JP4948145B2 - Gas detector - Google Patents

Gas detector Download PDF

Info

Publication number
JP4948145B2
JP4948145B2 JP2006336165A JP2006336165A JP4948145B2 JP 4948145 B2 JP4948145 B2 JP 4948145B2 JP 2006336165 A JP2006336165 A JP 2006336165A JP 2006336165 A JP2006336165 A JP 2006336165A JP 4948145 B2 JP4948145 B2 JP 4948145B2
Authority
JP
Japan
Prior art keywords
gas
light
light source
laser light
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006336165A
Other languages
Japanese (ja)
Other versions
JP2008145397A (en
Inventor
肇 三宮
滋 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Tokai University Educational Systems
Original Assignee
Nippon Signal Co Ltd
Tokai University Educational Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd, Tokai University Educational Systems filed Critical Nippon Signal Co Ltd
Priority to JP2006336165A priority Critical patent/JP4948145B2/en
Publication of JP2008145397A publication Critical patent/JP2008145397A/en
Application granted granted Critical
Publication of JP4948145B2 publication Critical patent/JP4948145B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、検査物に充填されたガスを検出するためのガス検出装置に関し、特に、検査物内の充填ガスを非接触且つ遠隔で効率よく検出することができるガス検出装置に関する。   The present invention relates to a gas detection device for detecting a gas filled in an inspection object, and more particularly to a gas detection device capable of efficiently detecting a filling gas in an inspection object in a non-contact and remote manner.

近年、生肉やハム・ソーセージ等、色々な食品の鮮度を長期間保持するために、二酸化炭素や窒素ガス等のガスを充填したガス充填包装が行われている。このようなガス充填包装では、包装(パック)内のガス濃度が品質に影響する。このため、従来では、注射器で包装内のガスを採取してガスの濃度を検査したり、減圧したチャンバー内でガス濃度を検出して包装のガス漏れを検査したりするようなことが行われている。しかし、前者の場合、破壊検査であるため全品検査ができず、1個でも不合格品があればロット単位での破棄となる。また、破壊検査のため検査対象商品は商品価値がなくなる。後者の場合は、全品検査ではあるが、包装のガス漏れを検査するもので充填ガスの濃度を検査するものではない。   In recent years, in order to maintain the freshness of various foods such as raw meat, ham and sausage for a long period of time, gas-filled packaging filled with gas such as carbon dioxide and nitrogen gas has been performed. In such gas-filled packaging, the gas concentration in the package (pack) affects the quality. For this reason, conventionally, a gas in a package is collected by a syringe and the concentration of the gas is inspected, or a gas concentration is detected in a decompressed chamber to inspect a gas leak in the package. ing. However, in the former case, since it is a destructive inspection, all products cannot be inspected, and even if there is even one rejected product, it is discarded in lot units. In addition, because of the destructive inspection, the product to be inspected has no commercial value. In the latter case, although it is an inspection of all products, it does not inspect the packing gas concentration, but inspects the gas leakage of the package.

ところで、従来のガス検出装置として、光(例えば赤外線)をガスに照射し、ガス分子による光のエネルギの吸収量を計測することによりガス濃度を検出する分子の吸光現象を利用したものがある(例えば、特許文献1、2参照)。そして、かかるガス検出装置をガス充填包装の充填ガス検査に用いることが考えられる。
特開平5−52745号公報 特開平7−167784号公報
By the way, as a conventional gas detection device, there is one that utilizes a light absorption phenomenon of a molecule that detects a gas concentration by irradiating a gas with light (for example, infrared rays) and measuring the amount of light energy absorbed by the gas molecules ( For example, see Patent Documents 1 and 2). And it is possible to use this gas detection apparatus for the filling gas test | inspection of a gas filling packaging.
Japanese Patent Laid-Open No. 5-52745 JP-A-7-167784

しかしながら、分子の吸光現象を利用する従来のガス検出装置では、ガスのサンプルを採取して計測する方法が一般的であり、ガス検査を必要とする例えばガス充填包装した包装体のような検査対象物に対して直接光を照射し、遠隔でガスの検査を可能としたようなものは従来なかった。
本発明は上記問題点に着目してなされたもので、ガスの充填された検査物の充填ガスを、非接触で簡易且つ効率良く検出可能なガス検出装置を提供することを目的とする。
However, in conventional gas detection devices that use molecular absorption phenomenon, a method of collecting and measuring a gas sample is generally used. There has never been anything that directly irradiates an object with light and can remotely inspect the gas.
The present invention has been made paying attention to the above problems, and an object of the present invention is to provide a gas detection device that can easily and efficiently detect a filling gas of a test object filled with a gas without contact.

このため、請求項1の発明は、ガスの充填された検査物の前記充填ガスを検出するガス検出装置であって、光を出射するレーザ光源と、前記出射光の前記検査物からの反射光を受光する受光手段と、前記レーザ光源に、略矩形状で波形頭部が漸増し波形の最初で前記レーザ光源の発光閾値電流以上の電流値を供給するような波形形状を有する駆動電流を間欠的に供給し、前記レーザ光源の出射光の波長を、前記充填ガスの1つの特定吸光波長のみを含む波長範囲となるよう前記レーザ光源を発光制御する制御手段と、前記受光手段の受光出力に基づいて前記特定吸光波長における光エネルギの吸収の有無を検出して前記充填ガスの有無を判定する判定手段と、前記レーザ光源の温度を検出して当該検出温度に応じてレーザ光源を一定温度に制御するレーザ光源温度制御手段と、前記受光手段の温度を検出して当該検出温度に応じて受光手段を一定温度に制御する受光手段温度制御手段と、を備えて構成したことを特徴とする。 For this reason, the invention of claim 1 is a gas detection device for detecting the filling gas of an inspection object filled with gas, and a laser light source for emitting light, and reflected light of the emitted light from the inspection object And a light receiving means for receiving light and intermittently a drive current having a waveform shape that supplies a current value equal to or greater than the light emission threshold current of the laser light source at the beginning of the waveform, with the waveform head gradually increasing in waveform to the laser light source. And a control means for controlling the light emission of the laser light source so that the wavelength of the emitted light of the laser light source falls within a wavelength range including only one specific absorption wavelength of the filling gas, and a light receiving output of the light receiving means. Determination means for detecting the presence or absence of the filling gas by detecting the presence or absence of absorption of light energy at the specific absorption wavelength, and detecting the temperature of the laser light source and setting the laser light source to a constant temperature according to the detected temperature System A laser light source temperature control means for, characterized by being configured with a light receiving unit temperature control means for controlling the light receiving means at a constant temperature in accordance with detected and the detected temperature the temperature of the light receiving means.

