JPH10148613A - Gas concentration measuring device - Google Patents

Gas concentration measuring device

Info

Publication number
JPH10148613A
JPH10148613A JP30938796A JP30938796A JPH10148613A JP H10148613 A JPH10148613 A JP H10148613A JP 30938796 A JP30938796 A JP 30938796A JP 30938796 A JP30938796 A JP 30938796A JP H10148613 A JPH10148613 A JP H10148613A
Authority
JP
Japan
Prior art keywords
gas
container
laser light
absorption
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30938796A
Other languages
Japanese (ja)
Inventor
Kenji Muta
研二 牟田
Masazumi Taura
昌純 田浦
Ichiro Toyoda
一郎 豊田
Masayuki Tabata
雅之 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP30938796A priority Critical patent/JPH10148613A/en
Publication of JPH10148613A publication Critical patent/JPH10148613A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To clearly distinguish absorption by a container itself from that by an internal gas, and to measure concentration accurately and continuously, by applying laser beams, of which oscillation wavelength is modulated, to a gas to be measured in a sealed type container and receiving laser beams that are transmitted. SOLUTION: A laser control part 2 controls a semiconductor laser diode(LD) 1 based on the modulation signal of a waveform generation part 3. Semiconductor laser beams 9 which have been modulated, are applied to a transparent container where a measurement target (a gas to be measured) 8 sealed and is transmitted through a gas in the container and a laser beams with a wavelength specific to the gas are absorbed, are converted to electrical signal by a photodiode(PD) 4, and are outputted to a lock-in amplifier 6 for phase-sensitive detection. The lock-in amplifier 6 detects an absorption constituent due to a gas from the output signal of the PD4. A signal obtained from the lock-in amplifier 6 becomes an n-order differential quantity regarding the wavelength of an original absorption spectrum, is transmitted to a data processing part, and is recorded and displayed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、密閉容器中のガス
濃度を検出するガス濃度計測装置に関する。
The present invention relates to a gas concentration measuring device for detecting a gas concentration in a closed container.

【0002】[0002]

【従来の技術】従来、ガラスアンプルなどに代表される
密封型透明容器中のガス濃度を検出する場合は、数多く
のアンプル中から代表アンプルを抽出し、そのアンプル
を破壊して内部ガスを取り出し、ガスクロマトグラフや
質量分析器等の各種濃度計にて計測していた。
2. Description of the Related Art Conventionally, when detecting the gas concentration in a sealed transparent container represented by a glass ampule, a representative ampule is extracted from a large number of ampules, the ampule is destroyed, and the internal gas is taken out. It was measured by various densitometers such as gas chromatograph and mass spectrometer.

【0003】また、被測定ガスが封入された容器内のガ
ス濃度が高く、容器が測定に影響を与えない場合には、
赤外光等の吸収を利用した、例えばFT−IR等の非破
壊計測も実施されていた。
Further, when the gas concentration in the container in which the gas to be measured is enclosed is high and the container does not affect the measurement,
Non-destructive measurement such as FT-IR using absorption of infrared light has also been performed.

【0004】[0004]

【発明が解決しようとする課題】上記従来のガス濃度計
測装置において、ガスクロマトグラフや質量分析器等の
各種濃度計による計測では、全体の中から少数のサンプ
ルを取り出し、そのサンプルを破壊して内部ガス濃度を
決定するため、全製品に対するガス濃度の連続的検査は
不可能という欠点があった。
In the above-mentioned conventional gas concentration measuring apparatus, in the measurement using various concentration meters such as a gas chromatograph and a mass spectrometer, a small number of samples are taken out of the whole, the samples are destroyed, and the internal Since the gas concentration is determined, there is a drawback that a continuous inspection of the gas concentration for all products is impossible.

【0005】また、赤外光等の吸収を利用した計測で
は、全てのサンプルについての連続計測が可能となる
が、その一方で、光の吸収量が少ない物質や微量の物質
の計測には適さない。このような場合、被測定ガスが封
入された容器自体の吸収・散乱や汚れ等が原因で計測不
可能となることがある。また、異なる容器内のガスを計
測する場合や、同一容器でもレーザ光を透過させる位置
が異なる場合には、フリンジが変化することでガス濃度
のピーク値の検出に誤差が生じ、計測に大きく影響を与
える。
[0005] In addition, in the measurement utilizing absorption of infrared light or the like, continuous measurement can be performed for all samples, but on the other hand, it is not suitable for measurement of a substance having a small light absorption amount or a trace amount of a substance. Absent. In such a case, measurement may not be possible due to absorption, scattering, dirt, etc. of the container itself in which the gas to be measured is sealed. In addition, when measuring gas in different containers, or when the laser beam is transmitted through different positions in the same container, the fringe changes will cause an error in the detection of the peak value of the gas concentration, which will greatly affect the measurement. give.

