JP2021096099A - Method of measuring gas concentration in sealed packaging container and gas concentration measurement device - Google Patents

Method of measuring gas concentration in sealed packaging container and gas concentration measurement device Download PDF

Info

Publication number
JP2021096099A
JP2021096099A JP2019226118A JP2019226118A JP2021096099A JP 2021096099 A JP2021096099 A JP 2021096099A JP 2019226118 A JP2019226118 A JP 2019226118A JP 2019226118 A JP2019226118 A JP 2019226118A JP 2021096099 A JP2021096099 A JP 2021096099A
Authority
JP
Japan
Prior art keywords
packaging container
sealed packaging
laser
gas
reflecting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019226118A
Other languages
Japanese (ja)
Other versions
JP7343169B2 (en
Inventor
雅志 大島
Masashi Oshima
雅志 大島
直樹 長田
Naoki Osada
直樹 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Packer Co Ltd
Original Assignee
General Packer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Packer Co Ltd filed Critical General Packer Co Ltd
Priority to JP2019226118A priority Critical patent/JP7343169B2/en
Publication of JP2021096099A publication Critical patent/JP2021096099A/en
Application granted granted Critical
Publication of JP7343169B2 publication Critical patent/JP7343169B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a method of measuring gas concentration in a sealed packaging container, which allows for highly accurately measuring concentration of a specific gas in a sealed packaging container even in the presence of a narrow head space empty of a packaged object without damaging the sealed packaging container, and to provide a gas concentration measurement device.SOLUTION: Laser light emitted by a laser generator 11 and transmitted through a measured section 7 of a sealed packaging container 1 is reflected by a reflective surface 14 before being incident on a laser receiver 12.SELECTED DRAWING: Figure 8

Description

本発明は、内部の特定ガスの濃度を高精度に測定可能な密封包装容器のガス濃度測定方法およびその方法に使用されるガス濃度測定装置に関するものである。 The present invention relates to a gas concentration measuring method for a sealed packaging container capable of measuring the concentration of a specific gas inside with high accuracy, and a gas concentration measuring device used in the method.

従来より、ガス置換されて密封されたレトルト成形容器(例えばレトルト米飯パック)などの密封包装容器が多用されている。
この種の密封包装容器の包装工程では、ヘッドスペース内に残存する、被包装物の保存期間または賞味期間を縮めるおそれがある酸化原因ガス(例えば酸素)を除去した後、窒素、二酸化炭素等の不活性ガスでガス置換して密封するガス置換包装が行われている(特許文献1)。これによって、密封包装容器内の酸化原因ガスは除去され、被包装物、特に食品は長期の保存期間、賞味期間を確保することができる。
Conventionally, sealed packaging containers such as gas-replaced and sealed retort-molded containers (for example, retort-packed rice packs) have been widely used.
In the packaging process of this type of sealed packaging container, after removing the oxidation-causing gas (for example, oxygen) remaining in the headspace, which may shorten the storage period or the shelf life of the packaged object, nitrogen, carbon dioxide, etc. Gas replacement packaging that replaces gas with an inert gas and seals it is performed (Patent Document 1). As a result, the oxidation-causing gas in the sealed packaging container is removed, and the packaged object, particularly the food, can secure a long storage period and a shelf life.

そして、ガス置換包装後の検査工程において、酸化原因ガス、特に酸素の濃度が既定値以下であるかどうかの検査が行われている。 Then, in the inspection step after the gas replacement packaging, inspection is performed to see if the concentration of the oxidation-causing gas, particularly oxygen, is equal to or less than the predetermined value.

しかしながら、現在主流であるガス濃度の測定方法は、サンプルとして任意に選択した密封包装容器に注射針を刺し、密封包装容器内から吸引した少量のガスの組成を検査する抜き取り検査である。この抜き取り検査では、注射痕が形成された密封包装容器は廃棄しなければならない。また、検査精度を上げるためにサンプル数を増やすと検査時間が長くなり、増加する廃棄量によって経済的、時間的損失が増大する不都合があった。さらに、充填した被包装物が存在しないヘッドスペースが狭小な場合、ガス濃度の測定が極めて困難であった。 However, the currently mainstream method for measuring gas concentration is a sampling test in which an injection needle is inserted into a sealed packaging container arbitrarily selected as a sample and the composition of a small amount of gas sucked from the sealed packaging container is inspected. In this sampling inspection, sealed packaging containers with injection marks must be discarded. Further, if the number of samples is increased in order to improve the inspection accuracy, the inspection time becomes long, and there is a disadvantage that the economic and time loss increases due to the increased amount of waste. Further, when the head space in which the packed object is not present is narrow, it is extremely difficult to measure the gas concentration.

特許第3742042号公報Japanese Patent No. 3744022

そこで、本発明の課題は、密封包装容器を損傷することなく、被包装物が存在しないヘッドスペースが狭小な場合でも、内部の特定ガスの濃度を高精度に測定可能な密封包装容器のガス濃度測定方法およびその方法に使用されるガス濃度測定装置を提供することにある。 Therefore, the subject of the present invention is the gas concentration of the sealed packaging container, which can measure the concentration of the specific gas inside with high accuracy without damaging the sealed packaging container, even when the head space where the object to be packaged does not exist is narrow. It is an object of the present invention to provide a measuring method and a gas concentration measuring device used for the measuring method.

上記課題を解決するものは、被包装物を充填しガス置換して包装された密封包装容器内の特定ガスの濃度をガス濃度測定装置により測定するガス濃度測定方法であって、前記密封包装容器は、内部に被包装物充填空間を備えた本体部と、該本体部内のヘッドスペースと連通する連通部を有すると共にレーザー光透過用空間を備えた被測定部とを有し、前記ガス濃度測定装置は、特定波長のレーザー光を射出するレーザー発生部と、前記レーザー光を受光するレーザー受光部と、特定波長のレーザー光を前記密封包装容器の前記被測定部に透過させて前記密封包装容器の内部に残留する特定ガスのガス濃度を測定するレーザー式ガス濃度計と、前記レーザー光が反射可能な反射面を有し、前記レーザー発生部から射出され前記密封包装容器の前記被測定部を透過するレーザー光を、前記反射面で反射させた後に前記レーザー受光部に入射させることを特徴とするガス濃度測定方法である(請求項1)。 The solution to the above problem is a gas concentration measuring method for measuring the concentration of a specific gas in a sealed packaging container filled with an object to be packaged and replaced with a gas by a gas concentration measuring device, and the sealed packaging container is described. Has a main body portion having a space for filling a container to be packaged inside, and a unit to be measured having a communication portion communicating with the head space in the main body portion and a space for transmitting laser light, and measuring the gas concentration. The apparatus includes a laser generating unit that emits a laser beam having a specific wavelength, a laser receiving unit that receives the laser beam, and a laser light having a specific wavelength transmitted through the measured portion of the sealed packaging container to the sealed packaging container. A laser-type gas densitometer that measures the gas concentration of a specific gas remaining inside the container, and a reflective surface on which the laser beam can be reflected, which is emitted from the laser generating portion to measure the measured portion of the sealed packaging container. A method for measuring a gas concentration, which comprises reflecting a transmitted laser beam on the reflecting surface and then incidenting the transmitted laser light on the laser receiving portion (claim 1).

前記反射面は、前記密封包装容器の前記被測定部を挟んで互いに平行に対向配置された第1反射面と第2反射面からなり、前記レーザー光を前記第1反射面と前記第2反射面との間で複数回反射させることが好ましい(請求項2)。 The reflecting surface is composed of a first reflecting surface and a second reflecting surface which are arranged so as to face each other in parallel with the measured portion of the sealed packaging container, and the laser light is reflected by the first reflecting surface and the second reflecting surface. It is preferable to reflect the light on the surface a plurality of times (claim 2).

