JP7339662B2 - Gas concentration measuring method for sealed packaging container and gas concentration measuring device used therefor - Google Patents

Gas concentration measuring method for sealed packaging container and gas concentration measuring device used therefor Download PDF

Info

Publication number
JP7339662B2
JP7339662B2 JP2019226116A JP2019226116A JP7339662B2 JP 7339662 B2 JP7339662 B2 JP 7339662B2 JP 2019226116 A JP2019226116 A JP 2019226116A JP 2019226116 A JP2019226116 A JP 2019226116A JP 7339662 B2 JP7339662 B2 JP 7339662B2
Authority
JP
Japan
Prior art keywords
laser
packaging container
gas concentration
laser light
sealed packaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019226116A
Other languages
Japanese (ja)
Other versions
JP2021096097A (en
Inventor
雅志 大島
直樹 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Packer Co Ltd
Original Assignee
General Packer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Packer Co Ltd filed Critical General Packer Co Ltd
Priority to JP2019226116A priority Critical patent/JP7339662B2/en
Publication of JP2021096097A publication Critical patent/JP2021096097A/en
Application granted granted Critical
Publication of JP7339662B2 publication Critical patent/JP7339662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、密封包装容器内の特定ガスの濃度を高精度に測定可能な密封包装容器のガス濃度測定方法およびそれに用いるガス濃度測定装置に関するものである。 TECHNICAL FIELD The present invention relates to a gas concentration measuring method for a sealed packaging container capable of measuring the concentration of a specific gas in the sealed packaging container with high accuracy, and a gas concentration measuring device used therefor.

従来より、ガス置換されて密封されたレトルト成形容器(例えばレトルト米飯パック)などの密封包装容器が多用されている。
この種の密封包装容器の包装工程では、ヘッドスペース内に残存する、被包装物の保存期間または賞味期間を縮めるおそれがある酸化原因ガス(例えば酸素)を除去した後、窒素、二酸化炭素等の不活性ガスでガス置換して密封するガス置換包装が行われている(特許文献1)。これによって、密封包装容器内の酸化原因ガスは除去され、被包装物、特に食品は長期の保存期間、賞味期間を確保することができる。
2. Description of the Related Art Conventionally, sealed packaging containers such as gas-replaced and sealed retort molded containers (for example, retort cooked rice packs) have been widely used.
In the packaging process of this type of hermetic packaging container, after removing oxidizing gases (e.g., oxygen) remaining in the headspace that may shorten the shelf life or shelf life of the packaged product, nitrogen, carbon dioxide, etc. are removed. Gas-replacement packaging in which the gas is replaced with an inert gas and sealed is performed (Patent Document 1). As a result, the oxidation-causing gas in the sealed packaging container is removed, and the items to be packaged, especially foods, can be stored for a long period of time and kept fresh for a long time.

そして、ガス置換包装後の検査工程において、酸化原因ガス、特に酸素の濃度が既定値以下であるかどうかの検査が行われているが、現在主流であるガス濃度の測定方法は、サンプルとして任意に選択した密封包装容器に注射針を刺し、密封包装容器内から吸引した少量のガスの組成を検査する抜き取り検査である。この抜き取り検査では、注射痕が形成された密封包装容器は廃棄しなければならない。また、検査精度を上げるためにサンプル数を増やすと検査時間が長くなり、増加する廃棄量によって経済的、時間的損失が増大する不都合があった。さらに、密封包装容器内において被包装物が存在しないヘッドスペースが狭小な場合、被包装物が測定を阻害するためガス濃度の測定が極めて困難であった。 In the inspection process after gas replacement packaging, an inspection is performed to see if the concentration of oxidizing gases, especially oxygen, is below a predetermined value. This is a sampling inspection in which the composition of a small amount of gas sucked from the sealed packaging container is inspected by inserting a hypodermic needle into the sealed packaging container selected in the first step. In this sampling inspection, sealed packaging containers with injection marks must be discarded. Moreover, if the number of samples is increased in order to improve the inspection accuracy, the inspection time becomes longer, and the increased amount of waste causes an increase in economic and time loss. Furthermore, when the head space in which there is no object to be packaged is narrow in the sealed packaging container, measurement of the gas concentration is extremely difficult because the object to be packaged interferes with the measurement.

特許第3742042号公報Japanese Patent No. 3742042

そこで、本発明の課題は、密封包装容器を損傷することなく、被包装物が存在しないヘッドスペースが狭小な場合でも、内部の特定ガスの濃度を高精度に測定可能な密封包装容器のガス濃度測定方法およびそれに用いるガス濃度測定装置を提供することにある。 Therefore, an object of the present invention is to measure the gas concentration of a specific gas inside a sealed packaging container with high accuracy without damaging the sealed packaging container, even if the head space where there is no package is narrow. An object of the present invention is to provide a measuring method and a gas concentration measuring device used therefor.

上記課題を解決するものは、被包装物を充填しガス置換して包装された密封包装容器内の特定ガスの濃度をガス濃度測定装置により測定するガス濃度測定方法であって、前記密封包装容器は、内部に被包装物充填空間を備えた本体部と、該本体部内のヘッドスペースと連通する連通部を有すると共にレーザー光透過用空間を備えた被測定部とを有し、前記本体部は長方体形状に構成され、前記被測定部の前記レーザー光透過用空間は、前記本体部の一側面が延在する方向に沿って細長形状に形成されていると共に、前記本体部の外側に隣接して別に設けられ、前記ガス濃度測定装置は、特定波長のレーザー光を射出するレーザー発生部と、前記レーザー光を受光するレーザー受光部と、特定波長の前記レーザー光を前記密封包装容器の前記被測定部に透過させて前記密封包装容器の内部に残留する特定ガスのガス濃度を測定するレーザー式ガス濃度計とを有し、前記レーザー発生部から射出され前記被測定部の前記レーザー光透過用空間を透過する前記レーザー光を、前記レーザー光透過用空間の細長形状の延在方向の一端側から前記レーザー光透過用空間に透過させた後、前記被測定部の他端側から前記レーザー受光部に入射させることを特徴とする密封包装容器のガス濃度測定方法である(請求項1)。 To solve the above-mentioned problems, there is provided a gas concentration measuring method for measuring the concentration of a specific gas in a sealed packaging container filled with an item to be packaged, replaced with gas, and packaged, using a gas concentration measuring device, the sealed packaging container. has a main body portion internally provided with a space for filling an item to be packaged, and a portion to be measured having a communication portion communicating with the head space in the main body portion and a space for transmitting a laser beam, wherein the main body portion is The space for transmitting laser light of the portion to be measured is formed in an elongated shape along the direction in which one side surface of the body portion extends, and extends outside the body portion. The gas concentration measuring device, which is separately provided adjacently, includes a laser generator that emits a laser beam of a specific wavelength, a laser receiver that receives the laser beam, and a laser beam of a specific wavelength that is sent to the sealed packaging container. a laser type gas concentration meter for measuring the gas concentration of the specific gas remaining inside the sealed packaging container by passing through the measurement target portion, wherein the laser beam emitted from the laser generation portion is emitted to the measurement target portion; After the laser light transmitted through the transmission space is transmitted from one end side of the laser light transmission space in the extending direction of the elongated shape of the laser light transmission space , the laser light transmission space is transmitted from the other end side of the part to be measured. A method for measuring the gas concentration of a sealed packaging container, characterized in that the light is incident on a laser light receiving part (claim 1).