【0006】本発明は、上記課題を解決するためになさ
れたもので、その目的とするところは、容器内に密閉さ
れた被測定ガスを計測する際に、その容器を破壊するこ
となく、容器自体の吸収と内部ガスによる吸収とを明確
に区別でき、高精度で連続的な濃度計測を可能とするガ
ス濃度計測装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to measure a gas to be measured sealed in a container without destroying the container. It is an object of the present invention to provide a gas concentration measuring device which can clearly distinguish the absorption by itself and the absorption by an internal gas, and enables continuous measurement with high accuracy.

【0007】[0007]

【課題を解決するための手段】本発明のガス濃度計測装
置は、被測定ガスが封入された密封型容器にレーザ光を
照射する半導体レーザ光源と、この半導体レーザ光源を
制御して所望の波長のレーザ光を出射するためのレーザ
制御部と、前記半導体レーザ光源から出射されるレーザ
光の発振波長に変調を与えるための変調信号を発生させ
る波形発生部と、前記レーザ光の照射により前記密封型
容器内の被測定ガスを透過したレーザ光を受光する受光
部と、前記波形発生部の出力信号の周波数成分のn(n
≧2,nは整数)倍周期の信号を発生する周波数逓倍部
と、前記周波数逓倍部の出力信号と前記受光部の出力信
号に基づいて検波信号を発生するための位相敏感検波部
とを具備したことを特徴とする。
According to the present invention, there is provided a gas concentration measuring apparatus comprising: a semiconductor laser light source for irradiating a sealed container enclosing a gas to be measured with laser light; A laser controller for emitting laser light, a waveform generator for generating a modulation signal for modulating the oscillation wavelength of the laser light emitted from the semiconductor laser light source, and the sealing by irradiation of the laser light. A light receiving unit for receiving a laser beam transmitted through the gas to be measured in the mold container; and n (n) of a frequency component of an output signal of the waveform generating unit.
≧ 2, n is an integer) a frequency multiplier for generating a signal having a multiple period, and a phase-sensitive detector for generating a detection signal based on an output signal of the frequency multiplier and an output signal of the light receiver. It is characterized by having done.

【0008】本発明のガス濃度計測装置によれば、以下
に示す作用・効果を有する。光源として半導体レーザ光
源を用い、その光源から発振するレーザ光の波長に変調
を加え、受光信号中から変調信号に同期した成分のみを
取り出し、さらに同期検波の際に周波数逓倍された変調
信号を用い、その検波出力として高次微分吸収信号を得
ることで、検出感度の向上、容器自体の吸収・散乱や汚
れ等による計測への影響の除去、及び容器表面等の曲率
の影響(光学的定在波、フリンジ)の除去を図ることが
できる。その原理は、以下に示す通りである。
According to the gas concentration measuring device of the present invention, the following operations and effects are obtained. A semiconductor laser light source is used as the light source, and the wavelength of the laser light oscillated from the light source is modulated, only the component synchronized with the modulation signal is extracted from the received light signal, and the frequency-multiplied modulation signal is used at the time of synchronous detection. By obtaining a high-order differential absorption signal as its detection output, the detection sensitivity is improved, the influence on the measurement due to absorption / scattering or contamination of the container itself is eliminated, and the influence of the curvature of the container surface (optical standing) Waves, fringes) can be removed. The principle is as follows.

【0009】(1)検出感度の向上 本発明のガス濃度計測装置では、位相敏感検波を用いて
いる。すなわち、半導体レーザ光源への注入電流に対し
て変調を加えることでレーザ発振波長を変調し、受光信
号の中から変調信号に同期した成分のみを取り出す。一
般に、外部からくる雑音は変調信号に同期していないた
め、受光信号解析中に取り除くことができ、位相敏感検
波信号にはガス吸収のみ影響を受けた信号となる。その
ため、高感度の濃度検出が可能となる。
(1) Improvement of detection sensitivity The gas concentration measuring device of the present invention uses phase sensitive detection. That is, the laser oscillation wavelength is modulated by modulating the injection current to the semiconductor laser light source, and only the component synchronized with the modulation signal is extracted from the received light signal. Generally, noise coming from the outside is not synchronized with the modulation signal, and thus can be removed during analysis of the received light signal, and the phase-sensitive detection signal is a signal affected only by gas absorption. Therefore, high-sensitivity density detection becomes possible.

【0010】(2)被測定ガスを封入する容器自体の吸
収・散乱・汚れ等による計測への影響の除去 ガスの吸収スペクトルの一例として、酸素分子による近
赤外域吸収帯の高分解能計測結果を図3に示す。横軸は
波長、縦軸は透過率を示す。図3において、縦方向に伸
びる複数の直線が、ガスの吸収線である。本発明では、
この吸収線1本だけを計測の対象とするため、波長の走
査・変調範囲は非常に狭くなる。
(2) Elimination of the influence on the measurement due to absorption, scattering, dirt, etc. of the container itself enclosing the gas to be measured. As shown in FIG. The horizontal axis indicates the wavelength, and the vertical axis indicates the transmittance. In FIG. 3, a plurality of straight lines extending in the vertical direction are gas absorption lines. In the present invention,
Since only one absorption line is to be measured, the wavelength scanning / modulation range is very narrow.