また、上記課題を解決するものは、被包装物を充填しガス置換して包装された密封包装容器内の特定ガスの濃度を測定するガス濃度測定装置であって、前記密封包装容器は、内部に被包装物充填空間を備えた本体部と、該本体部内のヘッドスペースと連通する連通部を有すると共にレーザー光透過用空間を備えた被測定部とを有し、前記ガス濃度測定装置は、特定波長のレーザー光を射出するレーザー発生部と、前記レーザー光を受光するレーザー受光部と、特定波長のレーザー光を前記密封包装容器の前記被測定部に透過させて前記密封包装容器の内部に残留する特定ガスのガス濃度を測定するレーザー式ガス濃度計と、前記レーザー光が反射可能な反射面を有し、前記レーザー発生部から射出され前記密封包装容器の前記被測定部を透過するレーザー光を、前記反射面で反射させた後に前記レーザー受光部に入射させるように構成されていることを特徴とするガス濃度測定装置である(請求項3)。 Further, what solves the above-mentioned problem is a gas concentration measuring device for measuring the concentration of a specific gas in a sealed packaging container filled with an object to be packaged and replaced with a gas, and the sealed packaging container is inside. The gas concentration measuring device has a main body portion provided with a space for filling the object to be packaged, and a measured portion having a communication portion communicating with the head space in the main body portion and a space for transmitting laser light. A laser generating part that emits a laser beam of a specific wavelength, a laser receiving part that receives the laser light, and a laser light of a specific wavelength are transmitted to the measured part of the sealed packaging container to be inside the sealed packaging container. A laser gas densitometer that measures the gas concentration of the remaining specific gas, and a laser that has a reflecting surface on which the laser light can be reflected, is emitted from the laser generating portion, and is transmitted through the measured portion of the sealed packaging container. The gas concentration measuring device is characterized in that the light is reflected by the reflecting surface and then incident on the laser receiving portion (claim 3).

前記ガス濃度測定装置は、前記レーザー光発生部を内蔵する第1ハウジングと、前記レーザー受光部を内蔵する第2ハウジングとを有し、前記反射面は、前記密封包装容器の前記被測定部を挟んで互いに平行に対向配置された第1反射面及び第2反射面を有し、前記第1反射面は前記レーザー光を射出する第1窓部を備え、前記第1反射面または前記第2反射面は、前記レーザー光が入射する第2窓部を備え、前記第1窓部から射出されたレーザー光は、前記第1反射面と前記第2反射面との間で複数回反射した後、前記第2窓部に入射するように構成されていることが好ましい(請求項4)。前記第1反射面と前記第2反射面は、相対的な離隔距離を調整可能に設けられ、前記第1反射面と前記第2反射面が前記密封包装容器の前記被測定部を挟持したとき、前記第1窓部および前記第2窓部、並びに前記第1反射面および前記第2反射面が、前記密封包装容器の前記被測定部に密着するように構成されていることが好ましい(請求項5)。 The gas concentration measuring device has a first housing incorporating the laser light generating portion and a second housing incorporating the laser receiving portion, and the reflecting surface is the measured portion of the sealed packaging container. It has a first reflecting surface and a second reflecting surface which are arranged so as to face each other in parallel with each other, and the first reflecting surface includes a first window portion for emitting the laser beam, and the first reflecting surface or the second reflecting surface. The reflecting surface includes a second window portion on which the laser light is incident, and the laser light emitted from the first window portion is reflected a plurality of times between the first reflecting surface and the second reflecting surface. , It is preferable that it is configured to be incident on the second window portion (claim 4). When the first reflective surface and the second reflective surface are provided so that the relative separation distance can be adjusted, and the first reflective surface and the second reflective surface sandwich the measured portion of the sealed packaging container. It is preferable that the first window portion and the second window portion, and the first reflecting surface and the second reflecting surface are configured to be in close contact with the measured portion of the sealed packaging container (claimed). Item 5).

請求項1に記載のガス濃度測定方法によれば、密封包装容器を損傷することなく、被包装物が存在しないヘッドスペースが狭小な場合でも、内部の特定ガスの濃度を高精度に測定することができる。
請求項2に記載のガス濃度測定方法によれば、レーザー光の光路長をより長くすることができ、密封包装容器内部の特定ガスの濃度をより高精度に測定することができる。
請求項3に記載のガス濃度測定装置によれば、密封包装容器を損傷することなく、被包装物が存在しないヘッドスペースが狭小な場合でも、内部の特定ガスの濃度を高精度に測定することができる。
請求項4に記載のガス濃度測定装置によれば、レーザー光の光路長をより長くすることができ、密封包装容器内部の特定ガスの濃度をより高精度に測定することができる。
請求項5に記載のガス濃度測定装置によれば、上記請求項3の効果をより容易に奏することができる。
According to the gas concentration measuring method according to claim 1, the concentration of a specific gas inside can be measured with high accuracy without damaging the sealed packaging container and even when the head space where there is no object to be packaged is narrow. Can be done.
According to the gas concentration measuring method according to claim 2, the optical path length of the laser beam can be made longer, and the concentration of the specific gas inside the sealed packaging container can be measured with higher accuracy.
According to the gas concentration measuring device according to claim 3, the concentration of a specific gas inside can be measured with high accuracy without damaging the sealed packaging container, even when the head space where there is no object to be packaged is narrow. Can be done.
According to the gas concentration measuring device according to claim 4, the optical path length of the laser beam can be made longer, and the concentration of the specific gas inside the sealed packaging container can be measured with higher accuracy.
According to the gas concentration measuring apparatus according to claim 5, the effect of claim 3 can be more easily achieved.

本発明のガス濃度測定方法に使用される密封包装容器の一実施例の作用を説明するための説明図である。It is explanatory drawing for demonstrating the operation of one Example of the sealed packaging container used in the gas concentration measurement method of this invention. 図1に示した密封包装容器の正面図である。It is a front view of the sealed packaging container shown in FIG. 図1に示した密封包装容器の右側図である。It is a right side view of the sealed packaging container shown in FIG. 図1に示した密封包装容器の平面図である。It is a top view of the sealed packaging container shown in FIG. 図1に示した密封包装容器の使用状態を示す正面図である。It is a front view which shows the use state of the sealed packaging container shown in FIG. 本発明のガス濃度測定方法に用いるガス濃度測定装置の一実施例の平面図である。It is a top view of an Example of the gas concentration measuring apparatus used in the gas concentration measuring method of this invention. 図6に示したガス濃度測定装置の平面図である。It is a top view of the gas concentration measuring apparatus shown in FIG. 図7に示したガス濃度測定装置の部分拡大図である。It is a partially enlarged view of the gas concentration measuring apparatus shown in FIG. 7. 図7のA−A線矢視図である。FIG. 7 is a view taken along the line AA of FIG. 図7B−B線矢視図である。FIG. 7B is a view taken along the line BB.

本発明では、レーザー発生部11から射出され密封包装容器1の被測定部7を透過するレーザー光を、反射面14で反射させた後にレーザー受光部12に入射させることで、密封包装容器を損傷することなく、被包装物が存在しないヘッドスペースが狭小な場合でも、内部の特定ガスの濃度を高精度に測定可能な密封包装容器のガス濃度測定方法およびガス濃度測定装置を実現した。 In the present invention, the sealed packaging container is damaged by reflecting the laser light emitted from the laser generating unit 11 and passing through the measured portion 7 of the sealed packaging container 1 on the reflecting surface 14 and then incident on the laser receiving unit 12. We have realized a gas concentration measuring method and a gas concentration measuring device for a sealed packaging container that can measure the concentration of a specific gas inside with high accuracy even when the head space where there is no object to be packaged is narrow.