また、上記課題を解決するものは、被包装物を充填しガス置換して包装された密封包装容器内の特定ガスの濃度をガス濃度測定装置により測定するガス濃度測定方法であって、前記密封包装容器は、内部に被包装物充填空間を備えた本体部と、該本体部内のヘッドスペースと連通する連通部を有すると共にレーザー光透過用空間を備えた被測定部とを有し、前記本体部は長方体形状に構成され、前記被測定部の前記レーザー光透過用空間は、前記本体部の一側面が延在する方向に沿って細長形状に形成されていると共に、前記本体部内に区画板部により区画して設けられ、前記ガス濃度測定装置は、特定波長のレーザー光を射出するレーザー発生部と、前記レーザー光を受光するレーザー受光部と、特定波長の前記レーザー光を前記密封包装容器の前記被測定部に透過させて前記密封包装容器の内部に残留する特定ガスのガス濃度を測定するレーザー式ガス濃度計とを有し、前記レーザー発生部から射出され前記被測定部の前記レーザー光透過用空間を透過する前記レーザー光を、前記レーザー光透過用空間の細長形状の延在方向の一端側から前記レーザー光透過用空間に透過させた後、前記被測定部の他端側から前記レーザー受光部に入射させることを特徴とする密封包装容器のガス濃度測定方法である(請求項2)。前記レーザー発部と前記レーザー受光部は、前記密封包装容器の前記被測定部の両側にそれぞれ対向配置されると共に相対的に接近及び離隔可能に構成されており、前記密封包装容器の前記被測定部に対して、前記レーザー発部の先端部と前記レーザー受光部の先端部を前記レーザー光透過用空間の細長形状の延在方向の両端にそれぞれ当接させた後、前記レーザー光を前記被測定部の一端側から前記レーザー光透過用空間に透過させ、さらに、前記被測定部の他端側から前記レーザー受光部に入射させることが好ましい(請求項3)。 Further, to solve the above problems, there is provided a gas concentration measuring method for measuring the concentration of a specific gas in a sealed packaging container filled with an item to be packaged, replaced with gas, and packaged, using a gas concentration measuring device. The packaging container has a main body portion having a space for filling an object to be packaged therein, and a measuring portion having a communication portion communicating with a head space in the main body portion and having a space for transmitting a laser beam, the main body The portion is configured in a rectangular parallelepiped shape, and the laser light transmission space of the portion to be measured is formed in an elongated shape along the direction in which one side surface of the main body portion extends, and The gas concentration measuring device is partitioned by a partition plate portion, and includes a laser generator that emits laser light of a specific wavelength, a laser light receiver that receives the laser light, and the laser light of the specific wavelength that is sealed. a laser type gas densitometer for measuring the gas concentration of the specific gas remaining inside the sealed packaging container by passing it through the measured portion of the packaging container, wherein the laser is emitted from the laser generation portion to measure the measured portion. After transmitting the laser light passing through the laser light transmission space from one end side of the elongated shape of the laser light transmission space in the extending direction of the laser light transmission space, the other end of the part to be measured is transmitted. A method for measuring the gas concentration of a sealed packaging container, characterized in that the light is incident on the laser light receiving portion from the side (Claim 2). The laser generating section and the laser receiving section are arranged opposite to each other on both sides of the measurement target section of the sealed packaging container and configured to be able to approach and separate relatively. After bringing the tip of the laser generating part and the tip of the laser receiving part into contact with the measuring part on both end sides in the extending direction of the elongated shape of the space for laser light transmission , the laser light is is transmitted from one end side of the portion to be measured into the space for transmitting laser light, and is incident on the laser light receiving portion from the other end side of the portion to be measured (Claim 3).

さらに、上記課題を解決するものは、被包装物を充填しガス置換して包装された密封包装容器内の特定ガスの濃度を測定するガス濃度測定装置であって、前記密封包装容器は、内部に被包装物充填空間を備えた本体部と、該本体部内のヘッドスペースと連通する連通部を有すると共にレーザー光透過用空間を備えた被測定部とを有し、前記本体部は長方体形状に構成され、前記被測定部の前記レーザー光透過用空間は、前記本体部の一側面が延在する方向に沿って細長形状に形成されていると共に、前記本体部の外側に隣接して別に設けられ、前記ガス濃度測定装置は、特定波長のレーザー光を射出するレーザー発生部と、前記レーザー光を受光するレーザー受光部と、特定波長の前記レーザー光を前記密封包装容器の前記被測定部に透過させて前記密封包装容器の内部に残留する特定ガスのガス濃度を測定するレーザー式ガス濃度計とを有し、前記レーザー発生部から射出され前記被測定部の前記レーザー光透過用空間を透過する前記レーザー光を、前記レーザー光透過用空間の細長形状の延在方向の一端側から前記レーザー光透過用空間に透過させた後、前記被測定部の他端側から前記レーザー受光部に入射させることを特徴とするガス濃度測定装置である(請求項4)。 Furthermore, what solves the above problems is a gas concentration measuring device for measuring the concentration of a specific gas in a sealed packaging container filled with an item to be packaged, replaced with gas, and packaged, wherein the sealed packaging container has an internal a main body portion having a space for filling an object to be packaged in the main body portion ; The laser light transmitting space of the portion to be measured is formed in an elongated shape along the direction in which one side surface of the main body extends, and is adjacent to the outside of the main body. The gas concentration measuring device, which is provided separately, includes a laser generator that emits a laser beam of a specific wavelength, a laser receiver that receives the laser beam, and a laser beam of a specific wavelength that is emitted from the sealed packaging container to the measurement target. and a laser type gas densitometer for measuring the gas concentration of the specific gas remaining inside the sealed packaging container by transmitting the laser light through the portion, the space for transmitting the laser light emitted from the laser generating portion and the portion to be measured. the laser light transmitting through the laser light transmitting space from one end side in the extending direction of the elongated shape of the laser light transmitting space, and then from the other end side of the measured portion to the laser light receiving portion (Claim 4).

さらに、上記課題を解決するものは、被包装物を充填しガス置換して包装された密封包装容器内の特定ガスの濃度を測定するガス濃度測定装置であって、前記密封包装容器は、内部に被包装物充填空間を備えた本体部と、該本体部内のヘッドスペースと連通する連通部を有すると共にレーザー光透過用空間を備えた被測定部とを有し、前記本体部は長方体形状に構成され、前記被測定部の前記レーザー光透過用空間は、前記本体部の一側面が延在する方向に沿って細長形状に形成されていると共に、前記本体部内に区画板部により区画して設けられ、前記ガス濃度測定装置は、特定波長のレーザー光を射出するレーザー発生部と、前記レーザー光を受光するレーザー受光部と、特定波長の前記レーザー光を前記密封包装容器の前記被測定部に透過させて前記密封包装容器の内部に残留する特定ガスのガス濃度を測定するレーザー式ガス濃度計とを有し、
前記レーザー発生部から射出され前記被測定部の前記レーザー光透過用空間を透過する前記レーザー光を、前記レーザー光透過用空間の細長形状の延在方向の一端側から前記レーザー光透過用空間に透過させた後、前記被測定部の他端側から前記レーザー受光部に入射させることを特徴とするガス濃度測定装置である(請求項5)。 前記レーザー発部と前記レーザー受光部は、前記密封包装容器の前記被測定部の両側にそれぞれ対向配置されると共に相対的に接近及び離隔可能に構成されており、前記密封包装容器の前記被測定部に対して、前記レーザー発部の先端部と前記レーザー受光部の先端部が前記レーザー光透過用空間の細長形状の延在方向の両端にそれぞれ当接するように構成されていることが好ましい(請求項6)。
Furthermore, what solves the above problems is a gas concentration measuring device for measuring the concentration of a specific gas in a sealed packaging container filled with an item to be packaged, replaced with gas, and packaged, wherein the sealed packaging container has an internal a main body portion having a space for filling an object to be packaged in the main body portion; The laser light transmitting space of the portion to be measured is formed in an elongated shape along the direction in which one side surface of the main body extends, and is partitioned within the main body by a partition plate. The gas concentration measuring device includes a laser generator that emits a laser beam of a specific wavelength, a laser receiver that receives the laser beam, and a laser beam of a specific wavelength that passes through the cover of the sealed packaging container. a laser type gas concentration meter for measuring the gas concentration of the specific gas remaining inside the sealed packaging container by passing through the measurement unit;
The laser light emitted from the laser generating section and transmitted through the laser light transmission space of the part to be measured is directed from one end side in the extending direction of the elongated shape of the laser light transmission space to the laser light transmission space. In the gas concentration measuring apparatus, the light is incident on the laser receiving part from the other end side of the part to be measured after being transmitted. The laser generating section and the laser receiving section are arranged opposite to each other on both sides of the measurement target section of the sealed packaging container and configured to be able to approach and separate relatively. The tip of the laser generating part and the tip of the laser receiving part are configured to abut against both ends of the laser light transmitting space in the extending direction of the elongated shape with respect to the measuring part. is preferred (claim 6).