【0011】一方、容器の吸収・散乱や汚れ等の影響
は、計測の対象となる波長範囲と比較すると、格段に広
い範囲にわたっており、従って計測の対象となるガス吸
収線の波長範囲では、波長依存性を持たないとみなすこ
とができる。
On the other hand, the influence of absorption / scattering, contamination, and the like of the container is much wider than the wavelength range to be measured, and therefore, the wavelength range of the gas absorption line to be measured is wavelength-dependent. Can be considered as having no dependencies.

【0012】このため、図3中の吸収線1本を拡大する
と、図4のようになる。図4より、以下に示す式により
ガスによる吸収が算出でき、その吸収量からガス濃度の
検出が可能となる。
For this reason, when one absorption line in FIG. 3 is enlarged, it becomes as shown in FIG. From FIG. 4, the absorption by gas can be calculated by the following equation, and the gas concentration can be detected from the amount of absorption.

【0013】 位相敏感検波信号=(吸収ピーク)−(容器による吸収・散乱) =ガスによる吸収 一方、位相敏感検波の出力は、変調幅の両端の値、すな
わち図4中におけるガス吸収ピークとベースの差に相当
する。このため、ガス濃度が変化しない限り、ガス吸収
ピークとベースの差は変化せず、波長依存性を持たない
容器自体の吸収等の影響を受けない。さらに、光源とし
て半導体レーザ光源を用いているため、正確な波長制御
が可能となる。
Phase-sensitive detection signal = (absorption peak) − (absorption / scattering by container) = absorption by gas On the other hand, the output of the phase-sensitive detection is a value at both ends of the modulation width, that is, a gas absorption peak and a base in FIG. Is equivalent to the difference Therefore, as long as the gas concentration does not change, the difference between the gas absorption peak and the base does not change, and is not affected by the absorption of the container itself which has no wavelength dependency. Further, since a semiconductor laser light source is used as the light source, accurate wavelength control can be performed.

【0014】従って、ガス濃度を、容器自体の吸収等の
影響を受けずに正確に検出することが可能である。 (3)容器表面等の曲率の影響(光学的定在波、フリン
ジ)の除去 図5は、本発明によって得られる、2f検波及び4f検
波における吸収スペクトルの計測例を示す。横軸は波
長、縦軸は計測値を示す。
Accordingly, the gas concentration can be accurately detected without being affected by the absorption of the container itself. (3) Removal of the influence of the curvature of the container surface (optical standing wave, fringe) FIG. 5 shows an example of measurement of an absorption spectrum obtained by the present invention in 2f detection and 4f detection. The horizontal axis indicates the wavelength, and the vertical axis indicates the measured value.

【0015】図5(a)は、2f検波における吸収スペ
クトルを示す図であり、半導体レーザ光路途中にはガス
のみが存在している、すなわち、計測対象を容器等で密
閉せず、直接計測する場合である。この場合、直線のベ
ースライン(0値ライン)と微分吸収スペクトルを得る
ことが可能で、そのスペクトルの吸収中心波長でのピー
ク値から、ガス濃度の検出が容易に行えることが確認で
きる。
FIG. 5A is a diagram showing an absorption spectrum in 2f detection. Only gas is present in the optical path of the semiconductor laser, that is, the object to be measured is directly measured without being sealed with a container or the like. Is the case. In this case, it is possible to obtain a linear base line (0 value line) and a differential absorption spectrum, and it can be confirmed that the gas concentration can be easily detected from the peak value at the absorption center wavelength of the spectrum.

【0016】また、図5(a)と同じく2f検波によ
り、ガラス等の透明容器で被測定ガスが密閉されている
計測対象を計測した場合も、図5(a)と同様に直線の
ベースラインと微分吸収スペクトルを得ることができ、
ガス濃度の検出が行えた。
Also, when a measurement target whose gas to be measured is sealed in a transparent container such as glass is measured by 2f detection in the same manner as in FIG. 5 (a), a linear baseline is obtained as in FIG. 5 (a). And the differential absorption spectrum can be obtained,
The gas concentration could be detected.