まず、本発明のガス濃度測定方法に使用される密封包装容器の一実施例を図1ないし図5に示した一実施例を用いて説明する。
この実施例の密封包装容器1は、内部の特定ガスの濃度を測定可能な密封包装容器1であって、内部に被包装物充填空間2を備えた本体部3と、本体部3内のヘッドスペース4と連通する連通部5を有すると共にレーザー光透過用空間6を備えた被測定部7とを有している。以下、各構成について順次詳述する。
First, an example of a sealed packaging container used in the gas concentration measuring method of the present invention will be described with reference to one embodiment shown in FIGS. 1 to 5.
The sealed packaging container 1 of this embodiment is a sealed packaging container 1 capable of measuring the concentration of a specific gas inside, and has a main body 3 having an object filling space 2 inside and a head in the main body 3. It has a communication unit 5 that communicates with the space 4 and a unit 7 to be measured that has a space 6 for transmitting laser light. Hereinafter, each configuration will be described in detail in order.

この実施例の密封包装容器1は、レトルト米飯の容器であり、内部の特定ガスは酸素である。ただし、本発明の密封包装容器は、これに限定されるものではなく、図1に示すように、被包装物(この実施例では米飯)Sが密封包装容器1内に十分に充填されヘッドスペース4が狭小となってガス濃度を精度よく測定できない密封包装容器を広く包含するものであり、また、酸素以外の特定ガスを含有した密封包装容器を包含するものである。 The sealed packaging container 1 of this embodiment is a container for retort cooked rice, and the specific gas inside is oxygen. However, the sealed packaging container of the present invention is not limited to this, and as shown in FIG. 1, the object to be packaged (rice in this embodiment) S is sufficiently filled in the sealed packaging container 1 and the head space. 4 broadly includes a sealed packaging container in which the gas concentration cannot be measured accurately due to the narrowness, and also includes a sealed packaging container containing a specific gas other than oxygen.

本体部3内部には、被包装物(この実施例では米飯)Sを充填するための被包装物充填空間2が設けられており、この実施例では、本体部3および被包装物充填空間2は略長方体を形成されているが、形態は長方体に限定されるものではなく、どのような形態のものも本発明の範疇に包含される。 Inside the main body 3, a packaged filling space 2 for filling the packaged object (rice in this embodiment) S is provided. In this embodiment, the packaged object 3 and the packaged object filling space 2 are provided. Although a substantially rectangular parallelepiped is formed, the form is not limited to the rectangular parallelepiped, and any form is included in the scope of the present invention.

被測定部7は、内部にレーザー光透過用空間6を有し、レーザー光を透過させて特定ガスの濃度を測定するための部位であり、本体部3内のヘッドスペース4と連通する連通部5を介して本体部3に隣接して設けられている。ただし、この実施例の被測定部7は、本体部3に隣接して別に設けられているが、これに限定されるものではなく、レーザー光を透過させて特定ガスの濃度を測定できるものであればどのような形態でもよく、例えば、本体部内に区画板部などで被包装物充填空間とレーザー光透過用空間とが区画して設けられたものなども本発明の範疇に包含される。なお、被測定部7は、連通部5を介して、ヘッドスペース4内の気体のみが移行する構造であることが好ましいが、レーザー光による特定ガスの濃度測定を阻害しない範囲内で、水分や被包装物Sの微量分が少量移行するものでもよい。 The unit 7 to be measured has a space 6 for transmitting laser light inside, and is a portion for transmitting laser light to measure the concentration of a specific gas, and is a communication unit communicating with the head space 4 in the main body 3. It is provided adjacent to the main body portion 3 via 5. However, the measured portion 7 of this embodiment is separately provided adjacent to the main body portion 3, but is not limited to this, and can measure the concentration of a specific gas by transmitting laser light. Any form may be used as long as it is used, and for example, a space for filling the object to be packaged and a space for transmitting laser light are partitioned by a partition plate or the like in the main body, and the like is also included in the scope of the present invention. It is preferable that the unit 7 to be measured has a structure in which only the gas in the head space 4 is transferred via the communication unit 5, but the moisture content and the water content are within a range that does not interfere with the measurement of the concentration of the specific gas by the laser beam. A small amount of the package S may be transferred in a small amount.

この実施例の密封包装容器1は、被測定部7にレーザー光を透過させて特定ガスの濃度を測定するために、透明性材料(例えばポリプロピレン等)にて一体成形されている。ただし、本発明の密封包装容器は、これに限定されるものではなく、被測定部を構成する部位のみが透明性材料にて形成されていてもよく、さらに、特定ガスの濃度を測定可能とする特定波長のレーザー光を透過可能な材料にて、本体部または/および被測定部が形成されていてもよい。なお、本願において「透明性材料」には、色彩の有無を問わず、透明または半透明の材料を広く包含する。また、本願において、特定波長のレーザー光を透過可能な材料には、透明または半透明、材質、柄、文字または図形等付加、着色の有無を問わず、特定波長のレーザー光を透過可能な材料を広く包含する。 The sealed packaging container 1 of this embodiment is integrally molded with a transparent material (for example, polypropylene or the like) in order to allow a laser beam to pass through the part to be measured 7 and measure the concentration of a specific gas. However, the sealed packaging container of the present invention is not limited to this, and only the portion constituting the part to be measured may be formed of a transparent material, and further, the concentration of a specific gas can be measured. The main body and / and the part to be measured may be formed of a material capable of transmitting a laser beam having a specific wavelength. In the present application, the "transparent material" broadly includes a transparent or translucent material regardless of the presence or absence of color. Further, in the present application, the material capable of transmitting the laser light of a specific wavelength is a material capable of transmitting the laser light of a specific wavelength regardless of whether it is transparent or translucent, a material, a pattern, a character or a figure, etc., or colored. Is widely included.

また、被測定部7のレーザー光透過用空間6は、この実施例のように細長形状に形成されていることが好ましい。これにより、レーザー光の光路長をより長く確保することができ、特定ガス濃度の測定精度を向上させることができる。そして、この実施例の密封包装容器1は、上面にフィルムFが貼着されて、被包装物充填空間2、連通部5およびレーザー光透過用空間6の密封状態が保持されている。 Further, it is preferable that the laser light transmitting space 6 of the measured portion 7 is formed in an elongated shape as in this embodiment. As a result, the optical path length of the laser beam can be secured longer, and the measurement accuracy of the specific gas concentration can be improved. A film F is attached to the upper surface of the sealed packaging container 1 of this embodiment, and the sealed state of the object filling space 2, the communication portion 5, and the laser light transmitting space 6 is maintained.