請求項1ないし3に記載のガス濃度測定方法によれば、密封包装容器を損傷することなく、被包装物が存在しないヘッドスペースが狭小な場合でも、内部の特定ガスの濃度を高精度に測定することができる。また、レーザー光の光路長をより長くすることができ、密封包装容器内部の特定ガスの濃度をより高精度に測定することができる。
請求項4ないし6に記載のガス濃度測定装置によれば、密封包装容器を損傷することなく、被包装物が存在しないヘッドスペースが狭小な場合でも、内部の特定ガスの濃度を高精度に測定することができる。また、レーザー光の光路長をより長くすることができ、密封包装容器内部の特定ガスの濃度をより高精度に測定することができる。
According to the gas concentration measuring method described in claims 1 to 3 , the concentration of the specific gas inside can be measured with high accuracy without damaging the sealed packaging container, even if the head space where there is no packaged object is narrow. can do. Moreover, the optical path length of the laser beam can be made longer, and the concentration of the specific gas inside the sealed packaging container can be measured with higher accuracy.
According to the gas concentration measuring device according to claims 4 to 6, the concentration of the specific gas inside can be measured with high accuracy without damaging the sealed packaging container, even if the head space where there is no packaged object is narrow. can do. Moreover, the optical path length of the laser beam can be made longer, and the concentration of the specific gas inside the sealed packaging container can be measured with higher accuracy.

本発明のガス濃度測定方法に使用される密封包装容器の一実施例の作用を説明するための説明図である。FIG. 3 is an explanatory diagram for explaining the action of one embodiment of the sealed packaging container used in the gas concentration measuring method of the present invention; 図1に示した密封包装容器の正面図である。Fig. 2 is a front view of the sealed packaging container shown in Fig. 1; 図1に示した密封包装容器の右側図である。Fig. 2 is a right side view of the sealed packaging container shown in Fig. 1; 図1に示した密封包装容器の平面図である。FIG. 2 is a plan view of the sealed packaging container shown in FIG. 1; 図1に示した密封包装容器の使用状態を示す正面図である。FIG. 2 is a front view showing how the sealed packaging container shown in FIG. 1 is used; 本発明のガス濃度測定方法に用いるガス濃度測定装置の一実施例の平面図である。1 is a plan view of an embodiment of a gas concentration measuring device used in the gas concentration measuring method of the present invention; FIG. 図6に示したガス濃度測定装置の右側面図である。FIG. 7 is a right side view of the gas concentration measuring device shown in FIG. 6;

本発明では、レーザー発生部11から射出され被測定部7のレーザー光透過用空間6を透過する前記レーザー光を、被測定部7の一端側からレーザー光透過用空間6に透過させた後、被測定部7の他端側からレーザー受光部12に入射させることで、密封包装容器を損傷することなく、被包装物が存在しないヘッドスペースが狭小な場合でも、内部の特定ガスの濃度を高精度に測定可能な密封包装容器のガス濃度測定方法およびガス濃度測定装置を実現した。 In the present invention, the laser light emitted from the laser generating unit 11 and transmitted through the laser light transmitting space 6 of the measured portion 7 is transmitted from one end side of the measured portion 7 to the laser light transmitting space 6, By making the laser beam incident on the laser receiving part 12 from the other end side of the part to be measured 7, the concentration of the specific gas inside can be increased without damaging the sealed packaging container and even when the head space where there is no object to be packaged is narrow. A method and apparatus for measuring the gas concentration of a sealed packaging container, which can be measured with high accuracy, have been realized.

本発明の密封包装容器のガス濃度測定方法の一実施例を図1ないし図7に示した一実施例を用いて説明する。
この実施例の密封包装容器のガス濃度測定方法は、被包装物Sを充填しガス置換して包装された密封包装容器1内の特定ガスの濃度をガス濃度測定装置10により測定するガス濃度測定方法であって、密封包装容器1は、内部に被包装物充填空間2を備えた本体部3と、本体部3内のヘッドスペース4と連通する連通部5を有すると共にレーザー光透過用空間6を備えた被測定部7とを有し、ガス濃度測定装置10は、特定波長のレーザー光を射出するレーザー発生部11と、レーザー光を受光するレーザー受光部12と、特定波長の前記レーザー光を密封包装容器1の被測定部7に透過させて密封包装容器1の内部に残留する特定ガスのガス濃度を測定するレーザー式ガス濃度計13とを有し、レーザー発生部11から射出され被測定部7のレーザー光透過用空間6を透過する前記レーザー光を、被測定部7の一端側からレーザー光透過用空間6に透過させた後、被測定部7の他端側からレーザー受光部12に入射させることを特徴とする密封包装容器内のガス濃度測定方法である。以下、詳述する。
An embodiment of the method for measuring the gas concentration of a sealed packaging container according to the present invention will be described with reference to the embodiment shown in FIGS. 1 to 7. FIG.
The method for measuring the gas concentration of a sealed packaging container of this embodiment uses a gas concentration measuring device 10 to measure the concentration of a specific gas in a sealed packaging container 1 filled with an item S to be packaged, replaced with gas, and packaged. In this method, a sealed packaging container 1 has a main body 3 having a space 2 for filling an object to be packaged therein, a communication part 5 communicating with a head space 4 in the main body 3, and a space 6 for transmitting a laser beam. The gas concentration measuring device 10 includes a laser generator 11 that emits a laser beam of a specific wavelength, a laser receiver 12 that receives the laser beam, and the laser beam of a specific wavelength. and a laser type gas concentration meter 13 for measuring the gas concentration of the specific gas remaining inside the sealed packaging container 1 by transmitting it through the measured part 7 of the sealed packaging container 1, The laser light passing through the laser light transmitting space 6 of the measuring part 7 is transmitted from one end side of the measured part 7 to the laser light transmitting space 6, and then transmitted from the other end side of the measured part 7 to the laser light receiving part. 12, the method for measuring the gas concentration in a sealed packaging container. Details will be described below.

この実施例の密封包装容器1は、レトルト米飯の容器であり、内部の特定ガスは酸素である。ただし、密封包装容器はこれに限定されるものではなく、図1に示すように、被包装物(この実施例では米飯)Sが密封包装容器1内に十分に充填されヘッドスペース4が狭小となってガス濃度を精度よく測定できない密封包装容器を広く包含するものであり、また、酸素以外の特定ガスを含有した密封包装容器を包含するものである。 The sealed packaging container 1 of this embodiment is a container for retort cooked rice, and the specific gas inside is oxygen. However, the sealed packaging container is not limited to this, and as shown in FIG. Therefore, it broadly includes sealed packaging containers in which the gas concentration cannot be measured with high accuracy, and also includes sealed packaging containers containing specific gases other than oxygen.

本体部3内部には、被包装物(この実施例では米飯)Sを充填するための被包装物充填空間2が設けられており、この実施例では、本体部3および被包装物充填空間2は略長方体を形成されているが、形態は長方体に限定されるものではなく、どのような形態のものでもよい。 Inside the body portion 3, there is provided an object filling space 2 for filling the object to be packaged (cooked rice in this embodiment) S. In this embodiment, the main body portion 3 and the object filling space 2 has a substantially rectangular parallelepiped shape, but the shape is not limited to a rectangular parallelepiped, and may be of any shape.