【0017】一方、同様の条件、すなわち2f検波で、
透明容器で被測定ガスが密閉されている場合において、
0値ラインを高精度で観測できないこともあり、その場
合の吸収スペクトル計測例を図5(b)に示す。図5
(b)の場合、ガラス内部での光の多重反射や容器曲率
の影響により、図5(a)に示したような直線のベース
ラインが現れず、波打ったベースライン、すなわちフリ
ンジ上に微分吸収スペクトルが重なったスペクトルとな
る。また、例えば異なる容器を計測する場合や、同一容
器でもレーザを透過させる位置が異なる場合には、図5
(c)に示すように、ベースラインが変動し、0値レベ
ルが変化する。この0値レベルの変化により、吸収中心
波長におけるピーク値の高精度の検出が困難となり、ガ
ス濃度を検出する際に誤差が生じる。
On the other hand, under the same conditions, ie, 2f detection,
When the gas to be measured is sealed in a transparent container,
In some cases, the zero-value line cannot be observed with high accuracy, and an example of absorption spectrum measurement in that case is shown in FIG. FIG.
In the case of (b), the linear base line as shown in FIG. 5A does not appear due to the multiple reflection of light inside the glass and the influence of the container curvature, and the differential line is differentiated on the wavy base line, that is, on the fringe. A spectrum in which the absorption spectra overlap. For example, when measuring different containers, or when the same container has a different laser transmitting position, FIG.
As shown in (c), the baseline fluctuates, and the 0 value level changes. This change in the zero value level makes it difficult to detect the peak value at the absorption center wavelength with high accuracy, and causes an error in detecting the gas concentration.

【0018】そこで、図5(b)及び(c)と同様に、
計測対象がガラス等の透明容器に封入されている場合に
おいて、検波の次数を上げて(この場合、4f検波)行
った計測例を図5(d)に示す。図5(d)に示すよう
に、検波の次数を上げることにより微分の次数が上がる
ため、図5(b)及び(c)の場合に見られたフリンジ
の影響を抑制することができる。従って、異なる容器を
計測する場合やレーザ透過位置を変えた場合であっても
0値ラインを容易に観測することができ、吸収中心波長
におけるピーク値を高精度で計測することが可能とな
る。
Therefore, similarly to FIGS. 5B and 5C,
FIG. 5D shows a measurement example in which the order of detection is increased (in this case, 4f detection) when the measurement target is enclosed in a transparent container such as glass. As shown in FIG. 5D, the order of differentiation is increased by increasing the order of detection, so that the effect of fringe seen in the cases of FIGS. 5B and 5C can be suppressed. Therefore, even when measuring a different container or changing the laser transmission position, the zero-value line can be easily observed, and the peak value at the absorption center wavelength can be measured with high accuracy.

【0019】このように、光源として半導体レーザ光源
を用い、発振レーザ光に変調を加え、そのレーザ光の受
光の際に周波数逓倍された変調信号により同期検波を行
うため、得られる信号は、もとの吸収スペクトルの波長
に関するn次微分量となる。このため、容器が異なる場
合や、同一容器であってレーザを透過させる位置が異な
る場合であっても、フリンジの影響を抑制でき、正確な
ガス濃度計測が可能となる。
As described above, the semiconductor laser light source is used as the light source, the oscillation laser light is modulated, and the synchronous detection is performed by the frequency-multiplied modulation signal when the laser light is received. And the n-th order differential quantity with respect to the wavelength of the absorption spectrum. For this reason, even when the containers are different or the same container has different laser transmitting positions, the influence of the fringe can be suppressed, and accurate gas concentration measurement can be performed.

【0020】[0020]

【発明の実施の形態】以下、図面を参照しながら、本発
明の一実施形態を説明する。図1は、本発明の一実施形
態に係るガス濃度計測装置の構成を示す図である。図1
に示すように、ガス濃度計測装置は、半導体レーザ光9
を発生させ、計測対象8に向けて出射する半導体レーザ
ダイオード1(以下、LD1と称する)、LD1を制御
し、所望の波長のレーザ光を出射するためのレーザ制御
部2、所望の波長の変調信号を発生させる波形発生部
3、変調信号を周波数逓倍する周波数逓倍部5、位相敏
感検波用ロックインアンプ6、計測対象8を透過したレ
ーザ光を受光する受光部4(フォトダイオードとフォト
ダイオード用アンプから構成される。以下、PD4と称
する)、計測値の記録・表示を行うデータ処理部7から
構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration of a gas concentration measuring device according to one embodiment of the present invention. FIG.
As shown in the figure, the gas concentration measuring device
, A semiconductor laser diode 1 (hereinafter referred to as LD1) that emits light toward the measurement target 8, a laser control unit 2 that controls the LD1 and emits laser light of a desired wavelength, and modulation of a desired wavelength. A waveform generator 3 for generating a signal, a frequency multiplier 5 for frequency-multiplying the modulated signal, a lock-in amplifier 6 for phase-sensitive detection, and a light-receiving unit 4 for receiving laser light transmitted through the measurement target 8 (photodiode and photodiode And a data processing unit 7 for recording and displaying measured values.

