and is pressed so as to sandwich the pillow packaging bag,
The gas concentration measuring device for a packaging bag according to claim 1 or 2, wherein the space to be measured is formed in the pillow packaging bag.
前記ガイドが、前記コンベアの長手方向に沿って、上流側が前記ピロー包装袋よりも大きく拡開し、下流方向に向かって前記ガイド間の幅が前記ピロー包装袋を挟み込んで押さえるように漸次狭まって設置されたガイドプレートからなり、
前記コンベア上を移動する前記ピロー包装袋が、前記ガイドプレートに挟み込まれ、押さえられたとき、
前記ピロー包装袋に前記被測定空間が形成されるようにしたことを特徴とする請求項1若しくは請求項2に記載の包装袋用ガス濃度測定装置。
Along the longitudinal direction of the conveyor, the guides expand wider on the upstream side than the pillow packaging bag, and the width between the guides gradually narrows toward the downstream side so as to sandwich and hold the pillow packaging bag. Consists of installed guide plates
When the pillow packaging bag moving on the conveyor is sandwiched and pressed by the guide plate,
The gas concentration measuring device for a packaging bag according to claim 1 or 2, wherein the space to be measured is formed in the pillow packaging bag.
前記ガイドプレートのそれぞれに、前記レーザ光が透過可能な窓部を所定位置に設け、
前記ガイドプレートが前記ピロー包装袋を挟み込んで押さえ、前記被測定空間を形成したとき、
前記窓部に、前記ピロー包装袋の前記フィルムが密着し、
前記主ヘッドから射出されたレーザー光が、前記窓部と前記被測定空間を通過して、前記副ヘッドに入射するようにしたことを特徴とする請求項3若しくは請求項4に記載の包装袋用ガス濃度測定装置。
Each of the guide plates is provided with a window portion through which the laser beam can be transmitted at a predetermined position.
When the guide plate sandwiches and presses the pillow packaging bag to form the space to be measured.
The film of the pillow packaging bag adheres to the window portion, and the film is brought into close contact with the window portion.
The packaging bag according to claim 3 or 4, wherein the laser beam emitted from the main head passes through the window portion and the space to be measured and is incident on the sub head. Gas concentration measuring device.
前記ガイドが、互いに接離自在に形成され、前記ピロー包装袋を挟み込んで吸着固定する吸盤装置からなり、
当該吸盤装置が前記ピロー包装袋を挟み込んで吸着固定し、互いに接近して当該ピロー包装袋を押したとき、
前記ピロー包装袋に前記被測定空間が形成されるようにしたことを特徴とする請求項1若しくは請求項2に記載の包装袋用ガス濃度測定装置。
The guides are formed so as to be detachable from each other, and consist of a suction cup device that sandwiches and fixes the pillow packaging bag.
When the suction cup device sandwiches and fixes the pillow packaging bag and pushes the pillow packaging bag close to each other.
The gas concentration measuring device for a packaging bag according to claim 1 or 2, wherein the space to be measured is formed in the pillow packaging bag.
JP2019226983A 2019-12-17 2019-12-17 Gas concentration measuring device for packaging bags Active JP7505732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019226983A JP7505732B2 (en) 2019-12-17 2019-12-17 Gas concentration measuring device for packaging bags

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019226983A JP7505732B2 (en) 2019-12-17 2019-12-17 Gas concentration measuring device for packaging bags

Publications (2)

Publication Number Publication Date
JP2021096133A true JP2021096133A (en) 2021-06-24
JP7505732B2 JP7505732B2 (en) 2024-06-25

Family

ID=76431076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019226983A Active JP7505732B2 (en) 2019-12-17 2019-12-17 Gas concentration measuring device for packaging bags

Country Status (1)

Country Link
JP (1) JP7505732B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118329306A (en) * 2024-06-13 2024-07-12 常州树杰塑业有限公司 Air tightness detection device for ultra-high strength pure PE battery powder bag