被測定部7は、内部にレーザー光透過用空間6を有し、レーザー光を透過させて特定ガスの濃度を測定するための部位であり、本体部3内のヘッドスペース4と連通する連通部5を介して本体部3に隣接して設けられている。ただし、この実施例の被測定部7は、本体部3に隣接して別に設けられているが、これに限定されるものではなく、レーザー光を透過させて特定ガスの濃度を測定できるものであればどのような形態でもよく、例えば、本体部内に区画板部などで被包装物充填空間とレーザー光透過用空間とが区画して設けられたものなども本発明の範疇に包含される。なお、被測定部7は、連通部5を介して、ヘッドスペース4内の気体のみが移行する構造であることが好ましいが、レーザー光による特定ガスの濃度測定を阻害しない範囲内で、水分や被包装物Sの微量分が少量移行するものでもよい。 The portion to be measured 7 has a space 6 for transmitting laser light therein, and is a portion for measuring the concentration of a specific gas by transmitting laser light. It is provided adjacent to the main body portion 3 via 5 . However, although the part to be measured 7 in this embodiment is provided separately adjacent to the main body part 3, it is not limited to this, and the concentration of a specific gas can be measured by transmitting a laser beam. Any form may be used as long as it exists, and for example, a space for filling an object to be packaged and a space for transmitting a laser beam are separated from each other by a partition plate in the main body. It should be noted that the portion to be measured 7 preferably has a structure in which only the gas in the headspace 4 moves through the communicating portion 5, but moisture and A very small amount of the item to be packaged S may migrate.

この実施例の密封包装容器1は、被測定部7にレーザー光を透過させて特定ガスの濃度を測定するために、透明性材料(例えばポリプロピレン等)にて一体成形されている。ただし、本発明の密封包装容器は、これに限定されるものではなく、被測定部を構成する部位のみが透明性材料にて形成されていてもよく、さらに、特定ガスの濃度を測定可能とする特定波長のレーザー光を透過可能な材料にて、本体部または/および被測定部が形成されていてもよい。なお、本願において「透明性材料」には、色彩の有無を問わず、透明または半透明の材料を広く包含する。また、本願において、特定波長のレーザー光を透過可能な材料には、透明または半透明、材質、柄、文字または図形等付加、着色の有無を問わず、特定波長のレーザー光を透過可能な材料を広く包含する。 The sealed packaging container 1 of this embodiment is integrally formed of a transparent material (such as polypropylene) in order to allow laser light to pass through the measured portion 7 to measure the concentration of the specific gas. However, the sealed packaging container of the present invention is not limited to this. The body portion and/or the portion to be measured may be formed of a material capable of transmitting laser light of a specific wavelength. In the present application, the term “transparent material” broadly includes transparent or translucent materials regardless of whether or not they are colored. In addition, in the present application, a material capable of transmitting a laser beam of a specific wavelength refers to a material capable of transmitting a laser beam of a specific wavelength regardless of whether it is transparent or translucent, whether or not it is a material, pattern, letter or figure, or colored. broadly encompasses

また、被測定部7のレーザー光透過用空間6は、この実施例のように細長形状に形成されていることが好ましい。これにより、レーザー光の光路長をより長く確保することができ、特定ガス濃度の測定精度を向上させることができる。そして、この実施例の密封包装容器1は、上面にフィルムFが貼着されて、被包装物充填空間2、連通部5およびレーザー光透過用空間6の密封状態が保持されている。 Moreover, it is preferable that the laser light transmitting space 6 of the measured portion 7 is formed in an elongated shape as in this embodiment. As a result, a longer optical path length of the laser light can be ensured, and the measurement accuracy of the specific gas concentration can be improved. A film F is adhered to the upper surface of the sealed packaging container 1 of this embodiment, so that the space 2 filled with the packaged material, the communicating portion 5 and the space 6 for transmitting laser light are kept in a sealed state.

この実施例のガス濃度測定方法は、密封包装容器1内に残留している特定ガスのガス濃度を測定する方法であり、出荷前に密封包装容器1を検査する検査場で行われたり、包装に係る各種工程を有するロータリー式或いはピロー式等の包装機の検査工程で行われる。 The gas concentration measuring method of this embodiment is a method of measuring the gas concentration of a specific gas remaining in the sealed packaging container 1. It is carried out in the inspection process of a packaging machine such as a rotary type or pillow type packaging machine having various processes related to.

また、この実施例のガス濃度測定方法では、残留している特定ガス酸素ガス(O)である。大気雰囲気下で行われる包装機の包装工程では、被包装物を充填したとき、密封包装容器1内部に大気も充填される。
大気に含まれている酸素ガスをはじめとした酸化原因ガスは、被包装物、特に食品類を酸化させて劣化させる原因となる。そのため、包装機には、被包装物を密封包装容器に充填する包装工程の後に、当該密封包装容器から大気を抜気して、不活性ガス、たとえば、窒素ガス(N)、二酸化炭素ガス(CO)へ置き換えるガス置換(ガスパージ)工程が設けられている。
Further, in the gas concentration measuring method of this embodiment, it is the remaining specific gas oxygen gas (O 2 ). In the packaging process of the packaging machine which is performed in an air atmosphere, the inside of the sealed packaging container 1 is also filled with the atmosphere when the items to be packaged are filled.
Oxidation-causing gases such as oxygen gas contained in the atmosphere oxidize and deteriorate packaged items, especially foods. Therefore, in the packaging machine, after the packaging process of filling the sealed packaging container with the items to be packaged, the atmosphere is evacuated from the sealed packaging container, and an inert gas such as nitrogen gas (N 2 ) or carbon dioxide gas is used. A gas purge step is provided to replace (CO 2 ).

その後、ガス置換された密封包装容器1内の酸素ガスのガス濃度を測定して、ガス濃度が基準値以下に収まっているかどうか検査する方法が、本実施例に係るガス濃度測定方法である。酸素ガスのガス濃度を測定したとき、ガス濃度が基準値以下に収まっている場合は、正常にガス置換が行われ、密封包装容器1内は不活性ガスが充満しているので、被包装物の酸化を防止することができ、保存期間や賞味期間を延ばすことができる。これに対して、ガス濃度が基準値を超えている場合は不良品と判断されて、例えば包装機の包装工程(不良品排出工程)にて排出される。 After that, the method of measuring the gas concentration of the oxygen gas in the gas-replaced sealed packaging container 1 and inspecting whether the gas concentration is below the reference value is the gas concentration measuring method according to the present embodiment. When the gas concentration of oxygen gas is measured, if the gas concentration is below the reference value, the gas replacement is performed normally and the sealed packaging container 1 is filled with inert gas, so the package is packed. can be prevented from oxidizing, and the shelf life and shelf life can be extended. On the other hand, if the gas concentration exceeds the standard value, the product is determined to be defective and is discharged, for example, in the packaging process (defective product discharge process) of the packaging machine.

この実施例のガス濃度測定法に用いられるガス濃度測定装置10は、図6または図7に示すように、レーザー光を射出するレーザー発生部11と、レーザー光を受光するレーザー受光部12とを備えたレーザー式ガス濃度計13を有している。 As shown in FIG. 6 or FIG. 7, a gas concentration measuring apparatus 10 used in the gas concentration measuring method of this embodiment comprises a laser generating section 11 for emitting laser light and a laser light receiving section 12 for receiving laser light. It has a laser type gas concentration meter 13 provided.

レーザー式ガス濃度計13は、波長可変半導体レーザー吸収分光法によって特定ガスを分析可能に形成されている。 The laser type gas concentration meter 13 is formed so as to be able to analyze a specific gas by wavelength-tunable semiconductor laser absorption spectroscopy.

ここで、波長可変半導体レーザー吸収分光法(Tunable Diode Laser Absorption Spectroscopy:TDLAS)とは、半導体レーザー素子から出力されたレーザー光に係る所定の入射光強度と、測定対象となる特定ガスを含んだ気体を封じたセルを透過して当該特定ガスに吸収された透過後のレーザー光に係る透過光強度とから透過率を求めて、透過率に基づくレーザー光の吸光度からガス濃度を測定する方法である。 Here, Tunable Diode Laser Absorption Spectroscopy (TDLAS) is a gas containing a specific gas to be measured and a predetermined incident light intensity related to laser light output from a semiconductor laser element. In this method, the transmittance is obtained from the transmitted light intensity of the laser light after passing through a cell that is sealed and absorbed by the specific gas, and the gas concentration is measured from the absorbance of the laser light based on the transmittance. .