【0021】上記実施形態の動作を以下説明する。波形
発生部3は、LD1から発振される半導体レーザ光9の
発振波長に対して変調を与えるための変調信号を生成
し、レーザ制御部2に出力する。レーザ制御部2は、波
形発生部3の変調信号に基づいて、LD1を制御する。
LD1は、レーザ制御部2による制御に基づいて、変調
を加えられた半導体レーザ光9を計測対象8、すなわち
被測定ガスが密封された透明容器に向けて出射する。こ
の半導体レーザ光9は、透明容器内のガスを透過して、
PD4で受光される。ここで、計測対象8を透過する際
に、透明容器中のガスに特有の波長のレーザ光が吸収さ
れる。PD4は、受光したレーザ光を電気信号に変換し
て増幅した後に位相敏感検波用ロックインアンプ6に出
力する。
The operation of the above embodiment will be described below. The waveform generator 3 generates a modulation signal for modulating the oscillation wavelength of the semiconductor laser light 9 oscillated from the LD 1 and outputs the modulation signal to the laser controller 2. The laser controller 2 controls the LD 1 based on the modulation signal of the waveform generator 3.
The LD 1 emits the modulated semiconductor laser light 9 toward the measurement target 8, that is, the transparent container in which the gas to be measured is sealed, under the control of the laser control unit 2. This semiconductor laser light 9 permeates the gas in the transparent container,
The light is received by PD4. Here, when the light passes through the measurement target 8, laser light having a wavelength specific to the gas in the transparent container is absorbed. The PD 4 converts the received laser light into an electric signal, amplifies the electric signal, and outputs the electric signal to the lock-in amplifier 6 for phase sensitive detection.

【0022】一方、周波数逓倍部5は、波形発生部3で
生成された変調信号を周波数成分についてn(n≧2,
nは整数)倍し、このn倍した信号を位相敏感検波用ロ
ックインアンプ6に出力する。
On the other hand, the frequency multiplier 5 converts the modulated signal generated by the waveform generator 3 into n (n ≧ 2,
(n is an integer) and outputs the signal multiplied by n to the lock-in amplifier 6 for phase sensitive detection.

【0023】位相敏感検波用ロックインアンプ6は、P
D4の出力信号からガスによる吸収成分を検出する。係
る検出の際に、周波数逓倍部5の出力信号と同期した成
分を取り出す。このロックインアンプ6で得られる信号
は、もとの吸収スペクトルの波長に関するn次微分量と
なり、データ処理部7に送られて記録・表示される。
The lock-in amplifier 6 for phase sensitive detection is
The component absorbed by the gas is detected from the output signal of D4. At the time of such detection, a component synchronized with the output signal of the frequency multiplier 5 is extracted. The signal obtained by the lock-in amplifier 6 becomes an n-th order differential quantity relating to the wavelength of the original absorption spectrum, and is sent to the data processing unit 7 to be recorded and displayed.

【0024】本発明の有効性の検証として、図1に示す
ガス濃度計測装置を用いて実験を行った。実験では、計
測対象8として、4種のガラスアンプルを用い、このガ
ラスアンプルの内部酸素濃度を0,2,10,21
[%]とした。また、高倍率f検波の効果を確認するた
め、周波数逓倍部5は波形発生部3の変調信号を2倍、
4倍周期に逓倍し(2f検波,4f検波)、下記のよう
な実験条件において実験を行った。
As a verification of the effectiveness of the present invention, an experiment was conducted using the gas concentration measuring device shown in FIG. In the experiment, four types of glass ampules were used as the measurement target 8, and the internal oxygen concentrations of the glass ampules were 0, 2, 10, 21.
[%]. Further, in order to confirm the effect of the high-magnification f detection, the frequency multiplier 5 doubles the modulation signal of the waveform generator 3 by two times.
The frequency was multiplied by 4 times (2f detection, 4f detection), and an experiment was performed under the following experimental conditions.

【0025】[0025]

【表1】 [Table 1]

【0026】上記実験条件における実験結果において、
まず、2f検波での実験では、容器取り付け位置、すな
わちレーザ光透過位置を変えずに計測した場合は、計測
の再現性が良好であったが、容器取り付け位置が計測毎
に異なっていた場合は、計測の再現性が非常に悪かっ
た。これは、光入射面曲率(容器表面)状態が、計測毎
に異なっていたことが原因で、容器内濃度0を示す計測
値が変動したためである。
In the experimental results under the above experimental conditions,
First, in the experiment with 2f detection, when the measurement was performed without changing the container mounting position, that is, the laser beam transmission position, the reproducibility of the measurement was good, but when the container mounting position was different for each measurement, , The reproducibility of the measurement was very poor. This is because the measurement value indicating the concentration 0 in the container fluctuated due to the fact that the state of the light incident surface curvature (surface of the container) was different for each measurement.