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10129736A (en) * 1996-10-25 1998-05-19 Kyoraku Co Ltd Manufacture of food and manufacture thereof
JP2013096919A (en) * 2011-11-02 2013-05-20 Shiseido Co Ltd Sample storage container and infrared absorption spectrum measuring jig
JP2018119894A (en) * 2017-01-27 2018-08-02 日立造船株式会社 Laser spectroscopy inspection method and laser spectroscopy inspection device
US20190113465A1 (en) * 2016-04-20 2019-04-18 Ft System S.R.L. Non-destructive measurement unit of the gas concentration in sealed flexible containers and automatic filling and/or packaging line using such a unit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189386A (en) 2011-03-09 2012-10-04 Panasonic Corp Component analyzer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10129736A (en) * 1996-10-25 1998-05-19 Kyoraku Co Ltd Manufacture of food and manufacture thereof
JP2013096919A (en) * 2011-11-02 2013-05-20 Shiseido Co Ltd Sample storage container and infrared absorption spectrum measuring jig
US20190113465A1 (en) * 2016-04-20 2019-04-18 Ft System S.R.L. Non-destructive measurement unit of the gas concentration in sealed flexible containers and automatic filling and/or packaging line using such a unit
JP2018119894A (en) * 2017-01-27 2018-08-02 日立造船株式会社 Laser spectroscopy inspection method and laser spectroscopy inspection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118329306A (en) * 2024-06-13 2024-07-12 常州树杰塑业有限公司 Air tightness detection device for ultra-high strength pure PE battery powder bag

Also Published As

Publication number Publication date
JP7505732B2 (en) 2024-06-25

Similar Documents

Publication Publication Date Title
US8397475B2 (en) Packaging machine with gas concentration measuring device
US8379209B2 (en) Non-destructive inspection device for oxygen concentration in bag-shaped container
JP2021067634A (en) Device for measuring gas concentration in packaging bag
JP5309349B2 (en) Gas concentration measuring device for packaging bags
JP7321453B2 (en) Laser gas concentration meter
JP5686662B2 (en) Nondestructive inspection device for oxygen concentration in bag-like containers
US10690564B2 (en) Container leak detection
WO2011068090A1 (en) Method and device for inspecting poor sealing of container
US10816481B2 (en) Non-destructive measurement unit of the gas concentration in sealed flexible containers and automatic filling and/or packaging line using such a unit
CN111630369B (en) Inspection device, PTP packaging machine, and correction method for inspection device
JP2021096133A (en) Gas concentration measuring device for packaging bags
US20220276154A1 (en) Method for analysing a gas using an optical sensor
ITMI20120493A1 (en) EQUIPMENT FOR NON-DESTRUCTIVE CONTROL OF INTEGRITY AND / OR SUITABILITY OF SEALED PACKAGES
US20170268996A1 (en) Method and device for measuring the gas content of materials packaged in plastic films, glass or other light-permeable materials and sensitive to a gas to be measured
JP2021067632A (en) Device for measuring gas concentration in packaging bag
JP5337953B2 (en) Gas concentration measuring method and gas concentration measuring device
JP7350312B2 (en) Method for measuring gas concentration in packaging containers
JP7343169B2 (en) Gas concentration measurement method and gas concentration measurement device for sealed packaging containers
JP7355381B2 (en) sealed packaging containers
JP2021067633A (en) Method of measuring gas concentration in packaging bag
JP7339662B2 (en) Gas concentration measuring method for sealed packaging container and gas concentration measuring device used therefor
JP7375277B2 (en) Internal quality inspection equipment for fruits and vegetables
JP2021067631A (en) Method of measuring gas concentration in packaging bag
JP7339663B2 (en) Gas concentration measuring method for sealed packaging container and gas concentration measuring device used therefor
CN111868506B (en) Inspection device, PTP packaging machine and inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240606

R150 Certificate of patent or registration of utility model

Ref document number: 7505732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150