特定ガスを含め、気体はそれぞれ固有の吸収波長帯を有し、当該吸収波長帯にはより強く光を吸収する波長に係る吸収線が複数本含まれていることが知られている。TDLASは、出力するレーザー光の近赤外領域の波長を、測定対象となる特定ガスの複数本の吸収線のうち、一本の吸収線に係る特定波長に合致するように変調し増幅するように構成されている。そして、セルの透過前後で変化する特定波長の吸収スペクトルに基づいてレーザー光の吸光度を求めてガス濃度を測定している。なお、本実施例において測定対象ガスは酸素ガスであって、当該測定対象ガスを封じるセルは密封包装容器1である。 It is known that each gas, including specific gases, has its own absorption wavelength band, and that absorption wavelength band includes a plurality of absorption lines related to wavelengths that absorb light more strongly. TDLAS modulates and amplifies the wavelength of the output laser light in the near-infrared region so that it matches the specific wavelength associated with one of the multiple absorption lines of the specific gas to be measured. is configured to Then, the gas concentration is measured by determining the absorbance of the laser beam based on the absorption spectrum of the specific wavelength that changes before and after the cell is transmitted. In this embodiment, the gas to be measured is oxygen gas, and the sealed packaging container 1 is the cell that seals the gas to be measured.

レーザー発生部11は、レーザー光源と、レーザー光源から射出するレーザー光の波長を特定の波長に設定し所定の光強度に調整する制御部とを有している。
レーザー光源は、波長が可変可能なダイオードからなる半導体レーザー素子を備え近赤外領域のレーザー光を出力可能に形成されている。制御部は、半導体レーザー素子から出力されるレーザー光の波長を測定対象の特定ガス固有の特定波長に調整して、レーザー光が所定の入射光強度で射出されるように増幅する制御を行うように形成されている。
The laser generation unit 11 has a laser light source and a control unit that sets the wavelength of the laser light emitted from the laser light source to a specific wavelength and adjusts the light intensity to a predetermined light intensity.
The laser light source includes a semiconductor laser element composed of a diode whose wavelength can be changed, and is formed so as to be capable of outputting laser light in the near-infrared region. The control unit adjusts the wavelength of the laser light output from the semiconductor laser element to a specific wavelength unique to the specific gas to be measured, and controls amplification so that the laser light is emitted with a predetermined incident light intensity. is formed in

ここで、本実施例に係るレーザー式ガス濃度計13が測定する特定ガスは、酸素ガスであることから、当該酸素ガス固有の吸収波長帯は760nm帯であり、当該吸収波長帯に含まれる複数の吸収線のうち、一の吸収線に係る特定波長がレーザー光の出力波長として選択される。 Here, since the specific gas measured by the laser type gas concentration meter 13 according to the present embodiment is oxygen gas, the absorption wavelength band peculiar to the oxygen gas is the 760 nm band. A specific wavelength associated with one of the absorption lines is selected as the output wavelength of the laser light.

レーザー発生部11は、第1ハウジング15に内蔵されており、第1ハウジング15はレーザー射出用窓部16を有している。レーザー射出用窓部16には、近赤外領域の光を通しやすいサファイヤガラスが嵌め込まれている。そして、レーザー発生部11は、レーザー射出用窓部16(レーザー発生部11の先端部)を通じて第1ハウジング15からレーザー光を射出するように形成されている。 The laser generator 11 is housed in a first housing 15 , and the first housing 15 has a laser emission window 16 . A sapphire glass that easily transmits light in the near-infrared region is fitted in the laser emission window 16 . The laser generating portion 11 is formed to emit laser light from the first housing 15 through a laser emitting window portion 16 (tip portion of the laser generating portion 11).

第1ハウジング15内は特定ガス、この実施例では酸素ガスを除去するために、真空化またはガス置換(ガスパージ)をすることができるように形成されている。そのため、第1ハウジング15内を真空で維持したり、あるいは窒素ガス、または二酸化炭素等の不活性ガス類で満たすことができるように構成されている。 これによって、レーザー光源からレーザー射出用窓部16を通じて射出するまでの間に、第1ハウジング15内でレーザー光が特定ガスに吸収されることを防止することができ、ガス濃度測定の精度を向上させることができる。 The inside of the first housing 15 is formed so that it can be evacuated or gas replaced (gas purge) in order to remove a specific gas, oxygen gas in this embodiment. Therefore, the inside of the first housing 15 can be maintained in a vacuum or filled with an inert gas such as nitrogen gas or carbon dioxide. As a result, it is possible to prevent the laser light from being absorbed by the specific gas in the first housing 15 before it is emitted from the laser light source through the laser emission window 16, thereby improving the accuracy of gas concentration measurement. can be made

レーザー受光部12は、密封包装容器1の被測定部7を透過したレーザー光を受光する受光センサと、受光センサからの受光信号に基づいてガス濃度を測定する測定部を有している。 The laser light receiving section 12 has a light receiving sensor for receiving the laser light transmitted through the measured portion 7 of the sealed packaging container 1 and a measuring section for measuring the gas concentration based on the light receiving signal from the light receiving sensor.

受光センサは、密封包装容器1の被測定部7を透過したレーザー光の透過光強度を電気的な透過光信号に変換する素子、例えばフォトダイオードにて構成されている。これによって、密封包装容器1の被測定部7を透過したレーザー光の透過光強度を電気的に処理することができる。 The light-receiving sensor is composed of an element such as a photodiode that converts the transmitted light intensity of the laser beam transmitted through the measured portion 7 of the sealed packaging container 1 into an electrical transmitted light signal. Thereby, the transmitted light intensity of the laser beam transmitted through the measured portion 7 of the sealed packaging container 1 can be electrically processed.

測定部は、透過光強度に係る透過光信号と、レーザー発生部11から出力されたレーザー光の入射光強度に係る入射光信号に基づいて透過率を計算し、当該透過率に基づいてレーザー光の特定ガスによる吸光度を求め、当該吸光度に基づいて密封包装容器1の被測定部7内の特定ガスの濃度を測定するように構成されている。 The measurement unit calculates the transmittance based on the transmitted light signal related to the transmitted light intensity and the incident light signal related to the incident light intensity of the laser light output from the laser generation unit 11, and measures the laser light based on the calculated transmittance. , and based on the absorbance, the concentration of the specific gas in the portion to be measured 7 of the sealed packaging container 1 is measured.

レーザー受光部12は、第2ハウジング17に内蔵されている。第2ハウジング17はレーザー受光用窓部18(レーザー受光部12の先端部)を有している。レーザー受光用窓部18には、レーザー射出用窓部16と同様、近赤外領域の光を通しやすいサファイヤガラスが嵌め込まれている。これによって、レーザー受光部12は、レーザー受光用窓部18を通じて密封包装容器1の被測定部7を透過したレーザー光を受光するように形成されている。 The laser light receiving section 12 is built in the second housing 17 . The second housing 17 has a laser receiving window portion 18 (the tip portion of the laser receiving portion 12). Similar to the laser emission window 16, the laser reception window 18 is fitted with sapphire glass that easily transmits light in the near-infrared region. Thus, the laser light receiving portion 12 is formed to receive the laser light that has passed through the measured portion 7 of the sealed packaging container 1 through the laser light receiving window portion 18 .