つぎに、本発明の密封包装容器のガス濃度測定方法を図6ないし図10に示した一実施例を用いて説明する。
この実施例の密封包装容器1を用いたガス濃度測定方法は、被包装物Sを充填しガス置換して包装された密封包装容器1内の特定ガスの濃度をガス濃度測定装置10により測定するガス濃度測定方法であって、密封包装容器1は、内部に被包装物充填空間2を備えた本体部3と、本体部3内のヘッドスペース4と連通する連通部5を有すると共にレーザー光透過用空間6を備えた被測定部7とを有し、ガス濃度測定装置10は、特定波長のレーザー光を射出するレーザー発生部11と、レーザー光を受光するレーザー受光部12と、特定波長のレーザー光を密封包装容器1の被測定部7に透過させて密封包装容器1の内部に残留する特定ガスのガス濃度を測定するレーザー式ガス濃度計13と、レーザー光が反射可能な反射面14を有し、レーザー発生部11から射出され密封包装容器1の被測定部7を透過するレーザー光を、反射面14で反射させた後にレーザー受光部12に入射させることを特徴とするガス濃度測定方法である。以下、詳述するが、密封包装容器1については前述した通りであり説明を省略する。
Next, the method for measuring the gas concentration of the sealed packaging container of the present invention will be described with reference to one embodiment shown in FIGS. 6 to 10.
In the gas concentration measuring method using the sealed packaging container 1 of this embodiment, the concentration of the specific gas in the sealed packaging container 1 filled with the object to be packaged S and replaced with gas is measured by the gas concentration measuring device 10. In the gas concentration measuring method, the sealed packaging container 1 has a main body portion 3 having an object filling space 2 inside, and a communicating portion 5 communicating with the head space 4 in the main body portion 3 and transmitting laser light. The gas concentration measuring device 10 has a unit 7 to be measured provided with a space 6, a laser generating unit 11 that emits laser light of a specific wavelength, a laser receiving unit 12 that receives the laser light, and a specific wavelength. A laser gas densitometer 13 for measuring the gas concentration of a specific gas remaining inside the sealed packaging container 1 by transmitting the laser light through the measured portion 7 of the sealed packaging container 1, and a reflecting surface 14 capable of reflecting the laser light The gas concentration measurement is characterized in that the laser light emitted from the laser generating unit 11 and transmitted through the measured portion 7 of the sealed packaging container 1 is reflected by the reflecting surface 14 and then incident on the laser receiving unit 12. The method. Hereinafter, the description of the sealed packaging container 1 will be described in detail as described above, and the description thereof will be omitted.

この実施例のガス濃度測定方法は、密封包装容器1内に残留している特定ガスのガス濃度を測定する方法であり、出荷前に密封包装容器1を検査する検査場で行われたり、包装に係る各種工程を有するロータリー式或いはピロー式等の包装機の検査工程で行われる。 The gas concentration measuring method of this embodiment is a method of measuring the gas concentration of a specific gas remaining in the sealed packaging container 1, and is performed at an inspection site where the sealed packaging container 1 is inspected before shipment, or is packaged. It is carried out in the inspection process of a rotary type or pillow type packaging machine having various processes related to the above.

この実施例のガス濃度測定方法では、残留している特定ガス酸素ガス(O)である。大気雰囲気下で行われる包装機の包装工程では、被包装物を充填したとき、密封包装容器内部に大気も充填される。
大気に含まれている酸素ガスをはじめとした酸化原因ガスは、被包装物、特に食品類を酸化させて劣化させる原因となる。そのため、包装機には、被包装物を密封包装容器に充填する包装工程の後に、当該密封包装容器から大気を抜気して、不活性ガス、たとえば、窒素ガス(N)、二酸化炭素ガス(CO)へ置き換えるガス置換(ガスパージ)工程が設けられている。
In the gas concentration measuring method of this example, it is the residual specific gas oxygen gas (O 2 ). In the packaging process of the packaging machine performed in an air atmosphere, when the object to be packaged is filled, the air is also filled inside the sealed packaging container.
Oxidation-causing gases such as oxygen gas contained in the atmosphere cause oxidation and deterioration of the packaged material, especially foods. Therefore, in the packaging machine, after the packaging step of filling the sealed packaging container with the object to be packaged, the air is evacuated from the sealed packaging container, and an inert gas such as nitrogen gas (N 2 ) or carbon dioxide gas is used. A gas replacement (gas purge) step of replacing with (CO 2) is provided.

その後、ガス置換された密封包装容器1内の酸素ガスのガス濃度を測定して、ガス濃度が基準値以下に収まっているかどうか検査する方法が、本実施例に係るガス濃度測定方法である。酸素ガスのガス濃度を測定したとき、ガス濃度が基準値以下に収まっている場合は、正常にガス置換が行われ、密封包装容器1内は不活性ガスが充満しているので、被包装物の酸化を防止することができ、保存期間や賞味期間を延ばすことができる。これに対して、ガス濃度が基準値を超えている場合は不良品と判断されて、例えば包装機の包装工程(不良品排出工程)にて排出される。 After that, the gas concentration measuring method according to the present embodiment is a method of measuring the gas concentration of oxygen gas in the gas-replaced sealed packaging container 1 and inspecting whether the gas concentration is within the reference value or less. When the gas concentration of oxygen gas is measured, if the gas concentration is below the standard value, the gas replacement is performed normally, and the sealed packaging container 1 is filled with the inert gas. It is possible to prevent the oxidation of the gas, and to extend the storage period and the best-before date. On the other hand, if the gas concentration exceeds the standard value, it is determined to be a defective product, and the product is discharged, for example, in the packaging process of the packaging machine (defective product discharge process).

この実施例のガス濃度測定法に用いられるガス濃度測定装置10は、図8に示すように、レーザー光を射出するレーザー発生部11と、レーザー光を受光するレーザー受光部12とを備えたレーザー式ガス濃度計13と、レーザー光を反射する反射面14を有している。 As shown in FIG. 8, the gas concentration measuring device 10 used in the gas concentration measuring method of this embodiment is a laser including a laser generating unit 11 that emits laser light and a laser receiving unit 12 that receives laser light. It has a formula gas densitometer 13 and a reflecting surface 14 that reflects laser light.

レーザー式ガス濃度計13は、波長可変半導体レーザー吸収分光法によって特定ガスを分析可能に形成されている。 The laser gas densitometer 13 is formed so that a specific gas can be analyzed by tunable semiconductor laser absorption spectroscopy.

ここで、波長可変半導体レーザー吸収分光法(Tunable Diode Laser Absorption Spectroscopy:TDLAS)とは、半導体レーザー素子から出力されたレーザー光に係る所定の入射光強度と、測定対象となる特定ガスを含んだ気体を封じたセルを透過して当該特定ガスに吸収された透過後のレーザー光に係る透過光強度とから透過率を求めて、透過率に基づくレーザー光の吸光度からガス濃度を測定する方法である。 Here, the wavelength variable semiconductor laser absorption spectrometry (TDLAS) is a gas containing a predetermined incident light intensity related to the laser light output from the semiconductor laser element and a specific gas to be measured. This is a method of measuring the gas concentration from the absorbance of the laser beam based on the transmittance by obtaining the transmittance from the transmitted light intensity related to the transmitted laser light absorbed by the specific gas after passing through the cell in which the seal is sealed. ..

特定ガスを含め、気体はそれぞれ固有の吸収波長帯を有し、当該吸収波長帯にはより強く光を吸収する波長に係る吸収線が複数本含まれていることが知られている。TDLASは、出力するレーザー光の近赤外領域の波長を、測定対象となる特定ガスの複数本の吸収線のうち、一本の吸収線に係る特定波長に合致するように変調し増幅するように構成されている。そして、セルの透過前後で変化する特定波長の吸収スペクトルに基づいてレーザー光の吸光度を求めてガス濃度を測定している。なお、本実施例において測定対象ガスは酸素ガスであって、当該測定対象ガスを封じるセルは密封包装容器1である。 It is known that each gas, including a specific gas, has its own absorption wavelength band, and the absorption wavelength band includes a plurality of absorption lines related to wavelengths that absorb light more strongly. TDLAS modulates and amplifies the wavelength in the near-infrared region of the output laser light so as to match the specific wavelength of one absorption line among the multiple absorption lines of the specific gas to be measured. It is configured in. Then, the gas concentration is measured by obtaining the absorbance of the laser beam based on the absorption spectrum of a specific wavelength that changes before and after the transmission of the cell. In this embodiment, the gas to be measured is oxygen gas, and the cell that seals the gas to be measured is the sealed packaging container 1.