かかる構成では、制御手段は、レーザ光源に、略矩形状で波形頭部が漸増し波形の最初でレーザ光源の発光閾値電流以上の電流値を供給するような波形形状を有する駆動電流を間欠的に供給し、レーザ光源の出射光の波長を検査物に充填された充填ガスの1つの特定吸光波長のみを含む波長範囲となるようレーザ光源を発光制御する。レーザ光源は、レーザ光源温度制御手段で一定温度に保持して前記波長範囲の光を出射し、この出射光の検査物からの反射光を受光手段温度制御手段で一定温度に制御した受光手段で受光する。判定手段は、受光手段の受光出力に基づいて特定吸光波長における光エネルギの吸収の有無を検出して充填ガスの有無を判定する。受光出力に、光エネルギの吸収による出力低下部分が存在すれば、充填ガスが存在していることになる。 In such a configuration, the control means intermittently applies a drive current having a waveform shape that supplies a current value equal to or greater than the emission threshold current of the laser light source at the beginning of the waveform, with the waveform head gradually increasing and the waveform head gradually increasing. The laser light source is controlled to emit light so that the wavelength of the light emitted from the laser light source falls within a wavelength range including only one specific absorption wavelength of the filling gas filled in the test object. The laser light source is a light receiving means that emits light in the above-mentioned wavelength range while maintaining a constant temperature by the laser light source temperature control means, and the reflected light from the inspection object of the emitted light is controlled to a constant temperature by the light receiving means temperature control means. Receive light. The determination means determines the presence or absence of the filling gas by detecting the presence or absence of absorption of light energy at the specific absorption wavelength based on the light reception output of the light reception means. If there is an output reduction portion due to the absorption of light energy in the received light output, the filling gas is present.

請求項2のように、前記判定手段は、前記光エネルギの吸収がある時、前記吸収の無い本来の受光出力値に対する前記吸収で低下した受光出力値の比率を吸収率として算出し、前記吸収率に基づいて前記充填ガスの濃度を求める構成とするとよい。
かかる構成では、検査物に充填された充填ガスの濃度を知ることができるようになる。
According to a second aspect of the present invention, when the light energy is absorbed, the determination means calculates a ratio of the light reception output value reduced by the absorption to the original light reception output value without the absorption as an absorption rate, and the absorption The concentration of the filling gas may be obtained based on the rate.
With this configuration, the concentration of the filling gas filled in the inspection object can be known.

請求項のように、前記検査物に対して前記レーザ光源の出射光を走査する光走査手段を備える構成とするとよい。
かかる構成では、検査物の充填ガスの有無を2次元(平面)で検出できるようになる。
According to a third aspect of the present invention, the inspection object may include an optical scanning unit that scans the emitted light of the laser light source.
With such a configuration, the presence or absence of the filling gas of the inspection object can be detected two-dimensionally (planar).

請求項のように、前記検査物内の充填ガスの濃度分布を求める構成とするとよい。この場合、請求項のように、前記濃度分布を可視化処理して表示手段で表示する構成とするとよい。 According to a fourth aspect of the present invention, the concentration distribution of the filling gas in the inspection object may be obtained. In this case, as described in claim 5 , the density distribution may be visualized and displayed on the display means.

請求項のように、前記検査物が、ガス充填包装の食品包装体であり、搬送手段で搬送中の前記食品包装体に前記レーザ光源の出射光を照射可能な構成とするとよい。
かかる構成では、ガス充填包装の食品包装体内の充填ガスを非接触且つ容易に効率良く全品を検査することができるようになる。
According to a sixth aspect of the present invention, it is preferable that the inspection object is a food packaging body in gas-filled packaging, and the food packaging body being conveyed by the conveying means can be irradiated with the emitted light of the laser light source.
With such a configuration, all products can be inspected easily and efficiently without contact with the filling gas in the food packaging body of the gas-filled packaging.

本発明のガス検出装置によれば、ガスの充填された検査物の充填ガス検査を、非接触で簡単且つ効率良く行うことができる。従って、ガス充填包装の商品等を直接、非破壊の全品検査が可能となり商品の無駄をなくすことができると共に、商品の安全性を向上できる。また、レーザ光源の発光制御に、略矩形状で波形頭部が漸増し波形の最初でレーザ光源の発光閾値電流以上の電流値を供給するような波形形状を有する駆動電流を用いたので、吸収の無い本来の受光出力値に対する吸収で低下した受光出力値の比率を吸収率として算出して充填ガスの有無を判定する場合に、受光出力の基準値(受光出力零の点)を得るための基準信号が不要となり、1つの制御電流信号で済む利点がある。
また、充填ガス濃度分布を可視化して表示する構成とすれば、充填ガスのリーク状態等も容易に知ることができる利点がある。更に、出射光を走査することで、検査物が搬送手段で搬送されているような場合に検査物の位置がずれても確実に出射光を照射することができ、充填ガス検査されずに検査物が通過してしまうようなエラーを防止することができ、検査の信頼性を向上できる。
According to the gas detection device of the present invention, the filling gas inspection of the inspection object filled with the gas can be performed easily and efficiently without contact. Accordingly, non-destructive inspection of all products and the like in gas-filled packaging is possible, so that product waste can be eliminated and product safety can be improved. In addition, for the light emission control of the laser light source, a drive current having a waveform shape that supplies a current value equal to or higher than the light emission threshold current of the laser light source at the beginning of the waveform with the waveform head gradually increasing and the waveform head gradually increasing is absorbed. To obtain the reference value of the received light output (the point where the received light output is zero) when calculating the ratio of the received light output value reduced by the absorption with respect to the original received light output value with no absorption as the absorption rate. There is an advantage that a reference signal is not required and only one control current signal is required.
Further, if the configuration in which the filling gas concentration distribution is visualized and displayed, there is an advantage that the leakage state of the filling gas can be easily known. Furthermore, by scanning the emitted light, the emitted light can be reliably irradiated even if the position of the inspection object is shifted when the inspection object is being conveyed by the conveying means, and the inspection is performed without the filling gas inspection. It is possible to prevent an error that an object passes through and improve the reliability of inspection.