第2ハウジング17内もまた、第1ハウジング15と同様、真空化またはガス置換可能に形成されている。そのため、レーザー受光用窓部18を通じて入射されたレーザー光を受光センサが受光するまでの間に、第2ハウジング17内でレーザー光が特定ガスに吸収されることを防止することができガス濃度測定の精度を向上させることができる。 Similarly to the first housing 15, the inside of the second housing 17 is also formed so that it can be evacuated or replaced with gas. Therefore, it is possible to prevent the laser light from being absorbed by the specific gas in the second housing 17 until the laser light is received by the light receiving sensor through the laser light receiving window 18. Gas concentration measurement can be performed. can improve the accuracy of

このように、レーザー式ガス濃度計13は、レーザー発生部11からレーザー射出用窓部16を通じてレーザー光を射出し、当該レーザー光を測定対象の密封包装容器1の被測定部7内に透過させて、レーザー受光用窓部18を通じてレーザー受光部12で密封包装容器1の被測定部7を透過したレーザー光を受光するように構成されている。 In this manner, the laser gas concentration meter 13 emits a laser beam from the laser generator 11 through the laser emission window 16, and transmits the laser beam into the measured portion 7 of the sealed packaging container 1 to be measured. The laser light-receiving portion 12 receives the laser beam transmitted through the measured portion 7 of the sealed packaging container 1 through the laser-receiving window portion 18 .

そして、レーザー式ガス濃度計13を有するガス濃度測定装置10は、レーザー発生部11から射出され被測定部7のレーザー光透過用空間6を透過するレーザー光を、被測定部7の一端側からレーザー光透過用空間6に透過させた後、被測定部7の他端側からレーザー受光部12に入射するように構成されている。 The gas concentration measuring device 10 having the laser type gas concentration meter 13 emits a laser beam emitted from the laser generating part 11 and transmitted through the laser light transmission space 6 of the part to be measured 7 from one end side of the part to be measured 7. After passing through the laser light transmission space 6 , the laser light is incident on the laser light receiving section 12 from the other end side of the measured section 7 .

つぎに、本発明のガス濃度測定方法およびガス濃度測定装置の具体的な作用を図面に示した一実施例を用いて説明する。 Next, a specific operation of the gas concentration measuring method and the gas concentration measuring apparatus of the present invention will be explained using an embodiment shown in the drawings.

本発明のガス濃度測定方法およびガス濃度測定装置10では、図6または図7に示すように、コンベアWのベルトY上に載置された密封包装容器1が順次間欠搬送される。密封包装容器1は、図6中搬送方向(矢印H方向)に、密封包装容器1の被測定部7の長手方向が沿って搬送されるようにベルトY上に載置される。 In the gas concentration measuring method and the gas concentration measuring apparatus 10 of the present invention, the sealed packaging containers 1 placed on the belt Y of the conveyor W are intermittently conveyed sequentially, as shown in FIG. 6 or 7 . The sealed packaging container 1 is placed on the belt Y so that the longitudinal direction of the portion to be measured 7 of the sealed packaging container 1 is conveyed in the conveying direction (arrow H direction) in FIG.

そして、ガス濃度測定装置10が設置された部位付近に密封包装容器1の被測定部7が至ると、図6または図7に示すように、ガス濃度測定装置10の第1ハウジング15および第2ハウジング17がそれぞれ第1往復動機構(第1シリンダー21を含む。)19または第2往復動機構(第2シリンダー22を含む。)20により、内側(コンベアWの搬送方向に対して直交する方向の両側からそれぞれベルトY側)に移動して、レーザー発部11の先端部(レーザー射出用窓部16)とレーザー受光部12の先端部(レーザー受光用窓部18)が密封包装容器1の被測定部7の両端にそれぞれ面当接するように構成されている。 Then, when the part to be measured 7 of the sealed packaging container 1 reaches the vicinity of the site where the gas concentration measuring device 10 is installed, the first housing 15 and the second housing 15 of the gas concentration measuring device 10 are separated as shown in FIG. The housing 17 is moved inside (in a direction orthogonal to the conveying direction of the conveyor W) by a first reciprocating mechanism (including a first cylinder 21) 19 or a second reciprocating mechanism (including a second cylinder 22) 20, respectively. from both sides to the belt Y side), and the tip of the laser generator 11 (laser emission window 16) and the tip of the laser light receiver 12 (laser light receiver window 18) are placed in the sealed packaging container 1 It is constructed so as to come into surface contact with both ends of the portion to be measured 7 of .

密封包装容器1の被測定部7の両端面にそれぞれレーザー射出用窓部16およびレーザー受光用窓部18が面当接した後、レーザー発生部11からレーザー射出用窓部16を介して密封包装容器1の被測定部7の一端側にレーザー光が射出される。レーザー光は被測定部7のレーザー光透過用空間6内を進行し、被測定部7の他端側に面当接されている第2ハウジング17のレーザー受光用窓部18を介してレーザー受光部12にて受光される。 After the laser emitting window portion 16 and the laser receiving window portion 18 are brought into surface contact with both end faces of the portion to be measured 7 of the sealed packaging container 1, the sealed package is sealed and packaged from the laser generating portion 11 through the laser emitting window portion 16. A laser beam is emitted to one end side of the portion 7 to be measured of the container 1 . The laser beam travels through the space 6 for transmitting laser light of the portion 7 to be measured, and receives the laser beam through the window portion 18 for receiving laser light of the second housing 17 which is in surface contact with the other end side of the portion 7 to be measured. The light is received by the portion 12 .

レーザー受光部12の受光センサは、密封包装容器1の被測定部7を透過したレーザー光を電子的な透過光信号へ変換し、当該透過光信号が測定部へ出力される。測定部は、上記透過光信号と、レーザー発生部11が射出したレーザー光を電子的に変換した入射光信号を取得し、透過光信号と入射光信号を比較して、レーザー光の密封包装容器1の被測定部7に対する透過率Tを測定する。そして、当該透過率Tに基づいて、密封包装容器1の被測定部7内の特定ガスに吸収されたレーザー光の特定波長の吸収スペクトルの吸光度が計算され、当該吸光度に基づいて密封包装容器1の被測定部7内の特定ガスのガス濃度が測定される。 The light receiving sensor of the laser light receiving section 12 converts the laser light transmitted through the measured portion 7 of the sealed packaging container 1 into an electronic transmitted light signal, and the transmitted light signal is output to the measuring section. The measurement unit acquires the transmitted light signal and the incident light signal obtained by electronically converting the laser light emitted by the laser generation unit 11, compares the transmitted light signal and the incident light signal, and determines the sealed packaging container of the laser light. 1, the transmittance T for the measured portion 7 is measured. Then, based on the transmittance T, the absorbance of the absorption spectrum of the specific wavelength of the laser light absorbed by the specific gas in the measured portion 7 of the sealed packaging container 1 is calculated, and based on the absorbance, the sealed packaging container 1 The gas concentration of the specific gas in the measured portion 7 is measured.

1 密封包装容器
2 被包装物充填空間
3 本体部
4 ヘッドスペース
5 連通部
6 レーザー光透過用空間
7 被測定部
10 ガス濃度測定装置
11 レーザー発生部
12 レーザー受光部
13 レーザー式ガス濃度計
15 第1ハウジング
16 レーザー射出用窓部
17 第2ハウジング
18 レーザー受光用窓部
19 第1往復動機構
20 第2往復動機構
21 第1シリンダー
22 第2シリンダー
F フィルム
w コンベア
Y ベルト
S 被包装物
1 Sealed packaging container 2 Filled space for packaged material 3 Body portion 4 Head space 5 Communicating portion 6 Space for laser light transmission 7 Part to be measured 10 Gas concentration measuring device 11 Laser generating portion 12 Laser light receiving portion 13 Laser type gas concentration meter 15 1 housing 16 laser emitting window 17 second housing 18 laser receiving window 19 first reciprocating mechanism 20 second reciprocating mechanism 21 first cylinder 22 second cylinder F film w conveyor Y belt S to-be-packaged

Claims (6)