レーザー発生部11は、レーザー光源と、レーザー光源から射出するレーザー光の波長を特定の波長に設定し所定の光強度に調整する制御部とを有している。
レーザー光源は、波長が可変可能なダイオードからなる半導体レーザー素子を備え近赤外領域のレーザー光を出力可能に形成されている。制御部は、半導体レーザー素子から出力されるレーザー光の波長を測定対象の特定ガス固有の特定波長に調整して、レーザー光が所定の入射光強度で射出されるように増幅する制御を行うように形成されている。
The laser generation unit 11 has a laser light source and a control unit that sets the wavelength of the laser light emitted from the laser light source to a specific wavelength and adjusts it to a predetermined light intensity.
The laser light source includes a semiconductor laser element made of a diode having a variable wavelength, and is formed so as to be capable of outputting laser light in the near infrared region. The control unit adjusts the wavelength of the laser light output from the semiconductor laser element to a specific wavelength specific to the specific gas to be measured, and controls to amplify the laser light so that it is emitted at a predetermined incident light intensity. Is formed in.

ここで、本実施例に係るレーザー式ガス濃度計13が測定する特定ガスは、酸素ガスであることから、当該酸素ガス固有の吸収波長帯は760nm帯であり、当該吸収波長帯に含まれる複数の吸収線のうち、一の吸収線に係る特定波長がレーザー光の出力波長として選択される。 Here, since the specific gas measured by the laser gas concentration meter 13 according to the present embodiment is oxygen gas, the absorption wavelength band peculiar to the oxygen gas is 760 nm, and a plurality of absorption wavelength bands included in the absorption wavelength band. Of the absorption lines of, the specific wavelength related to one absorption line is selected as the output wavelength of the laser beam.

レーザー発生部11は、第1ハウジング15に内蔵されており、第1ハウジング15はレーザー射出用窓部16を有している。レーザー射出用窓部16には、近赤外領域の光を通しやすいサファイヤガラスが嵌め込まれている。そして、レーザー発生部11は、レーザー射出用窓部16を通じて第1ハウジング15からレーザー光を射出するように形成されている。 The laser generating unit 11 is built in the first housing 15, and the first housing 15 has a laser emitting window portion 16. A sapphire glass that easily allows light in the near infrared region to pass through is fitted in the laser injection window portion 16. The laser generating unit 11 is formed so as to emit laser light from the first housing 15 through the laser emitting window portion 16.

第1ハウジング15内は特定ガス、この実施例では酸素ガスを除去するために、真空化またはガス置換(ガスパージ)をすることができるように形成されている。そのため、第1ハウジング15内を真空で維持したり、あるいは窒素ガス、または二酸化炭素等の不活性ガス類で満たすことができるように構成されている。 これによって、レーザー光源からレーザー射出用窓部16を通じて射出するまでの間に、第1ハウジング15内でレーザー光が特定ガスに吸収されることを防止することができ、ガス濃度測定の精度を向上させることができる。 The inside of the first housing 15 is formed so that vacuuming or gas replacement (gas purging) can be performed in order to remove the specific gas, oxygen gas in this embodiment. Therefore, the inside of the first housing 15 can be maintained in a vacuum or filled with nitrogen gas or an inert gas such as carbon dioxide. As a result, it is possible to prevent the laser light from being absorbed by the specific gas in the first housing 15 during the period from the laser light source to the laser emission window 16, and the accuracy of the gas concentration measurement is improved. Can be made to.

レーザー受光部12は、密封包装容器1の被測定部7を透過したレーザー光を受光する受光センサと、受光センサからの受光信号に基づいてガス濃度を測定する測定部を有している。 The laser light receiving unit 12 has a light receiving sensor that receives the laser light transmitted through the measured unit 7 of the sealed packaging container 1 and a measuring unit that measures the gas concentration based on the light receiving signal from the light receiving sensor.

受光センサは、密封包装容器1の被測定部7を透過したレーザー光の透過光強度を電気的な透過光信号に変換する素子、例えばフォトダイオードにて構成されている。これによって、密封包装容器1の被測定部7を透過したレーザー光の透過光強度を電気的に処理することができる。 The light receiving sensor is composed of an element that converts the transmitted light intensity of the laser light transmitted through the measured portion 7 of the sealed packaging container 1 into an electrically transmitted light signal, for example, a photodiode. As a result, the transmitted light intensity of the laser light transmitted through the measured portion 7 of the sealed packaging container 1 can be electrically processed.

測定部は、透過光強度に係る透過光信号と、レーザー発生部11から出力されたレーザー光の入射光強度に係る入射光信号に基づいて透過率を計算し、当該透過率に基づいてレーザー光の特定ガスによる吸光度を求め、当該吸光度に基づいて密封包装容器1の被測定部7内の特定ガスの濃度を測定するように構成されている。 The measuring unit calculates the transmittance based on the transmitted light signal related to the transmitted light intensity and the incident light signal related to the incident light intensity of the laser light output from the laser generating unit 11, and the laser light is based on the transmittance. The absorbance of the specific gas is determined, and the concentration of the specific gas in the measured portion 7 of the sealed packaging container 1 is measured based on the absorbance.

レーザー受光部12は、第2ハウジング17に内蔵されている。第2ハウジング17はレーザー受光用窓部18を有している。レーザー受光用窓部18には、レーザー射出用窓部16と同様、近赤外領域の光を通しやすいサファイヤガラスが嵌め込まれている。これによって、レーザー受光部12は、レーザー受光用窓部18を通じて密封包装容器1の被測定部7を透過したレーザー光を受光するように形成されている。 The laser light receiving unit 12 is built in the second housing 17. The second housing 17 has a laser receiving window portion 18. Similar to the laser emitting window portion 16, the laser receiving window portion 18 is fitted with sapphire glass that easily allows light in the near infrared region to pass through. As a result, the laser light receiving portion 12 is formed so as to receive the laser light transmitted through the measured portion 7 of the sealed packaging container 1 through the laser light receiving window portion 18.

第2ハウジング17内もまた、第1ハウジング15と同様、真空化またはガス置換可能に形成されている。そのため、レーザー受光用窓部18を通じて入射されたレーザー光を受光センサが受光するまでの間に、第2ハウジング17内でレーザー光が特定ガスに吸収されることを防止することができガス濃度測定の精度を向上させることができる。 The inside of the second housing 17 is also formed so as to be evacuated or gas-replaceable like the first housing 15. Therefore, it is possible to prevent the laser light from being absorbed by the specific gas in the second housing 17 until the light receiving sensor receives the laser light incident through the laser light receiving window portion 18, and the gas concentration is measured. The accuracy of the can be improved.

このように、レーザー式ガス濃度計13は、レーザー発生部11からレーザー射出用窓部16を通じてレーザー光を射出し、当該レーザー光を測定対象の密封包装容器1の被測定部7内に透過させて、レーザー受光用窓部18を通じてレーザー受光部12で密封包装容器1の被測定部7を透過したレーザー光を受光するように構成されている。 In this way, the laser gas densitometer 13 emits laser light from the laser generating unit 11 through the laser emitting window portion 16 and transmits the laser light into the measured portion 7 of the sealed packaging container 1 to be measured. Therefore, the laser light receiving unit 12 is configured to receive the laser light transmitted through the measured portion 7 of the sealed packaging container 1 through the laser light receiving window portion 18.