以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明に係るガス検出装置の一実施形態を示す構成図である。
図1において、本実施形態のガス検出装置は、レーザ光源1と、光走査系2と、受光素子3と、信号処理部4と、レーザ制御部5と、走査ミラー制御部6と、受光素子制御部7と、データ処理部8と、表示部9と、を備えて構成される。
前記レーザ光源1は、光を出射する光源となるもので、例えば赤外線半導体レーザダイオードである。レーザ光源1は、ペルチェ素子(図示せず)により温度制御可能な構成である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram showing an embodiment of a gas detection device according to the present invention.
In FIG. 1, the gas detection apparatus of this embodiment includes a laser light source 1, an optical scanning system 2, a light receiving element 3, a signal processing unit 4, a laser control unit 5, a scanning mirror control unit 6, and a light receiving element. A control unit 7, a data processing unit 8, and a display unit 9 are provided.
The laser light source 1 is a light source that emits light, and is, for example, an infrared semiconductor laser diode. The laser light source 1 is configured to be temperature-controllable by a Peltier element (not shown).

前記光走査系2は、レーザ光源1の出射光(赤外線)を走査するもので、例えば図2に示すように、ガス充填包装の食品包装体等の検査物21を搬送する搬送手段である例えばベルトコンベア22を跨ぐように設置された支持台23に設ける。光走査系2は、図3に示すように、中心に穴を有する穴あきミラー2Aと、図中の矢印で示すように揺動可能な光走査手段として例えば半導体ガルバノミラー等からなる走査ミラー2Bと、反射ミラー2Cと、凹面鏡2Dと、集光レンズ2Eと、反射光に含まれるノイズをカットするためのバンドパスフィルタ2Fとを備える。かかる構成の光走査系2は、図示しないコリメートレンズを介したレーザ光源1からの例えば赤外線を穴あきミラー2Aの穴を介して走査ミラー2Bに導き、走査ミラー2Bの揺動動作で赤外線を走査し、この走査光を反射ミラー2C及び凹面鏡2Dを介して平行光とし、ベルトコンベア22上の検査物21に赤外線が略垂直に照射するようにし、その反射光を穴あきミラー2Aにより集光レンズ2E及びバンドパスフィルタ2Fを介して受光素子3に導くよう構成される。
尚、反射ミラー2C及び凹面鏡2Dを省略して走査ミラー2Bの走査光を直接検査物21に照射する構成でもよい。
The optical scanning system 2 scans the emitted light (infrared rays) of the laser light source 1, and is, for example, a transport means for transporting an inspection object 21 such as a food package of gas-filled packaging, as shown in FIG. It is provided on a support base 23 installed so as to straddle the belt conveyor 22. As shown in FIG. 3, the optical scanning system 2 includes a perforated mirror 2A having a hole at the center, and a scanning mirror 2B composed of, for example, a semiconductor galvanometer mirror as a swingable optical scanning means as indicated by an arrow in the figure. A reflecting mirror 2C, a concave mirror 2D, a condenser lens 2E, and a band-pass filter 2F for cutting noise contained in the reflected light. The optical scanning system 2 having such a configuration guides, for example, infrared rays from the laser light source 1 through a collimating lens (not shown) to the scanning mirror 2B through the holes in the perforated mirror 2A, and scans the infrared rays by swinging the scanning mirror 2B. Then, the scanning light is converted into parallel light through the reflecting mirror 2C and the concave mirror 2D, and the inspection object 21 on the belt conveyor 22 is irradiated with the infrared rays substantially vertically, and the reflected light is collected by the perforated mirror 2A. 2E and the band pass filter 2F are guided to the light receiving element 3.
Note that the reflection mirror 2C and the concave mirror 2D may be omitted, and the inspection light 21 may be directly irradiated with the scanning light from the scanning mirror 2B.

前記受光素子3は、レーザ光源1の赤外線の反射光を受光する受光手段であり、例えばフォトダイオード等を用いる。受光素子3は、レーザ光源1と同様にペルチェ素子(図示せず)により温度制御可能な構成である。信号処理部4は、受光素子3の受光出力を増幅しノイズをカットするもので、増幅器とフィルタを備えて構成される。   The light receiving element 3 is a light receiving means for receiving the infrared reflected light of the laser light source 1 and uses, for example, a photodiode. Similar to the laser light source 1, the light receiving element 3 is configured to be temperature-controllable by a Peltier element (not shown). The signal processing unit 4 amplifies the light reception output of the light receiving element 3 to cut noise, and includes an amplifier and a filter.

前記レーザ制御部5は、レーザ光源1の出射光の波長を、検査物21に充填された計測対象の充填ガス(例えばCO2、N2等)の1つの特定吸光波長のみを含む波長範囲となるようレーザ光源1の発光を制御するもので、制御手段として機能する。具体的には、レーザ光源1は温度と供給電流に比例して出射光の波長が変化する特性を有するので、本実施形態では、温度センサ10で検出したレーザ光源温度に基づいてペルチェ素子を制御してレーザ光源1を一定温度に保持した状態で、レーザ光源1に供給する制御電流を可変させる。そして、制御電流の可変範囲を、レーザ光源1から出射する赤外線の波長範囲が充填ガスの1つの特定吸光波長のみを含む波長範囲となるよう規制している。ここで、温度センサ10とレーザ制御部5とペルチェ素子でレーザ光源温度制御手段を構成する。 The laser control unit 5 sets the wavelength of the emitted light of the laser light source 1 to a wavelength range including only one specific absorption wavelength of a measurement target filling gas (for example, CO 2 , N 2, etc.) filled in the inspection object 21. This controls the light emission of the laser light source 1 and functions as a control means. Specifically, since the laser light source 1 has a characteristic that the wavelength of the emitted light changes in proportion to the temperature and the supply current, in this embodiment, the Peltier element is controlled based on the laser light source temperature detected by the temperature sensor 10. Then, the control current supplied to the laser light source 1 is varied while the laser light source 1 is kept at a constant temperature. The variable range of the control current is regulated so that the wavelength range of infrared rays emitted from the laser light source 1 is a wavelength range including only one specific absorption wavelength of the filling gas. Here, the temperature sensor 10, the laser controller 5, and the Peltier element constitute a laser light source temperature control means.