【0027】しかし、4f検波の実験では、計測の再現
性は良好であり、高倍率f検波によれば、計測毎に異な
る容器状態変化の影響を除去できることを示している。
この4f検波での実験結果を図2に示す。
However, in the experiment of 4f detection, the reproducibility of the measurement is good, and the high-magnification f detection shows that the influence of a change in the state of the container, which differs every measurement, can be eliminated.
FIG. 2 shows the experimental result of the 4f detection.

【0028】図2は、4f検波での酸素濃度0,2,1
0,21[%]における計測結果を示す図である。縦軸
は計測値、横軸はアンプル内の酸素濃度を示している。
また、図中の実線は、理論的に4f検波の場合は計測値
と酸素濃度とが2次関数の関係にあることから、酸素濃
度0,21[%]の計測結果とから作成した検量線であ
る。図2より明らかな通り、酸素濃度2,10[%]の
計測結果も検量線にほぼ一致しており、この計測装置と
検量線を用いて、未知のアンプル内の酸素濃度を計測で
きることは明白である。
FIG. 2 shows the oxygen concentrations 0, 2, and 1 in the 4f detection.
It is a figure which shows the measurement result in 0,21 [%]. The vertical axis indicates the measured value, and the horizontal axis indicates the oxygen concentration in the ampoule.
The solid line in the figure is a calibration curve created from the measurement results of the oxygen concentration of 0.21 [%] since the measured value and the oxygen concentration theoretically have a quadratic function in the case of 4f detection. It is. As is clear from FIG. 2, the measurement results of the oxygen concentration of 2,10 [%] almost coincide with the calibration curve, and it is clear that the oxygen concentration in the unknown ampoule can be measured using this measurement device and the calibration curve. It is.

【0029】以上説明したように、光源として半導体レ
ーザ光源を用いることで、正確な波長制御が可能とな
る。また、この半導体レーザ光源から発振するレーザ光
の波長に変調を加え、受光信号中から変調信号に同期し
た成分のみを取り出し、さらに同期検波の際に周波数逓
倍された変調信号を用い、その出力として高次微分吸収
信号を得ることで、検出感度の向上、容器自体の吸収・
散乱や汚れ等による計測への影響の除去、及び容器表面
等の曲率の計測への影響の除去を図ることができる。
As described above, accurate wavelength control can be achieved by using a semiconductor laser light source as a light source. In addition, the wavelength of the laser light oscillated from this semiconductor laser light source is modulated, only the component synchronized with the modulation signal is extracted from the received light signal, and the frequency-multiplied modulation signal is used at the time of synchronous detection. By obtaining a high-order differential absorption signal, the detection sensitivity is improved,
It is possible to remove the influence on the measurement due to scattering, dirt, and the like, and to remove the influence on the measurement of the curvature of the container surface or the like.

【0030】尚、本実施形態では計測対象8が密封型透
明容器の場合を示したが、密封型容器であってその一部
が透明な場合であっても本発明を適用可能であることは
勿論である。また、周波数逓倍部5が波形発生部3の変
調信号を2倍、4倍周期に逓倍する場合を示したが、そ
れ以上の倍率に変調信号を逓倍する場合であっても本発
明を適用可能であることは勿論である。
In this embodiment, the case where the measuring object 8 is a sealed transparent container is shown. However, the present invention can be applied to a sealed container whose part is transparent. Of course. Also, the case where the frequency multiplier 5 multiplies the modulation signal of the waveform generator 3 by 2 times and 4 times has been described, but the present invention is applicable even when the modulation signal is multiplied to a higher magnification. Of course, it is.

【0031】[0031]

【発明の効果】以上説明したように本発明によれば、発
振レーザ光に変調を加え、そのレーザ光の受光の際に周
波数逓倍された変調信号により同期検波を行い、その出
力として高次微分吸収信号を得ることで、被測定ガスを
封入する密封型容器を破壊することなく、その容器自体
の吸収と内部ガスによる吸収とを明確に区別でき、高精
度で連続的にガス濃度を計測することが可能となる。
As described above, according to the present invention, the oscillation laser light is modulated, and upon receiving the laser light, synchronous detection is performed by the frequency-multiplied modulation signal, and the higher-order differential is output as the output. By obtaining the absorption signal, the absorption of the container itself and the absorption by the internal gas can be clearly distinguished without destroying the sealed container that encloses the gas to be measured, and the gas concentration is continuously measured with high accuracy. It becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態におけるガス濃度計測装置
の全体構成を示す図。
FIG. 1 is a diagram showing an entire configuration of a gas concentration measurement device according to an embodiment of the present invention.

【図2】同実施形態におけるガス濃度計測装置による実
験結果を示す図。
FIG. 2 is a view showing an experimental result by the gas concentration measuring device in the embodiment.

【図3】同実施形態におけるガス濃度計測装置の測定原
理を説明するための図。
FIG. 3 is a view for explaining a measurement principle of the gas concentration measurement device in the embodiment.

【図4】図3における吸収スペクトルの吸収線の1本を
拡大した図
4 is an enlarged view of one of the absorption lines in the absorption spectrum in FIG.

【図5】本発明の一実施形態に係るガス濃度計測装置に
よる吸収スペクトルの計測例を示す図。
FIG. 5 is a diagram showing a measurement example of an absorption spectrum by the gas concentration measurement device according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体レーザダイオード(LD) 2 レーザ制御部 3 波形発生部 4 受光部(PD) 5 周波数逓倍部 6 位相敏感検波用ロックインアンプ 7 データ処理部 8 計測対象 9 半導体レーザ光 REFERENCE SIGNS LIST 1 semiconductor laser diode (LD) 2 laser controller 3 waveform generator 4 light receiver (PD) 5 frequency multiplier 6 lock-in amplifier for phase sensitive detection 7 data processor 8 measurement target 9 semiconductor laser light

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田畑 雅之 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Masayuki Tabata 1-8-1 Koura, Kanazawa-ku, Yokohama-shi, Kanagawa Prefecture, Mitsubishi Heavy Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被測定ガスが封入された密封型容器にレ
ーザ光を照射する半導体レーザ光源と、 前記半導体レーザ光源を制御して所望の波長のレーザ光
を出射するためのレーザ制御部と、 前記半導体レーザ光源から出射されるレーザ光の発振波
長に変調を与えるための変調信号を発生させる波形発生
部と、 前記レーザ光の照射により前記密封型容器内の被測定ガ
スを透過したレーザ光を受光する受光部と、 前記波形発生部の出力信号の周波数成分のn(n≧2,
nは整数)倍周期の信号を発生する周波数逓倍部と、 前記周波数逓倍部の出力信号と前記受光部の出力信号に
基づいて検波信号を発生するための位相敏感検波部とを
具備したことを特徴とするガス濃度計測装置。
A semiconductor laser light source for irradiating a laser beam to a sealed container in which a gas to be measured is sealed; a laser control unit for controlling the semiconductor laser light source to emit laser light of a desired wavelength; A waveform generator that generates a modulation signal for modulating the oscillation wavelength of the laser light emitted from the semiconductor laser light source; and a laser light that has passed through the gas to be measured in the sealed container by irradiating the laser light. A light receiving unit for receiving light, and n (n ≧ 2, n) of a frequency component of an output signal of the waveform generating unit.
(n is an integer) a frequency multiplier for generating a signal having a multiple period, and a phase-sensitive detector for generating a detection signal based on the output signal of the frequency multiplier and the output signal of the light receiver. Characteristic gas concentration measurement device.
JP30938796A 1996-11-20 1996-11-20 Gas concentration measuring device Withdrawn JPH10148613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30938796A JPH10148613A (en) 1996-11-20 1996-11-20 Gas concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30938796A JPH10148613A (en) 1996-11-20 1996-11-20 Gas concentration measuring device

Publications (1)

Publication Number Publication Date
JPH10148613A true JPH10148613A (en) 1998-06-02

Family

ID=17992406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30938796A Withdrawn JPH10148613A (en) 1996-11-20 1996-11-20 Gas concentration measuring device

Country Status (1)