そして、レーザー式ガス濃度計13を有するガス濃度測定装置10は、レーザー射出用窓部16から射出されたレーザー光をレーザー受光用窓部18へ入射させる間に、反射面14で少なくとも一回、好ましくは複数回反射させるように構成されている。 Then, the gas concentration measuring device 10 having the laser type gas concentration meter 13 receives the laser light emitted from the laser emitting window 16 into the laser receiving window 18 at least once on the reflecting surface 14. It is preferably configured to reflect multiple times.

この実施例の反射面14は、所定の位置に第1窓部19が設けられた第1反射面14aと、所定の位置に第2窓部20が設けられた第2反射面14bとからなり、第1反射面14aと第2反射面14bは、互いに平行に対向するように設けられている。第1反射面14aと第2反射面14bは、例えば鏡面または鏡面状に磨き上げられた金属、或いは所定の基材に鏡面状の膜体を貼り付けものからなり、レーザー光を反射可能に形成されている。 The reflecting surface 14 of this embodiment includes a first reflecting surface 14a having a first window portion 19 provided at a predetermined position and a second reflecting surface 14b provided with a second window portion 20 at a predetermined position. The first reflecting surface 14a and the second reflecting surface 14b are provided so as to face each other in parallel. The first reflecting surface 14a and the second reflecting surface 14b are made of, for example, a mirror-finished or mirror-polished metal, or a mirror-like film body attached to a predetermined base material, and are formed so as to be able to reflect laser light. Has been done.

第1反射面14aと第2反射面14bは、それぞれ図示しない往復動機構(シリンダーまたはサーボモーター等の駆動装置を含む機構により)相対的な離隔距離を調整可能(相対的に接近または離隔可能)に形成され、図8中、第1反射面14aと第2反射面14bとの間に密封包装容器1の被測定部7を上下で挟持可能に形成されている。そのため、第1反射面14aと第2反射面14bで密封包装容器1の被測定部7を上下方向から挟持したとき、密封包装容器1の被測定部7の上下面に、それぞれ第1反射面14aと第2反射面14bを密着させることができるように構成されている。 The relative separation distance of the first reflection surface 14a and the second reflection surface 14b can be adjusted (relatively close or separate) by a reciprocating mechanism (a mechanism including a driving device such as a cylinder or a servomotor) (not shown). In FIG. 8, the measured portion 7 of the sealed packaging container 1 is formed so as to be able to be sandwiched between the first reflecting surface 14a and the second reflecting surface 14b. Therefore, when the measured portion 7 of the sealed packaging container 1 is sandwiched between the first reflecting surface 14a and the second reflecting surface 14b from above and below, the first reflecting surface is placed on the upper and lower surfaces of the measured portion 7 of the sealed packaging container 1, respectively. It is configured so that the 14a and the second reflecting surface 14b can be brought into close contact with each other.

さらに、密封包装容器1の被測定部7に対する第1窓部19と第2窓部20の位置を定めることによって、第1反射面14aと第2反射面14bで密封包装容器1の被測定部7を挟持したとき、密封包装容器1の被測定部7に第1窓部19と第2窓部20も密着させることができる。これによって、レーザー光を第1窓部19から射出して、第2反射面14b、第1反射面14abと反射させて、第2窓部20へ入射させるとき、大気に含まれている特定ガスの影響を最小限に抑えることができ、より高精度に特定ガスの濃度を測定することができる。 Further, by locating the first window portion 19 and the second window portion 20 with respect to the measured portion 7 of the sealed packaging container 1, the measured portion of the sealed packaging container 1 is formed by the first reflecting surface 14a and the second reflecting surface 14b. When the 7 is sandwiched, the first window portion 19 and the second window portion 20 can also be brought into close contact with the measured portion 7 of the sealed packaging container 1. As a result, when the laser beam is emitted from the first window portion 19, reflected by the second reflecting surface 14b and the first reflecting surface 14ab, and incident on the second window portion 20, the specific gas contained in the atmosphere The influence of the above can be minimized, and the concentration of a specific gas can be measured with higher accuracy.

なお、第1窓部19と第2窓部20の位置は、レーザー光を第1窓部19から射出して第2窓部20へ入射させる間に第1反射面14aと第2反射面14bで反射可能となるように配置すれば良く、第1窓部19と第2窓部20間の距離と、第1窓部19から射出されるレーザー光が第2反射面14bへ入射するときの入射角度との関係によって、第1反射面14aと第2反射面14bとの間でレーザー光を所定回反射させて、第2窓部20へ入射させるよう制御することができる。 The positions of the first window portion 19 and the second window portion 20 are such that the first reflecting surface 14a and the second reflecting surface 14b are arranged while the laser beam is emitted from the first window portion 19 and incident on the second window portion 20. The distance between the first window portion 19 and the second window portion 20 and when the laser beam emitted from the first window portion 19 is incident on the second reflecting surface 14b. Depending on the relationship with the incident angle, it is possible to control the laser beam to be reflected a predetermined number of times between the first reflecting surface 14a and the second reflecting surface 14b so as to be incident on the second window portion 20.

レーザー光を第1窓部19から射出され第2反射面20へ入射させるとき、レーザー光の入射角度は、5度から85度の間で任意に設定することができ、さらに第1反射面14aと第2反射面14b間の距離に基づいて光路長の計算を容易に行うことができる、入射角度が5度以下の場合、第1窓部19と第2窓部20が正対している従来の場合と光路長の差が大きくならない。他方、入射角度が85度以上の場合、透過するレーザー光が特定ガスに吸収されるよりも散乱する割合が大きくなり、ガス濃度の測定で誤差が生じやすくなるおそれがある。 When the laser light is emitted from the first window portion 19 and incident on the second reflecting surface 20, the incident angle of the laser light can be arbitrarily set between 5 degrees and 85 degrees, and further, the first reflecting surface 14a The optical path length can be easily calculated based on the distance between the and the second reflecting surface 14b. When the incident angle is 5 degrees or less, the first window portion 19 and the second window portion 20 face each other in the conventional manner. The difference in optical path length does not increase from the case of. On the other hand, when the incident angle is 85 degrees or more, the ratio of the transmitted laser light being scattered is larger than that absorbed by the specific gas, and there is a possibility that an error is likely to occur in the measurement of the gas concentration.

また、第1反射面14aと第2反射面14bとの間を反射させる反射回数は、2回ないし4回程度が好ましい。5回以上反射させると、光路長を長くすることはできるが、レーザー光の減衰率が大きくなるため、レーザー受光部12に高感度な受光センサを設けなければならない。そのため、コストが増大するおそれがある。 The number of reflections reflected between the first reflecting surface 14a and the second reflecting surface 14b is preferably about 2 to 4 times. If the light is reflected five times or more, the optical path length can be lengthened, but the attenuation rate of the laser light becomes large, so that the laser light receiving unit 12 must be provided with a highly sensitive light receiving sensor. Therefore, the cost may increase.

つぎに、本発明のガス濃度測定方法およびガス濃度測定装置の具体的な作用を図面に示した一実施例を用いて説明する。 Next, a specific operation of the gas concentration measuring method and the gas concentration measuring device of the present invention will be described with reference to an embodiment shown in the drawings.