前記走査ミラー制御部6は、走査ミラー2Bに交流の駆動信号を供給して走査ミラー2Bの走査角度を制御する。
受光素子制御部7は、温度センサ11で検出した受光素子温度に基づいてペルチェ素子を制御して受光素子3を一定温度に保持して受光素子3の感度を一定に保持する。ここで、温度センサ11と受光素子制御部7とペルチェ素子で受光手段温度制御手段を構成する。
The scanning mirror controller 6 supplies an alternating drive signal to the scanning mirror 2B to control the scanning angle of the scanning mirror 2B.
The light receiving element control unit 7 controls the Peltier element based on the light receiving element temperature detected by the temperature sensor 11 to keep the light receiving element 3 at a constant temperature and keep the sensitivity of the light receiving element 3 constant. Here, the temperature sensor 11, the light receiving element control unit 7, and the Peltier element constitute a light receiving means temperature control means.

データ処理部8は、受光素子3の受光出力に基づいて充填ガスの1つの特定吸光波長における光エネルギの吸収の有無を検出して充填ガスの有無を判定するもので、判定手段としての機能を備える。具体的には、受光出力を所定間隔でサンプリングし、出力低下部分があれば充填ガスによる光エネルギの吸収があったと判定して充填ガス有りと判定する。また、光エネルギの吸収があった時は、吸収の無い本来の受光出力値に対する吸収で低下した受光出力値の比率を吸収率として算出し、データベースに予め記憶させた吸収率とガス濃度との関係から、算出した吸収率に該当する濃度値を検索して充填ガスの濃度を求める。更に、レーザ制御部5の制御電流信号、走査ミラー制御部6の駆動信号及び検査物21の移動速度に基づいて走査領域を画素分割し、得られた濃度を走査ミラー2Bの位置から各画素位置と関連付けて濃度分布を求め、求めた濃度分布データを表示手段である表示部9に送信し、前記表示部9は、入力した濃度分布データを可視化処理してその可視化データを表示する。   The data processing unit 8 determines the presence or absence of the filling gas by detecting the presence or absence of absorption of light energy at one specific absorption wavelength of the filling gas based on the light reception output of the light receiving element 3, and functions as a determination unit. Prepare. Specifically, the received light output is sampled at a predetermined interval, and if there is an output decrease portion, it is determined that light energy is absorbed by the filling gas, and it is determined that the filling gas is present. In addition, when light energy is absorbed, the ratio of the light reception output value reduced by the absorption to the original light reception output value without absorption is calculated as an absorption rate, and the absorption rate and gas concentration stored in the database in advance are calculated. From the relationship, the concentration value corresponding to the calculated absorption rate is searched to obtain the concentration of the filling gas. Further, the scanning region is divided into pixels based on the control current signal of the laser control unit 5, the drive signal of the scanning mirror control unit 6, and the moving speed of the inspection object 21, and the obtained density is changed from the position of the scanning mirror 2B to each pixel position. The concentration distribution is obtained in association with the data, and the obtained concentration distribution data is transmitted to the display unit 9 as display means. The display unit 9 visualizes the input concentration distribution data and displays the visualized data.

ここで、前述した濃度分布データの作成について図4を参照して簡単に説明する。
走査ミラー2Bの駆動信号の周波数をfGとし、レーザ光源1の制御電流信号の周波数をfLDとすると、図4(A)のようにベルトコンベア22で移動する検査物21をレーザ光(赤外線)で走査したときの走査方向の画素数は、
画素数=fG/(2×fLD
である。
そして、1画素の大きさは、走査方向についてはレーザ光の走査幅をLとすると、
X=L/画素数
となり、走査方向に対して垂直な方向についてはベルトコンベア22の速度をVとすると、
Y=V/(2×fG
となる。
尚、図4(A)で、黒丸はレーザ光の照射点を示し、四角は1つの画素を示す。
そして、図4(B)のように検査物21上を例えばジグザグ状にレーザ光を走査し、検査物21の端から端までの走査を1ラインとしてその濃度分布データを可視化処理して図4(C)のように可視化する。この際、1ラインで表した時の画素の走査方向に対して垂直な方向の大きさは図4(B)の長方形状として可視化する。更に、図4(C)のように各ラインの可視化データを結合して2次元の可視化データを作成して表示部9に表示する。
Here, the creation of the density distribution data described above will be briefly described with reference to FIG.
Assuming that the frequency of the drive signal of the scanning mirror 2B is f G and the frequency of the control current signal of the laser light source 1 is f LD , the inspection object 21 moving on the belt conveyor 22 as shown in FIG. ) Is the number of pixels in the scanning direction when
Number of pixels = f G / (2 × f LD )
It is.
And the size of one pixel is as follows. When the scanning width of the laser beam is L in the scanning direction,
X = L / number of pixels, and in the direction perpendicular to the scanning direction, if the speed of the belt conveyor 22 is V,
Y = V / (2 × f G )
It becomes.
In FIG. 4A, black circles indicate laser light irradiation points, and squares indicate one pixel.
Then, as shown in FIG. 4B, the laser beam is scanned on the inspection object 21 in, for example, a zigzag pattern, and the density distribution data is visualized with the scanning from end to end of the inspection object 21 as one line. Visualize as in (C). At this time, the size in the direction perpendicular to the scanning direction of the pixel when represented by one line is visualized as a rectangular shape in FIG. Further, as shown in FIG. 4C, the visualization data of each line is combined to create two-dimensional visualization data and displayed on the display unit 9.