被包装物を充填しガス置換して包装された密封包装容器内の特定ガスの濃度をガス濃度測定装置により測定するガス濃度測定方法であって、
前記密封包装容器は、内部に被包装物充填空間を備えた本体部と、該本体部内のヘッドスペースと連通する連通部を有すると共にレーザー光透過用空間を備えた被測定部とを有し、
前記本体部は長方体形状に構成され、前記被測定部の前記レーザー光透過用空間は、前記本体部の一側面が延在する方向に沿って細長形状に形成されていると共に、前記本体部の外側に隣接して別に設けられ、
前記ガス濃度測定装置は、特定波長のレーザー光を射出するレーザー発生部と、前記レーザー光を受光するレーザー受光部と、特定波長の前記レーザー光を前記密封包装容器の前記被測定部に透過させて前記密封包装容器の内部に残留する特定ガスのガス濃度を測定するレーザー式ガス濃度計とを有し、
前記レーザー発生部から射出され前記被測定部の前記レーザー光透過用空間を透過する前記レーザー光を、前記レーザー光透過用空間の細長形状の延在方向の一端側から前記レーザー光透過用空間に透過させた後、前記被測定部の他端側から前記レーザー受光部に入射させることを特徴とする密封包装容器のガス濃度測定方法。
A gas concentration measuring method for measuring, by a gas concentration measuring device, the concentration of a specific gas in a sealed packaging container in which an object to be packaged is filled, gas-exchanged, and packaged,
The hermetically sealed packaging container has a main body portion internally provided with a space for filling the object to be packaged, and a measurement target portion having a communication portion communicating with the head space in the main body portion and a space for transmitting a laser beam,
The body portion is configured in a rectangular parallelepiped shape, and the laser light transmission space of the portion to be measured is formed in an elongated shape along a direction in which one side surface of the body portion extends. provided separately adjacent to the outside of the
The gas concentration measuring device includes a laser generator that emits a laser beam of a specific wavelength, a laser receiver that receives the laser beam, and a laser beam of the specific wavelength that passes through the measurement target portion of the sealed packaging container. a laser gas concentration meter for measuring the gas concentration of the specific gas remaining inside the sealed packaging container,
The laser light emitted from the laser generating section and transmitted through the laser light transmission space of the part to be measured is directed from one end side in the extending direction of the elongated shape of the laser light transmission space to the laser light transmission space. A method for measuring the gas concentration of a sealed packaging container, characterized in that the laser is incident on the laser receiving part from the other end side of the part to be measured after being transmitted.
被包装物を充填しガス置換して包装された密封包装容器内の特定ガスの濃度をガス濃度測定装置により測定するガス濃度測定方法であって、 A gas concentration measuring method for measuring, by a gas concentration measuring device, the concentration of a specific gas in a sealed packaging container in which an object to be packaged is filled, gas-exchanged, and packaged,
前記密封包装容器は、内部に被包装物充填空間を備えた本体部と、該本体部内のヘッドスペースと連通する連通部を有すると共にレーザー光透過用空間を備えた被測定部とを有し、The hermetically sealed packaging container has a main body portion internally provided with a space for filling an object to be packaged, and a measurement target portion having a communication portion communicating with a head space in the main body portion and a space for transmitting a laser beam,
前記本体部は長方体形状に構成され、前記被測定部の前記レーザー光透過用空間は、前記本体部の一側面が延在する方向に沿って細長形状に形成されていると共に、前記本体部内に区画板部により区画して設けられ、The body portion is configured in a rectangular parallelepiped shape, and the laser light transmission space of the portion to be measured is formed in an elongated shape along a direction in which one side surface of the body portion extends. It is divided by the division board part in the part and provided,
前記ガス濃度測定装置は、特定波長のレーザー光を射出するレーザー発生部と、前記レーザー光を受光するレーザー受光部と、特定波長の前記レーザー光を前記密封包装容器の前記被測定部に透過させて前記密封包装容器の内部に残留する特定ガスのガス濃度を測定するレーザー式ガス濃度計とを有し、The gas concentration measuring device includes a laser generator that emits a laser beam of a specific wavelength, a laser receiver that receives the laser beam, and a laser beam of the specific wavelength that passes through the measurement target portion of the sealed packaging container. and a laser gas concentration meter for measuring the gas concentration of the specific gas remaining inside the sealed packaging container,
前記レーザー発生部から射出され前記被測定部の前記レーザー光透過用空間を透過する前記レーザー光を、前記レーザー光透過用空間の細長形状の延在方向の一端側から前記レーザー光透過用空間に透過させた後、前記被測定部の他端側から前記レーザー受光部に入射させることを特徴とする密封包装容器のガス濃度測定方法。The laser light emitted from the laser generating section and transmitted through the laser light transmission space of the part to be measured is directed from one end side in the extending direction of the elongated shape of the laser light transmission space to the laser light transmission space. A method for measuring the gas concentration of a sealed packaging container, characterized in that the laser is incident on the laser receiving part from the other end side of the part to be measured after being transmitted.
前記レーザー発部と前記レーザー受光部は、前記密封包装容器の前記被測定部の両側にそれぞれ対向配置されると共に相対的に接近及び離隔可能に構成されており、
前記密封包装容器の前記被測定部に対して、前記レーザー発部の先端部と前記レーザー受光部の先端部を前記レーザー光透過用空間の細長形状の延在方向の両端にそれぞれ当接させた後、前記レーザー光を前記被測定部の一端側から前記レーザー光透過用空間に透過させ、さらに、前記被測定部の他端側から前記レーザー受光部に入射させる請求項1または2に記載の密封包装容器のガス濃度測定方法。
The laser generating unit and the laser receiving unit are arranged opposite to each other on both sides of the measurement target part of the sealed packaging container and are configured to be able to approach and separate relatively,
The front end of the laser generating section and the front end of the laser light receiving section are brought into contact with the measurement target section of the sealed packaging container on both end sides in the extending direction of the elongated shape of the laser light transmitting space. 3. After the laser light is transmitted from one end side of the portion to be measured to the space for transmitting the laser light, the laser light is made to enter the laser light receiving portion from the other end side of the portion to be measured. A method for measuring the gas concentration of the sealed packaging container described.
被包装物を充填しガス置換して包装された密封包装容器内の特定ガスの濃度を測定するガス濃度測定装置であって、
前記密封包装容器は、内部に被包装物充填空間を備えた本体部と、該本体部内のヘッドスペースと連通する連通部を有すると共にレーザー光透過用空間を備えた被測定部とを有し、
前記本体部は長方体形状に構成され、前記被測定部の前記レーザー光透過用空間は、前記本体部の一側面が延在する方向に沿って細長形状に形成されていると共に、前記本体部の外側に隣接して別に設けられ、
前記ガス濃度測定装置は、特定波長のレーザー光を射出するレーザー発生部と、前記レーザー光を受光するレーザー受光部と、特定波長の前記レーザー光を前記密封包装容器の前記被測定部に透過させて前記密封包装容器の内部に残留する特定ガスのガス濃度を測定するレーザー式ガス濃度計とを有し、
前記レーザー発生部から射出され前記被測定部の前記レーザー光透過用空間を透過する前記レーザー光を、前記レーザー光透過用空間の細長形状の延在方向の一端側から前記レーザー光透過用空間に透過させた後、前記被測定部の他端側から前記レーザー受光部に入射させることを特徴とするガス濃度測定装置。
A gas concentration measuring device for measuring the concentration of a specific gas in a sealed packaging container filled with an item to be packaged, gas replaced, and packaged,
The hermetically sealed packaging container has a main body portion internally provided with a space for filling an object to be packaged, and a measurement target portion having a communication portion communicating with a head space in the main body portion and a space for transmitting a laser beam,
The body portion is configured in a rectangular parallelepiped shape, and the laser light transmission space of the portion to be measured is formed in an elongated shape along a direction in which one side surface of the body portion extends. provided separately adjacent to the outside of the
The gas concentration measuring device includes a laser generator that emits a laser beam of a specific wavelength, a laser receiver that receives the laser beam, and a laser beam of the specific wavelength that passes through the measurement target portion of the sealed packaging container. and a laser gas concentration meter for measuring the gas concentration of the specific gas remaining inside the sealed packaging container,
The laser light emitted from the laser generating section and transmitted through the laser light transmission space of the part to be measured is directed from one end side in the extending direction of the elongated shape of the laser light transmission space to the laser light transmission space. A gas concentration measuring apparatus characterized in that, after being transmitted, the laser beam is incident on the laser receiving portion from the other end side of the portion to be measured.
被包装物を充填しガス置換して包装された密封包装容器内の特定ガスの濃度を測定するガス濃度測定装置であって、 A gas concentration measuring device for measuring the concentration of a specific gas in a sealed packaging container filled with an item to be packaged, gas replaced, and packaged,
前記密封包装容器は、内部に被包装物充填空間を備えた本体部と、該本体部内のヘッドスペースと連通する連通部を有すると共にレーザー光透過用空間を備えた被測定部とを有し、The hermetically sealed packaging container has a main body portion internally provided with a space for filling an object to be packaged, and a measurement target portion having a communication portion communicating with a head space in the main body portion and a space for transmitting a laser beam,
前記本体部は長方体形状に構成され、前記被測定部の前記レーザー光透過用空間は、前記本体部の一側面が延在する方向に沿って細長形状に形成されていると共に、前記本体部内に区画板部により区画して設けられ、The body portion is configured in a rectangular parallelepiped shape, and the laser light transmission space of the portion to be measured is formed in an elongated shape along a direction in which one side surface of the body portion extends. It is divided by the division board part in the part and provided,
前記ガス濃度測定装置は、特定波長のレーザー光を射出するレーザー発生部と、前記レーザー光を受光するレーザー受光部と、特定波長の前記レーザー光を前記密封包装容器の前記被測定部に透過させて前記密封包装容器の内部に残留する特定ガスのガス濃度を測定するレーザー式ガス濃度計とを有し、The gas concentration measuring device includes a laser generator that emits a laser beam of a specific wavelength, a laser receiver that receives the laser beam, and a laser beam of the specific wavelength that passes through the measurement target portion of the sealed packaging container. and a laser gas concentration meter for measuring the gas concentration of the specific gas remaining inside the sealed packaging container,
前記レーザー発生部から射出され前記被測定部の前記レーザー光透過用空間を透過する前記レーザー光を、前記レーザー光透過用空間の細長形状の延在方向の一端側から前記レーザー光透過用空間に透過させた後、前記被測定部の他端側から前記レーザー受光部に入射させることを特徴とするガス濃度測定装置。The laser light emitted from the laser generating section and transmitted through the laser light transmission space of the part to be measured is directed from one end side in the extending direction of the elongated shape of the laser light transmission space to the laser light transmission space. A gas concentration measuring apparatus characterized in that, after being transmitted, the laser beam is incident on the laser receiving portion from the other end side of the portion to be measured.
前記レーザー発部と前記レーザー受光部は、前記密封包装容器の前記被測定部の両側にそれぞれ対向配置されると共に相対的に接近及び離隔可能に構成されており、前記密封包装容器の前記被測定部に対して、前記レーザー発部の先端部と前記レーザー受光部の先端部が前記レーザー光透過用空間の細長形状の延在方向の両端にそれぞれ当接するように構成されている請求項4または5に記載のガス濃度測定装置。 The laser generating section and the laser receiving section are arranged opposite to each other on both sides of the measurement target section of the sealed packaging container and configured to be able to approach and separate relatively. The tip of the laser generator and the tip of the laser receiver are configured to abut on both ends of the laser light transmission space in the extending direction of the elongated shape with respect to the measurement unit. Item 6. The gas concentration measuring device according to Item 4 or 5 .
JP2019226116A 2019-12-16 2019-12-16 Gas concentration measuring method for sealed packaging container and gas concentration measuring device used therefor Active JP7339662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019226116A JP7339662B2 (en) 2019-12-16 2019-12-16 Gas concentration measuring method for sealed packaging container and gas concentration measuring device used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019226116A JP7339662B2 (en) 2019-12-16 2019-12-16 Gas concentration measuring method for sealed packaging container and gas concentration measuring device used therefor