本発明のガス濃度測定方法およびガス濃度測定装置10では、図6または図7に示すように、コンベアWのベルトY上に載置された密封包装容器1が順次間欠搬送される。密封包装容器1は、図6中搬送方向(矢印H方向)に、密封包装容器1の被測定部7の長手方向が沿って搬送されるようにベルトY上に載置される。 In the gas concentration measuring method and the gas concentration measuring device 10 of the present invention, as shown in FIG. 6 or 7, the sealed packaging container 1 placed on the belt Y of the conveyor W is sequentially intermittently conveyed. The sealed packaging container 1 is placed on the belt Y so that the sealed packaging container 1 is transported along the longitudinal direction of the measured portion 7 of the sealed packaging container 1 in the transport direction (arrow H direction) in FIG.

そして、ガス濃度測定装置10が設置された部位付近において、ガス濃度測定装置10の第1反射面14aと第2反射面14bの間に密封包装容器1の被測定部7が至ると、図8に示すように、ガス濃度測定装置10の第1反射面14aと第2反射面14bが被測定部7を上下から挟持する。 Then, when the measured portion 7 of the sealed packaging container 1 reaches between the first reflecting surface 14a and the second reflecting surface 14b of the gas concentration measuring device 10 in the vicinity of the portion where the gas concentration measuring device 10 is installed, FIG. As shown in the above, the first reflecting surface 14a and the second reflecting surface 14b of the gas concentration measuring device 10 sandwich the measured portion 7 from above and below.

密封包装容器1の被測定部7が第1反射面14aと第2反射面14bに挟持された後、レーザー発生部11からレーザー射出用窓部16および第1反射面14aの第1窓部19を介して密封包装容器1の被測定部7にレーザー光が上方から射出される。レーザー光は第2反射面14bでまず反射し、その後、第1反射面14a、さらに第2反射面14bと順に反射してから、第1反射面14aの第2窓部19および第2ハウジング17のレーザー受光用窓部18を介してレーザー受光部12で受光される。 After the measured portion 7 of the sealed packaging container 1 is sandwiched between the first reflecting surface 14a and the second reflecting surface 14b, the laser emitting window portion 16 and the first window portion 19 of the first reflecting surface 14a are sandwiched between the first reflecting surface 14a and the second reflecting surface 14b. The laser beam is emitted from above to the measured portion 7 of the sealed packaging container 1 via the above. The laser light is first reflected by the second reflecting surface 14b, then reflected in the order of the first reflecting surface 14a and then the second reflecting surface 14b, and then the second window portion 19 and the second housing 17 of the first reflecting surface 14a. The laser light is received by the laser light receiving unit 12 via the laser light receiving window 18 of the above.

レーザー受光部12の受光センサは、密封包装容器1の被測定部7を透過したレーザー光を電子的な透過光信号へ変換し、当該透過光信号が測定部へ出力される。測定部は、上記透過光信号と、レーザー発生部11が射出したレーザー光を電子的に変換した入射光信号を取得し、透過光信号と入射光信号を比較して、レーザー光の密封包装容器1の被測定部7に対する透過率Tを測定する。そして、当該透過率Tに基づいて、密封包装容器1の被測定部7内の特定ガスに吸収されたレーザー光の特定波長の吸収スペクトルの吸光度が計算され、当該吸光度に基づいて密封包装容器1の被測定部7内の特定ガスのガス濃度が測定される。 The light receiving sensor of the laser light receiving unit 12 converts the laser light transmitted through the measured unit 7 of the sealed packaging container 1 into an electronic transmitted light signal, and the transmitted light signal is output to the measuring unit. The measuring unit acquires the transmitted light signal and the incident light signal obtained by electronically converting the laser light emitted by the laser generating unit 11, compares the transmitted light signal with the incident light signal, and compares the transmitted light signal with the incident light signal to seal and package the laser light. The transmittance T with respect to the measured portion 7 of 1 is measured. Then, based on the transmittance T, the absorbance of the absorption spectrum of the laser beam absorbed by the specific gas in the measured portion 7 of the sealed packaging container 1 at a specific wavelength is calculated, and the sealed packaging container 1 is calculated based on the absorbance. The gas concentration of the specific gas in the unit 7 to be measured is measured.

なお、この実施例においては反射面14を第1反射面14aと第2反射面14bの二面からなるように構成したがこれに限定されるものではなく、例えば一枚の反射面に対してレーザー光を反射させることによってもまた光路長を延ばすことができる。 In this embodiment, the reflecting surface 14 is configured to be composed of two surfaces, a first reflecting surface 14a and a second reflecting surface 14b, but the present invention is not limited to this, and for example, for one reflecting surface. The optical path length can also be extended by reflecting the laser beam.

1 密封包装容器
2 被包装物充填空間
3 本体部
4 ヘッドスペース
5 連通部
6 レーザー光透過用空間
7 被測定部
10 ガス濃度測定装置
11 レーザー発生部
12 レーザー受光部
13 レーザー式ガス濃度計
14 反射面
14a 第1反射面
14b 第2反射面
15 第1ハウジング
16 レーザー射出用窓部
17 第2ハウジング
18 レーザー受光用窓部
19 第1窓部
20 第2窓部、
F フィルム
w コンベア
Y ベルト
S 被包装物
1 Sealed packaging container 2 Packed object filling space 3 Main body 4 Head space 5 Communication part 6 Laser light transmission space 7 Measured part 10 Gas concentration measuring device 11 Laser generating part 12 Laser receiving part 13 Laser type gas densitometer 14 Reflection Surface 14a First reflecting surface 14b Second reflecting surface 15 First housing 16 Laser emitting window 17 Second housing 18 Laser receiving window 19 First window 20 Second window,
F film w conveyor Y belt S packaged object

Claims (5)