次に、本実施形態によるデータ処理部8による充填ガス検出動作について図5のタイムチャート及び図6のフローチャートを参照して説明する。
まず、図5のタイムチャートで本実施形態の充填ガス検出原理を説明する。
レーザ制御部5は、図5(a)に示すような略矩形状で波形頭部が漸増する波形形状を有する制御電流信号を間欠的にレーザ光源1に供給する。即ち、充填ガスの1つの特定吸光波長のみを含む波長範囲となるよう波形の最初と最後の制御電流値を設定し、その制御電流範囲で連続的に制御電流を増大させるよう制御する。そして、レーザ光源1はある電流値までは発光せず前記電流値(発光閾値電流)以上で発光するので、波形の最初で前記発光閾値電流以上の電流を供給して発光させ、その後、制御電流を連続的に増加させる。これにより、レーザ光源1は、制御電流信号に合わせて間欠的に点滅して赤外線を出射すると共に、点灯時の赤外線の発光出力値は図5(b)のように連続的に増大する。この時、出射される赤外線の波長は、図5(c)のように制御電流値に応じて変化し、この変化幅は、充填ガスの1つの特定吸光波長のみを含む波長範囲である。また、受光出力も図5(b)の発光出力に比例して図5(d)のように増大する。そして、検査物21に充填ガスが存在すると、赤外線の波長が充填ガスの吸光波長一致した時に吸光現象により赤外線の光エネルギの吸収が起こり、受光出力が図5(d)に示すように低下して充填ガスが存在することが判る。
Next, the filling gas detection operation by the data processing unit 8 according to the present embodiment will be described with reference to the time chart of FIG. 5 and the flowchart of FIG.
First, the filling gas detection principle of this embodiment will be described with reference to the time chart of FIG.
The laser control unit 5 intermittently supplies the laser light source 1 with a control current signal having a substantially rectangular shape as shown in FIG. That is, the first and last control current values of the waveform are set so that the wavelength range includes only one specific absorption wavelength of the filling gas, and the control current is controlled to continuously increase within the control current range. Since the laser light source 1 does not emit light up to a certain current value and emits light at the current value (light emission threshold current) or more, it supplies the current above the light emission threshold current at the beginning of the waveform to emit light. Is continuously increased. As a result, the laser light source 1 intermittently blinks in accordance with the control current signal to emit infrared rays, and the infrared light emission output value at the time of lighting continuously increases as shown in FIG. 5B. At this time, the wavelength of the emitted infrared rays changes according to the control current value as shown in FIG. 5C, and this change width is a wavelength range including only one specific absorption wavelength of the filling gas. Further, the light reception output also increases as shown in FIG. 5D in proportion to the light emission output of FIG. When the filling gas exists in the inspection object 21, absorption of infrared light energy occurs due to the absorption phenomenon when the infrared wavelength matches the absorption wavelength of the filling gas, and the light reception output decreases as shown in FIG. Thus, it can be seen that a filling gas is present.

次に、図6のフローチャートに基づいてデータ処理部8の動作を説明する。
ステップ1(図中S1で示し、以下同様とする)では、走査ミラー制御部6の駆動信号に基づいて走査ミラー2Bの基準位置を検出したか否かを判定し、検出したらステップ2に進む。
ステップ2では、レーザ制御部5の制御電流信号に基づいて制御電流信号の基準位置を検出したか否かを判定する。ここでは、ステップ1で走査ミラー2Bの基準位置を検出した後、図5(a)の制御電流信号の最初の波形の立上りを検出すると制御電流信号の基準位置検出と判定してステップ3に進む。
ステップ3では、画素位置を特定する。具体的には、例えば「1」等の番号を付ける。
ステップ4では、制御電流信号の1つの波形を1画素分として、図5(d)の1つの波形の受光出力を所定のサンプリング間隔で読取る。
ステップ5で、受光出力を1画素分入力するまで受光出力の読取りを行い、入力したと判定するとステップ6に進む。
Next, the operation of the data processing unit 8 will be described based on the flowchart of FIG.
In step 1 (indicated by S1 in the figure, the same shall apply hereinafter), it is determined whether or not the reference position of the scanning mirror 2B has been detected based on the drive signal of the scanning mirror control unit 6. If detected, the process proceeds to step 2.
In step 2, it is determined whether or not the reference position of the control current signal has been detected based on the control current signal of the laser controller 5. Here, after detecting the reference position of the scanning mirror 2B in step 1, if the rising of the first waveform of the control current signal in FIG. 5A is detected, it is determined that the reference position of the control current signal is detected, and the process proceeds to step 3. .
In step 3, the pixel position is specified. Specifically, for example, a number such as “1” is given.
In step 4, the received light output of one waveform in FIG. 5D is read at a predetermined sampling interval with one waveform of the control current signal as one pixel.
In step 5, the received light output is read until the received light output is inputted for one pixel.

ステップ6では、充填ガスが有ったか否かを判定し、入力した1画素分の受光出力に出力低下があれば、光エネルギが吸収されたと判断して充填ガス有りと判定し、ステップ7に進む。
ステップ7では、ガス濃度を検出する。吸収の無い本来の受光出力値b(図5(d)参照)に対する吸収で低下した受光出力値a(図5(d)参照)の比率(a/b)を吸収率として算出し、データベースに予め記憶させた吸収率と充填ガスの濃度値との関係から、算出した吸収率(a/b)の値に該当する濃度値を検索して1番目の画素の充填ガス濃度とする。
ステップ8では、計測終了したか否かを判定し、計測が終了するまでステップ3〜7の動作を繰返して各画素のガス濃度を計測する。検査物21が光走査系2の位置を通過し、予め設定したライン数の計測が終了すると計測終了と判定してステップ9に進む。
ステップ9では、検出結果(濃度分布データ)を表示部9に出力する。これにより、表示部9は、入力した濃度分布データを可視化処理して2次元の可視化データを作成して表示する。
In step 6, it is determined whether or not there is a filling gas. If there is a decrease in the received light output for one pixel, it is determined that light energy has been absorbed and it is determined that there is a filling gas. move on.
In step 7, the gas concentration is detected. The ratio (a / b) of the light reception output value a (see FIG. 5 (d)) reduced by the absorption to the original light reception output value b (see FIG. 5 (d)) having no absorption is calculated as an absorption rate. Based on the relationship between the absorption rate stored in advance and the concentration value of the filling gas, a concentration value corresponding to the calculated absorption rate (a / b) is searched for as the filling gas concentration of the first pixel.
In step 8, it is determined whether or not the measurement is finished, and the operations in steps 3 to 7 are repeated until the measurement is finished, and the gas concentration of each pixel is measured. When the inspection object 21 passes the position of the optical scanning system 2 and the measurement of the preset number of lines is completed, it is determined that the measurement is completed, and the process proceeds to Step 9.
In step 9, the detection result (density distribution data) is output to the display unit 9. As a result, the display unit 9 visualizes the input concentration distribution data to create and display two-dimensional visualization data.