Publications (2)

Publication Number Publication Date
JP2021096097A JP2021096097A (en) 2021-06-24
JP7339662B2 true JP7339662B2 (en) 2023-09-06

Family

ID=76431665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019226116A Active JP7339662B2 (en) 2019-12-16 2019-12-16 Gas concentration measuring method for sealed packaging container and gas concentration measuring device used therefor

Country Status (1)

Country Link
JP (1) JP7339662B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014589A (en) 2007-07-06 2009-01-22 General Packer Co Ltd Gas concentration measuring method in packaging machine
JP2010038846A (en) 2008-08-08 2010-02-18 Hitachi Zosen Corp Nondestructive inspection device of oxygen concentration within bag-like container
JP2012132827A (en) 2010-12-22 2012-07-12 Shunsuke Hosokawa Ozone concentration measurement method, ozone concentration measurement apparatus, ozone gas storage tank with ozone concentration measurement apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0921731A (en) * 1995-07-06 1997-01-21 Tokyo Electric Power Co Inc:The Method for preserving hydrazine standard liquid
JPH10148613A (en) * 1996-11-20 1998-06-02 Mitsubishi Heavy Ind Ltd Gas concentration measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014589A (en) 2007-07-06 2009-01-22 General Packer Co Ltd Gas concentration measuring method in packaging machine
JP2010038846A (en) 2008-08-08 2010-02-18 Hitachi Zosen Corp Nondestructive inspection device of oxygen concentration within bag-like container
JP2012132827A (en) 2010-12-22 2012-07-12 Shunsuke Hosokawa Ozone concentration measurement method, ozone concentration measurement apparatus, ozone gas storage tank with ozone concentration measurement apparatus

Also Published As

Publication number Publication date
JP2021096097A (en) 2021-06-24

Similar Documents

Publication Publication Date Title
CN109863385B (en) Method and apparatus for measuring the concentration of a gas
US8397475B2 (en) Packaging machine with gas concentration measuring device
JP2021067634A (en) Device for measuring gas concentration in packaging bag
WO2021085331A1 (en) Laser gas concentration meter
JP5124719B2 (en) Gas concentration measurement method for packaging machines
SE9804149L (en) Method and apparatus for measuring concentration of a substance in a liquid medium
US10690564B2 (en) Container leak detection
JP7339662B2 (en) Gas concentration measuring method for sealed packaging container and gas concentration measuring device used therefor
JP7339663B2 (en) Gas concentration measuring method for sealed packaging container and gas concentration measuring device used therefor
US20170268996A1 (en) Method and device for measuring the gas content of materials packaged in plastic films, glass or other light-permeable materials and sensitive to a gas to be measured
ITMI20120493A1 (en) EQUIPMENT FOR NON-DESTRUCTIVE CONTROL OF INTEGRITY AND / OR SUITABILITY OF SEALED PACKAGES
JP7357918B2 (en) Gas concentration measuring device inside packaging bag
JP7343169B2 (en) Gas concentration measurement method and gas concentration measurement device for sealed packaging containers
WO2021124710A1 (en) Sealed packaging container
JP5337953B2 (en) Gas concentration measuring method and gas concentration measuring device
JP7350312B2 (en) Method for measuring gas concentration in packaging containers
JP2021096133A (en) Gas concentration measuring device for packaging bags
US20140287521A1 (en) Measuring Device for Tubular Bag Packaging Machines
JP2021067633A (en) Method of measuring gas concentration in packaging bag
JP2021067631A (en) Method of measuring gas concentration in packaging bag
Cocola et al. A Modular Approach of Different Geometries for Non‐invasive Oxygen Measurement inside Moving Food Packages
JP5555923B2 (en) Gas concentration measurement method for packaging machines
WO2022239759A1 (en) Pillow packaging bag gas concentration measuring method
JP2023012103A (en) Laser type gas concentration measurement device
WO2022244648A1 (en) Device for measuring gas concentration in packaging bag and method for measuring gas concentration in packaging bag

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230818

R150 Certificate of patent or registration of utility model

Ref document number: 7339662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150