被包装物を充填しガス置換して包装された密封包装容器内の特定ガスの濃度をガス濃度測定装置により測定するガス濃度測定方法であって、
前記密封包装容器は、内部に被包装物充填空間を備えた本体部と、該本体部内のヘッドスペースと連通する連通部を有すると共にレーザー光透過用空間を備えた被測定部とを有し、
前記ガス濃度測定装置は、特定波長のレーザー光を射出するレーザー発生部と、前記レーザー光を受光するレーザー受光部と、特定波長のレーザー光を前記密封包装容器の前記被測定部に透過させて前記密封包装容器の内部に残留する特定ガスのガス濃度を測定するレーザー式ガス濃度計と、前記レーザー光が反射可能な反射面を有し、
前記レーザー発生部から射出され前記密封包装容器の前記被測定部を透過するレーザー光を、前記反射面で反射させた後に前記レーザー受光部に入射させることを特徴とするガス濃度測定方法。
It is a gas concentration measuring method in which the concentration of a specific gas in a sealed packaging container filled with an object to be packaged and replaced with gas is measured by a gas concentration measuring device.
The sealed packaging container has a main body portion having a space for filling the object to be packaged inside, and a unit to be measured having a communication portion communicating with the head space in the main body portion and a space for transmitting laser light.
The gas concentration measuring device transmits a laser generating portion that emits a laser beam having a specific wavelength, a laser receiving portion that receives the laser beam, and a laser beam having a specific wavelength through the measured portion of the sealed packaging container. It has a laser gas densitometer that measures the gas concentration of a specific gas remaining inside the sealed packaging container, and a reflective surface that can reflect the laser light.
A gas concentration measuring method, characterized in that a laser beam emitted from the laser generating portion and transmitted through the measured portion of the sealed packaging container is reflected by the reflecting surface and then incident on the laser receiving portion.
前記反射面は、前記密封包装容器の前記被測定部を挟んで互いに平行に対向配置された第1反射面と第2反射面からなり、前記レーザー光を前記第1反射面と前記第2反射面との間で複数回反射させる請求項1に記載のガス濃度測定方法。 The reflecting surface is composed of a first reflecting surface and a second reflecting surface which are arranged so as to face each other in parallel with the measured portion of the sealed packaging container, and the laser light is reflected by the first reflecting surface and the second reflecting surface. The gas concentration measuring method according to claim 1, wherein the light is reflected from the surface a plurality of times. 被包装物を充填しガス置換して包装された密封包装容器内の特定ガスの濃度を測定するガス濃度測定装置であって、
前記密封包装容器は、内部に被包装物充填空間を備えた本体部と、該本体部内のヘッドスペースと連通する連通部を有すると共にレーザー光透過用空間を備えた被測定部とを有し、
前記ガス濃度測定装置は、特定波長のレーザー光を射出するレーザー発生部と、前記レーザー光を受光するレーザー受光部と、特定波長のレーザー光を前記密封包装容器の前記被測定部に透過させて前記密封包装容器の内部に残留する特定ガスのガス濃度を測定するレーザー式ガス濃度計と、前記レーザー光が反射可能な反射面を有し、
前記レーザー発生部から射出され前記密封包装容器の前記被測定部を透過するレーザー光を、前記反射面で反射させた後に前記レーザー受光部に入射させるように構成されていることを特徴とするガス濃度測定装置。
A gas concentration measuring device that measures the concentration of a specific gas in a sealed packaging container that is packed with an object to be packaged and replaced with gas.
The sealed packaging container has a main body portion having a space for filling the object to be packaged inside, and a unit to be measured having a communication portion communicating with the head space in the main body portion and a space for transmitting laser light.
The gas concentration measuring device transmits a laser generating portion that emits a laser beam having a specific wavelength, a laser receiving portion that receives the laser beam, and a laser beam having a specific wavelength through the measured portion of the sealed packaging container. It has a laser gas densitometer that measures the gas concentration of a specific gas remaining inside the sealed packaging container, and a reflective surface that can reflect the laser light.
A gas characterized in that the laser light emitted from the laser generating portion and transmitted through the measured portion of the sealed packaging container is reflected by the reflecting surface and then incident on the laser receiving portion. Concentration measuring device.
前記ガス濃度測定装置は、前記レーザー光発生部を内蔵する第1ハウジングと、前記レーザー受光部を内蔵する第2ハウジングとを有し、
前記反射面は、前記密封包装容器の前記被測定部を挟んで互いに平行に対向配置された第1反射面及び第2反射面を有し、
前記第1反射面は前記レーザー光を射出する第1窓部を備え、前記第1反射面または前記第2反射面は、前記レーザー光が入射する第2窓部を備え、
前記第1窓部から射出されたレーザー光は、前記第1反射面と前記第2反射面との間で複数回反射した後、前記第2窓部に入射するように構成されている請求項
3に記載のガス濃度測定装置。
The gas concentration measuring device has a first housing containing the laser light generating unit and a second housing containing the laser receiving unit.
The reflective surface has a first reflective surface and a second reflective surface arranged so as to face each other in parallel with the measured portion of the sealed packaging container.
The first reflecting surface includes a first window portion for emitting the laser light, and the first reflecting surface or the second reflecting surface includes a second window portion into which the laser light is incident.
A claim that the laser light emitted from the first window portion is configured to be incident on the second window portion after being reflected a plurality of times between the first reflecting surface and the second reflecting surface. 3. The gas concentration measuring device according to 3.
前記第1反射面と前記第2反射面は、相対的な離隔距離を調整可能に設けられ、前記第1反射面と前記第2反射面が前記密封包装容器の前記被測定部を挟持したとき、前記第1窓部および前記第2窓部、並びに前記第1反射面および前記第2反射面が、前記密封包装容器の前記被測定部に密着するように構成されている請求項4に記載のガス濃度測定装置。 When the first reflective surface and the second reflective surface are provided so that the relative separation distance can be adjusted, and the first reflective surface and the second reflective surface sandwich the measured portion of the sealed packaging container. 4. The fourth aspect of claim 4, wherein the first window portion and the second window portion, and the first reflecting surface and the second reflecting surface are configured to be in close contact with the measured portion of the sealed packaging container. Gas concentration measuring device.
JP2019226118A 2019-12-16 2019-12-16 Gas concentration measurement method and gas concentration measurement device for sealed packaging containers Active JP7343169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019226118A JP7343169B2 (en) 2019-12-16 2019-12-16 Gas concentration measurement method and gas concentration measurement device for sealed packaging containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019226118A JP7343169B2 (en) 2019-12-16 2019-12-16 Gas concentration measurement method and gas concentration measurement device for sealed packaging containers

Publications (2)

Publication Number Publication Date
JP2021096099A true JP2021096099A (en) 2021-06-24
JP7343169B2 JP7343169B2 (en) 2023-09-12

Family

ID=76432159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019226118A Active JP7343169B2 (en) 2019-12-16 2019-12-16 Gas concentration measurement method and gas concentration measurement device for sealed packaging containers

Country Status (1)

Country Link
JP (1) JP7343169B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2122327B1 (en) 2007-03-13 2013-12-25 Advanced Liquid Logic, Inc. Method for improving absorbance detection of a droplet
JP5137740B2 (en) 2008-08-08 2013-02-06 日立造船株式会社 Nondestructive inspection device for oxygen concentration in bag-like containers

Also Published As

Publication number Publication date
JP7343169B2 (en) 2023-09-12

Similar Documents

Publication Publication Date Title
US7948626B2 (en) Method for the automated measurement of gas pressure and concentration inside sealed containers
US8397475B2 (en) Packaging machine with gas concentration measuring device
JP2021067634A (en) Device for measuring gas concentration in packaging bag
CN109863385B (en) Method and apparatus for measuring the concentration of a gas
WO2021085331A1 (en) Laser gas concentration meter
CN102575981A (en) Apparatus and method for non-intrusive assessment of gas in packages
JP7421485B2 (en) System and method for determining container health by optical measurement
EP2372344B1 (en) Method for analysing a gaseous component present in a hermetically sealed container
KR20190112742A (en) How to measure gas concentration
JP7357918B2 (en) Gas concentration measuring device inside packaging bag
US8994948B2 (en) Apparatus for the non-destructive testing of the integrity and/or suitability of sealed packagings
US20170268996A1 (en) Method and device for measuring the gas content of materials packaged in plastic films, glass or other light-permeable materials and sensitive to a gas to be measured
JP4948145B2 (en) Gas detector
WO2021124710A1 (en) Sealed packaging container
JP7343169B2 (en) Gas concentration measurement method and gas concentration measurement device for sealed packaging containers
EP3193159B1 (en) A plant for automatic filling and/or packaging of closed containers and a method for measuring gas content in closed containers
JP7339663B2 (en) Gas concentration measuring method for sealed packaging container and gas concentration measuring device used therefor
JP7339662B2 (en) Gas concentration measuring method for sealed packaging container and gas concentration measuring device used therefor
JP7350312B2 (en) Method for measuring gas concentration in packaging containers
Cocola et al. Design and evaluation of an in-line system for gas sensing in flow-packed products
US20140287521A1 (en) Measuring Device for Tubular Bag Packaging Machines
JP2021067631A (en) Method of measuring gas concentration in packaging bag
Cocola et al. A Modular Approach of Different Geometries for Non‐invasive Oxygen Measurement inside Moving Food Packages
JP2021067633A (en) Method of measuring gas concentration in packaging bag
JP2010151562A (en) Far-infrared spectrometry apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230824

R150 Certificate of patent or registration of utility model

Ref document number: 7343169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150