尚、図5(a)のように、制御電流信号の波形の最初の電流値を、レーザ光源1の発光閾値電流値以上とするのは、吸収率(a/b)を算出するために必要な受光出力の基準値(受光出力零の点)を得るためである。   As shown in FIG. 5A, it is necessary to calculate the absorption rate (a / b) that the initial current value of the waveform of the control current signal is not less than the light emission threshold current value of the laser light source 1. This is to obtain a standard value of the received light output (a point at which the received light output is zero).

かかる構成によれば、ガス充填包装等の包装物内の充填ガス検査を、非接触で簡単且つ効率良く行うことができる。従って、ガス充填包装の商品を直接、非破壊の全品検査が可能となり商品の無駄をなくすことができると共に、商品の安全性を向上できる。また、充填ガス濃度分布を可視化して表示するので、充填ガスのリーク状態等も容易に知ることができる。また、レーザ光を走査するので、ベルトコンベア22上の検査物21の位置がずれても、確実にレーザ光を照射することができるので、検査物21が充填ガス検査無しで通過してしまうエラーを防止することができ、検査の信頼性を向上できる。   According to such a configuration, it is possible to easily and efficiently perform a filling gas inspection in a package such as a gas filling package without contact. Accordingly, non-destructive inspection of all products in gas-filled packaging can be performed directly, and the waste of the products can be eliminated, and the safety of the products can be improved. Further, since the filling gas concentration distribution is visualized and displayed, the leakage state of the filling gas can be easily known. Further, since the laser beam is scanned, the laser beam can be reliably irradiated even if the position of the inspection object 21 on the belt conveyor 22 is shifted, so that the inspection object 21 passes without a filling gas inspection. Can be prevented, and the reliability of inspection can be improved.

次に、本発明の第2実施形態を説明する。
第2実施形態は、レーザ光を走査せずに検査物21の1点に照射する例である。この場合、レーザ光は穴あきミラー2Aを介して直接検査物21に照射すればよいので、光走査系2の走査ミラー2B〜凹面鏡2Dまでと走査ミラー制御部6が不要となる。
次に、図7のフローチャートに基づいて第2実施形態のデータ処理動作を説明する。
ステップ11では、図6のステップ2と同様に、レーザ制御部5の制御電流信号に基づいて制御電流信号の基準位置を検出したか否かを判定し、検出したらステップ12に進む。
ステップ12では、図6のステップ4と同様にして図5(d)の1つの波形の受光出力を所定のサンプリング間隔で読取る。
Next, a second embodiment of the present invention will be described.
The second embodiment is an example in which one point of the inspection object 21 is irradiated without scanning with laser light. In this case, the laser beam may be irradiated directly onto the inspection object 21 via the perforated mirror 2A, and therefore the scanning mirror control unit 6 from the scanning mirror 2B to the concave mirror 2D of the optical scanning system 2 is not necessary.
Next, the data processing operation of the second embodiment will be described based on the flowchart of FIG.
In step 11, as in step 2 of FIG. 6, it is determined whether or not the reference position of the control current signal has been detected based on the control current signal of the laser control unit 5.
In step 12, the received light output of one waveform in FIG. 5D is read at a predetermined sampling interval in the same manner as in step 4 in FIG.

ステップ13で、図5(d)の1つの波形の受光出力データについてサンプリングが終了したか否かを判定し、終了したらステップ14に進む。
ステップ14では、充填ガスが有ったか否かを判定し、受光出力に出力低下があれば、光エネルギが吸収されたと判断して充填ガス有りと判定し、ステップ15に進む。
ステップ15では、図6のステップ7と同様にして吸収率(a/b)を算出し、データベースに予め記憶させた吸収率と充填ガスの濃度値との関係から充填ガスの濃度を検索する。
ステップ16では、検出結果を表示部9に出力する。これにより、表示部9で、ガス濃度や合格、不合格等の表示を行うようにすればよい。
In step 13, it is determined whether or not the sampling is completed for the light reception output data of one waveform in FIG. 5 (d).
In step 14, it is determined whether or not there is a filling gas. If there is a decrease in the light reception output, it is determined that the light energy has been absorbed and it is determined that there is a filling gas, and the process proceeds to step 15.
In step 15, the absorption rate (a / b) is calculated in the same manner as in step 7 of FIG. 6, and the concentration of the filling gas is searched from the relationship between the absorption rate stored in advance in the database and the concentration value of the filling gas.
In step 16, the detection result is output to the display unit 9. Thereby, what is necessary is just to make it display on a display part 9, such as gas concentration, a pass, and a failure.

第1及び第2実施形態では、検出結果を表示部9で表示する構成としたが、これに限らず、例えば、警報装置を設け、検出結果に基づいて充填ガス無しや不十分な不合格品の場合には警報を発生させて通報したり、各検査物21に取付けたタグに検出結果を書込んだり、検査物を集中管理する中央管理装置にデータを登録したりするような構成が考えられる。
本発明のガス検出装置は、ガス充填包装の包装体の充填ガス検出に限らないことは言うまでもなく、あらゆる容器内の充填ガス検出に適用できるものである。
In 1st and 2nd embodiment, it was set as the structure which displays a detection result on the display part 9, However, It is not restricted to this, For example, an alarm device is provided and there is no filling gas based on a detection result, or an inadequate rejected product In such a case, a configuration may be considered in which an alarm is generated and notified, a detection result is written in a tag attached to each inspection object 21, or data is registered in a central management device that centrally manages the inspection object. It is done.
Needless to say, the gas detection device of the present invention is not limited to the detection of a filling gas in a package of a gas-filled packaging, and can be applied to the detection of a filling gas in any container.