Country Link
JP (1) JPH10148613A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074653A (en) * 1999-08-31 2001-03-23 Mitsubishi Heavy Ind Ltd Gas concentration measuring apparatus and combustion furnace
JP2004511451A (en) * 2000-10-13 2004-04-15 ビーピー ケミカルズ リミテッド Process and apparatus for detecting loss of reaction in hydrocarbon conversion reactions
JP2006030161A (en) * 2004-07-20 2006-02-02 Martin Lehmann Method for monitoring pressure of gas kind, and device for monitoring
KR100747768B1 (en) * 2005-05-31 2007-08-08 한국생산기술연구원 Apparatus for measuring exhaust gas using wavelength modulation spectroscopy
KR100747767B1 (en) * 2005-05-31 2007-08-08 한국생산기술연구원 Time division multiplexing system for measuring multiple exhaust gases at the same time
JP2008544229A (en) * 2005-06-15 2008-12-04 マーチン・レーマン Method and apparatus for monitoring the pressure of gaseous species
JP2010145320A (en) * 2008-12-22 2010-07-01 General Packer Co Ltd Gas measuring instrument
JP2010151624A (en) * 2008-12-25 2010-07-08 Toyota Motor Corp Gas analyzer using ftir method and program used therefor
CN104198433A (en) * 2014-09-14 2014-12-10 中国科学院合肥物质科学研究院 Device and method for detecting concentration of human respiration marking gas on line by laser absorption spectroscopy technology
JP2021096098A (en) * 2019-12-16 2021-06-24 ゼネラルパッカー株式会社 Method of measuring gas concentration in sealed packaging container and gas concentration measurement device used therefor
WO2021124710A1 (en) * 2019-12-16 2021-06-24 ゼネラルパッカー株式会社 Sealed packaging container
JP2021096097A (en) * 2019-12-16 2021-06-24 ゼネラルパッカー株式会社 Method of measuring gas concentration in sealed packaging container and gas concentration measurement device used therefor
JP2021096099A (en) * 2019-12-16 2021-06-24 ゼネラルパッカー株式会社 Method of measuring gas concentration in sealed packaging container and gas concentration measurement device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074653A (en) * 1999-08-31 2001-03-23 Mitsubishi Heavy Ind Ltd Gas concentration measuring apparatus and combustion furnace
JP2004511451A (en) * 2000-10-13 2004-04-15 ビーピー ケミカルズ リミテッド Process and apparatus for detecting loss of reaction in hydrocarbon conversion reactions
JP2006030161A (en) * 2004-07-20 2006-02-02 Martin Lehmann Method for monitoring pressure of gas kind, and device for monitoring
KR100747768B1 (en) * 2005-05-31 2007-08-08 한국생산기술연구원 Apparatus for measuring exhaust gas using wavelength modulation spectroscopy
KR100747767B1 (en) * 2005-05-31 2007-08-08 한국생산기술연구원 Time division multiplexing system for measuring multiple exhaust gases at the same time
JP2008544229A (en) * 2005-06-15 2008-12-04 マーチン・レーマン Method and apparatus for monitoring the pressure of gaseous species
JP2010145320A (en) * 2008-12-22 2010-07-01 General Packer Co Ltd Gas measuring instrument
JP2010151624A (en) * 2008-12-25 2010-07-08 Toyota Motor Corp Gas analyzer using ftir method and program used therefor
CN104198433A (en) * 2014-09-14 2014-12-10 中国科学院合肥物质科学研究院 Device and method for detecting concentration of human respiration marking gas on line by laser absorption spectroscopy technology
JP2021096098A (en) * 2019-12-16 2021-06-24 ゼネラルパッカー株式会社 Method of measuring gas concentration in sealed packaging container and gas concentration measurement device used therefor
WO2021124710A1 (en) * 2019-12-16 2021-06-24 ゼネラルパッカー株式会社 Sealed packaging container
JP2021095157A (en) * 2019-12-16 2021-06-24 ゼネラルパッカー株式会社 Sealed packaging container
JP2021096097A (en) * 2019-12-16 2021-06-24 ゼネラルパッカー株式会社 Method of measuring gas concentration in sealed packaging container and gas concentration measurement device used therefor
JP2021096099A (en) * 2019-12-16 2021-06-24 ゼネラルパッカー株式会社 Method of measuring gas concentration in sealed packaging container and gas concentration measurement device

Similar Documents

Publication Publication Date Title
US6639678B1 (en) Apparatus and method for nondestructive monitoring of gases in sealed containers
US7283243B2 (en) Semiconductor diode laser spectrometer arrangement and method
US8240189B2 (en) Thermal selectivity multivariate optical computing
JP5983779B2 (en) Gas absorption spectroscopy apparatus and gas absorption spectroscopy method
JP3450938B2 (en) Gas concentration measuring method and apparatus
JP5702397B2 (en) Method and apparatus for detecting species in a dilution medium
US7903252B2 (en) Noise cancellation in fourier transform spectrophotometry
CN104903704B (en) Carry out the tunable diode laser absorption spectroscopy of steam measure
JPH10148613A (en) Gas concentration measuring device
JP2007298510A (en) Gas detection method and gas detection device
US8994948B2 (en) Apparatus for the non-destructive testing of the integrity and/or suitability of sealed packagings
US5640245A (en) Spectroscopic method with double modulation
JP2744742B2 (en) Gas concentration measuring method and its measuring device
JP2522865B2 (en) Carbon isotope analyzer
US5406377A (en) Spectroscopic imaging system using a pulsed electromagnetic radiation source and an interferometer
US3825344A (en) Device for analysing a substance by atomic absorption with background correction
JP2703835B2 (en) Gas concentration measuring method and its measuring device
WO2020059452A1 (en) Gas measurement device and gas measurement method
Weber et al. Novel approach for efficient resonance tracking in photoacoustic gas sensor systems based on a light-induced wall signal
JP2007120971A (en) Optical hydrogen gas and hydrocarbon gas sensor
JP2008134076A (en) Gas analyzer
JP2005127748A (en) Photothermal converting/measuring apparatus and method
JPH05296922A (en) Carbon isotope analyzing instrument
Singh et al. Laboratory measurements of absorption coefficients for the 727 nm band of methane at 77 K and comparison with results derived from spectra of the giant planets
JP2004512521A (en) Device for online measurement of laser pulse and measurement method by photoacoustic spectroscopy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040203