また、上記実施形態では、検査物21が同一形状で充填ガス空間厚さが同一であるものとして説明したが、例えば、容器にガスのみ充填されている検査物を検査する場合であって、容器形状が不定で高さが異なるような場合、ガスの吸収率が濃度とガス内の光路長の関数で検査物の高さによって吸収率が変化するため、例えば図1に破線で示すように検査物21の高さ検出用に測距センサ12を設け、測距センサ12の検出値に基づいて吸収率から求めた濃度値を補正する構成とするとよい。   In the above embodiment, the inspection object 21 is described as having the same shape and the same filling gas space thickness. However, for example, in the case of inspecting an inspection object in which only the gas is filled in the container, When the shape is indefinite and the height is different, the absorption rate of the gas varies depending on the height of the test object as a function of the concentration and the optical path length in the gas. For example, as shown by the broken line in FIG. A distance measuring sensor 12 may be provided for detecting the height of the object 21, and the density value obtained from the absorption rate may be corrected based on the detection value of the distance measuring sensor 12.

本発明では、レーザ光源1を発光制御するためのレーザ制御部5の制御電流信号を図5(a)のような波形信号としたが、参考例として矩形波のパルス信号とした場合について説明する。この場合は、図8(a)のようにレーザ光源1から出射するレーザ光の波長が充填ガスの1つの特定吸光波長と同じ波長となる制御電流値(波高値)の矩形波パルス信号とする。そして、充填ガスが存在すると吸光現象により赤外線の光エネルギの吸収が起こり、受光出力値は図8(b)に示すように低下して充填ガスが存在することが判る。ただし、矩形波のパルス信号とした場合は、吸収率(a/b)を算出するために必要な吸収の無い本来の受光出力値bを得るために、吸光現象の生じない波長の制御電流値のパルス信号(基準信号)が別途必要になる。これに対して、図5(a)に示すような本発明の制御電流信号波形を用いれば、基準信号が不要で1つの制御電流信号で済む利点がある。尚、図8(a)の1パルスは図5(a)の1パルスに対応しており、濃度分布データを可視化処理するとき、1パルスが1画素に対応することになる。 In the present invention , the control current signal of the laser control unit 5 for controlling the light emission of the laser light source 1 is a waveform signal as shown in FIG. 5A. However, as a reference example, a rectangular wave pulse signal will be described. . In this case, as shown in FIG. 8A, a rectangular wave pulse signal having a control current value (crest value) in which the wavelength of the laser light emitted from the laser light source 1 is the same wavelength as one specific absorption wavelength of the filling gas is used. . Then, when the filling gas is present, absorption of infrared light energy occurs due to the light absorption phenomenon, and the received light output value is lowered as shown in FIG. 8B, indicating that the filling gas is present. However, when a rectangular wave pulse signal is used, a control current value of a wavelength at which no light absorption phenomenon occurs in order to obtain an original received light output value b without absorption necessary for calculating the absorption rate (a / b). Pulse signal (reference signal) is required separately. On the other hand, if the control current signal waveform of the present invention as shown in FIG. 5A is used, there is an advantage that a reference signal is unnecessary and only one control current signal is required. Note that one pulse in FIG. 8A corresponds to one pulse in FIG. 5A, and when the density distribution data is visualized, one pulse corresponds to one pixel.

本発明のガス検出装置の第1実施形態の構成図The block diagram of 1st Embodiment of the gas detection apparatus of this invention 同上実施形態の検査物へのレーザ光の照射形態を示す図The figure which shows the irradiation form of the laser beam to the test object of embodiment same as the above 同上実施形態の光走査系の構成図Configuration diagram of optical scanning system of embodiment same as above 同上実施形態の濃度分布データ可視化処理の説明図Explanatory drawing of density distribution data visualization processing of the same embodiment 同上実施形態のガス検出原理の説明図Explanatory drawing of the gas detection principle of the same embodiment 同上実施形態のデータ処理動作を説明するフローチャートFlowchart explaining the data processing operation of the embodiment 本発明の第2実施形態のデータ処理動作を説明するフローチャートThe flowchart explaining the data processing operation of 2nd Embodiment of this invention. レーザ光源制御用の制御電流信号の参考例を示す図The figure which shows the reference example of the control current signal for laser light source control

符号の説明Explanation of symbols

1 レーザ光源
2 光走査系
2B 走査ミラー
3 受光素子
5 レーザ制御部
6 走査ミラー制御部
8 データ処理部
9 表示部
21 検査物
22 ベルトコンベア
DESCRIPTION OF SYMBOLS 1 Laser light source 2 Optical scanning system 2B Scanning mirror 3 Light receiving element 5 Laser control part 6 Scanning mirror control part 8 Data processing part 9 Display part 21 Inspection object 22 Belt conveyor

Claims (6)

ガスの充填された検査物の前記充填ガスを検出するガス検出装置であって、
光を出射するレーザ光源と、
前記出射光の前記検査物からの反射光を受光する受光手段と、
前記レーザ光源に、略矩形状で波形頭部が漸増し波形の最初で前記レーザ光源の発光閾値電流以上の電流値を供給するような波形形状を有する駆動電流を間欠的に供給し、前記レーザ光源の出射光の波長を、前記充填ガスの1つの特定吸光波長のみを含む波長範囲となるよう前記レーザ光源を発光制御する制御手段と、
前記受光手段の受光出力に基づいて前記特定吸光波長における光エネルギの吸収の有無を検出して前記充填ガスの有無を判定する判定手段と、
前記レーザ光源の温度を検出して当該検出温度に応じてレーザ光源を一定温度に制御するレーザ光源温度制御手段と、
前記受光手段の温度を検出して当該検出温度に応じて受光手段を一定温度に制御する受光手段温度制御手段と、
を備えて構成したことを特徴とするガス検出装置。
A gas detection device for detecting the filling gas of an inspection object filled with gas,
A laser light source that emits light;
A light receiving means for receiving reflected light from the inspection object of the emitted light;
The laser light source is intermittently supplied with a drive current having a substantially rectangular shape and having a waveform shape that gradually increases the waveform head and supplies a current value equal to or greater than the light emission threshold current of the laser light source at the beginning of the waveform. Control means for controlling the emission of the laser light source so that the wavelength of the light emitted from the light source falls within a wavelength range including only one specific absorption wavelength of the filling gas;
Determining means for detecting the presence or absence of the filling gas by detecting the presence or absence of absorption of light energy at the specific absorption wavelength based on the light reception output of the light receiving means;
Laser light source temperature control means for detecting the temperature of the laser light source and controlling the laser light source at a constant temperature according to the detected temperature;
A light receiving means temperature control means for detecting the temperature of the light receiving means and controlling the light receiving means at a constant temperature according to the detected temperature;
A gas detection device comprising:
前記判定手段は、前記光エネルギの吸収がある時、前記吸収の無い本来の受光出力値に対する前記吸収で低下した受光出力値の比率を吸収率として算出し、前記吸収率に基づいて前記充填ガスの濃度を求める構成とした請求項1に記載のガス検出装置。   When the light energy is absorbed, the determination means calculates a ratio of the light reception output value reduced by the absorption to the original light reception output value without the absorption as an absorption rate, and the filling gas is based on the absorption rate. The gas detection device according to claim 1, wherein the concentration is determined. 前記検査物に対して前記レーザ光源の出射光を走査する光走査手段を備える構成とした請求項1又は2に記載のガス検出装置。 Gas detector according to claim 1 or 2 has a structure provided with the optical scanning means for scanning the light emitted the laser light source with respect to the inspection object. 前記検査物内の充填ガスの濃度分布を求める構成とした請求項に記載のガス検出装置。 The gas detection device according to claim 3 , wherein a concentration distribution of the filling gas in the inspection object is obtained. 前記濃度分布を可視化処理して表示手段で表示する構成とした請求項に記載のガス検出装置。 The gas detection apparatus according to claim 4 , wherein the concentration distribution is visualized and displayed on a display unit. 前記検査物が、ガス充填包装の食品包装体であり、搬送手段で搬送中の前記食品包装体に前記レーザ光源の出射光を照射可能な構成とした請求項1〜5のいずれか1つに記載のガス検出装置。 The inspection object is a food package of a gas filling and packaging, in the any one of claims 1 to 5 and capable of emitting structure emitted light of the laser light source to the food package being conveyed by the conveying means The gas detection apparatus as described.
JP2006336165A 2006-12-13 2006-12-13 Gas detector Expired - Fee Related JP4948145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006336165A JP4948145B2 (en) 2006-12-13 2006-12-13 Gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006336165A JP4948145B2 (en) 2006-12-13 2006-12-13 Gas detector

Publications (2)

Publication Number Publication Date
JP2008145397A JP2008145397A (en) 2008-06-26
JP4948145B2 true JP4948145B2 (en) 2012-06-06

Family

ID=39605725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006336165A Expired - Fee Related JP4948145B2 (en) 2006-12-13 2006-12-13 Gas detector

Country Status (1)

Country Link
JP (1) JP4948145B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108106998A (en) * 2018-01-05 2018-06-01 王子剑 Atmosphere pollution detection device and detection method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271213A (en) * 2009-05-22 2010-12-02 Nippon Signal Co Ltd:The Vaporization controller
JP2011169633A (en) * 2010-02-16 2011-09-01 Hamamatsu Photonics Kk Gas concentration calculation device and gas concentration measurement module
JP2014124824A (en) * 2012-12-26 2014-07-07 Canon Inc Inkjet recording method and inkjet recording apparatus
KR101546342B1 (en) 2013-04-12 2015-08-24 (주)아센 Analyzing apparatus
JP2019152435A (en) * 2016-07-22 2019-09-12 コニカミノルタ株式会社 Gas detection system
CN111351768B (en) * 2018-12-20 2022-10-18 中国科学院合肥物质科学研究院 Multi-component gas laser detection device and method using scanning galvanometer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0646181B2 (en) * 1988-03-10 1994-06-15 東レエンジニアリング株式会社 Infrared carbon dioxide analyzer
JPH07198597A (en) * 1993-12-29 1995-08-01 Kurabo Ind Ltd Photoelectric measuring instrument
JP4697764B2 (en) * 2001-09-28 2011-06-08 株式会社高井製作所 Method for judging the quality of gel-forming foods
JP2005111165A (en) * 2003-10-10 2005-04-28 Hamamatsu Photonics Kk Instrument and method for measuring scattering absorbing medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108106998A (en) * 2018-01-05 2018-06-01 王子剑 Atmosphere pollution detection device and detection method
CN108106998B (en) * 2018-01-05 2018-10-09 王子剑 Atmosphere pollution detection device and detection method

Also Published As

Publication number Publication date
JP2008145397A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
JP4948145B2 (en) Gas detector
US7948626B2 (en) Method for the automated measurement of gas pressure and concentration inside sealed containers
US20170138923A1 (en) Apparatus and method for detecting microbes or bacteria
CN106994984B (en) Laser acousto-magnetic steel rail surface defect rapid flaw detection system and method
US11378483B2 (en) System and method for determining the integrity of containers by optical measurement
US10101239B2 (en) System and method for determining the integrity of containers by optical measurement
US20200284720A1 (en) Method for measuring a concentration of a gas
JP2021067634A (en) Device for measuring gas concentration in packaging bag
US8994948B2 (en) Apparatus for the non-destructive testing of the integrity and/or suitability of sealed packagings
JP2012021880A (en) Method and device for detecting package with terahertz light
EP3803352B1 (en) Apparatus for detecting a gas in a headspace of a container
EP3505888A1 (en) Raman spectrum detection apparatus and method based on power of reflected light
CA2785590C (en) Detection of an anomaly in a biological material
JP6230017B2 (en) Component concentration analyzer using light emitting diode
Cocola et al. Laser spectroscopy for totally non-intrusive detection of oxygen in modified atmosphere food packages
JP2015081858A (en) Laser ultrasonic inspection device and method
US10088416B2 (en) Method and device for determining gas component inside a transparent container
JPH10148613A (en) Gas concentration measuring device
JP7357918B2 (en) Gas concentration measuring device inside packaging bag
JP2017020837A (en) Foreign matter detection device and method
Cocola et al. Design and evaluation of an in-line system for gas sensing in flow-packed products
EP0625262A1 (en) Fluid monitoring
CN104655576B (en) Free state gas parameter remote measuring method based on back scattering light echo
KR102111369B1 (en) Image Correction TerahertzWave Object Inspection Apparatus
JP2021067631A (en) Method of measuring gas concentration in packaging bag

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4948145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees