JPH07198597A - Photoelectric measuring instrument - Google Patents

Photoelectric measuring instrument

Info

Publication number
JPH07198597A
JPH07198597A JP5349867A JP34986793A JPH07198597A JP H07198597 A JPH07198597 A JP H07198597A JP 5349867 A JP5349867 A JP 5349867A JP 34986793 A JP34986793 A JP 34986793A JP H07198597 A JPH07198597 A JP H07198597A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
light
conversion element
housing
photoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5349867A
Other languages
Japanese (ja)
Inventor
Noboru Azuma
昇 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Original Assignee
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabo Industries Ltd, Kurashiki Spinning Co Ltd filed Critical Kurabo Industries Ltd
Priority to JP5349867A priority Critical patent/JPH07198597A/en
Publication of JPH07198597A publication Critical patent/JPH07198597A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To provide a compact photoelectric measuring instrument which enables the obtaining of correct measuring information as for a subject moving or changing in condition at a high speed without causing measuring errors owing to changes in ambient temperature nor generating errors in measured values with respect to changes in the distance to the subject and those in angle thereto. CONSTITUTION:Light which is projected onto a subject and incident from the subject is branched off into two optical systems separately corresponding to photoelectrical transducers 15a and 15b by an optical path branching optical system 31 arranged in a box body 16 of photoelectrical transducers fixed. These photoelectrical transducers 15a and 15b are fixed on the same plane close to each other coupled thermally on a fixing member 16b of the photoelectrical transducer fixing part 16. The light branched off with the optical branching optical system 31 has an equal optical path length and admitted separately into the photoelectrical transducers 15a and 15b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、測定対象物から入射す
る光を分光し、測定対象物が有している情報を検出する
光電測定装置に関し、より詳しくは、測定対象物から入
射する入射光を特定の波長を有する光で分光して電気−
光変換素子で電気信号に変換し、変換されたこれら電気
信号から、高速で移動するプラスチックフィルムや紙シ
ートあるいは鋼板等に塗布されたコート材の膜厚、含水
率や成分濃度あるいは温度等を測定する光電測定装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric measuring device for separating light incident from an object to be measured and detecting information contained in the object to be measured. Electricity is obtained by dispersing light with light having a specific wavelength.
Converted into electric signals with a light conversion element, and from these converted electric signals, measure the film thickness, water content, component concentration, temperature, etc. of the coating material applied to high-speed moving plastic film, paper sheet, steel plate, etc. To a photoelectric measuring device.

【0002】[0002]

【従来の技術】一般に、測定対象物に光を投射し、測定
対象物における透過光あるいは反射光の強度を測定し、
測定対象物が特性吸収波長の光を吸収する度合いを検出
して、測定対象物の厚みや成分濃度あるいは含水率など
の定性や定量を行ったり、測定対象物自体からの放射光
の強度を測定して測定対象物の温度を測定することは周
知である。
2. Description of the Related Art Generally, light is projected onto an object to be measured and the intensity of transmitted light or reflected light on the object to be measured is measured.
The degree of absorption of light of the characteristic absorption wavelength is detected to perform qualitative and quantitative measurements such as the thickness, component concentration, or water content of the measurement object, and the intensity of radiated light from the measurement object itself is measured. It is well known to measure the temperature of an object to be measured.

【0003】従来、製造ライン等におけるこの種の測定
では、上記特性吸収波長の分光のために、干渉フィルタ
等の不連続な分光素子が用いられている。また、測定対
象物からの光を、測定する特性に相関のある波長(測定
波長)と、それと少し異なった波長(参照波長)に、時
分割で交互に分光して、センサ面に集光したり、あるい
はあらかじめ各波長に分光した光を測定対象物に照射
し、その戻り光をセンサ面に集光して入射し、測定波長
強度と参照波長強度とを比較演算することにより、光源
のふらつき誤差、センサ素子自体の感度変動、光学系の
変化、測定対象物の表面反射による迷光による誤差を除
去するようにした複数波長を用いた測定を行う光電測定
装置が実用化されている。
Conventionally, in this type of measurement in a production line or the like, a discontinuous spectroscopic element such as an interference filter is used for the purpose of spectral separation of the characteristic absorption wavelength. In addition, the light from the measurement object is divided into a wavelength (measurement wavelength) that has a correlation with the characteristics to be measured and a wavelength (reference wavelength) that is slightly different from it, in a time-division manner, and then condensed on the sensor surface. Or, by irradiating the measurement object with light that has been split into each wavelength in advance, collecting the returned light on the sensor surface and making it incident, and comparing and calculating the measured wavelength intensity and the reference wavelength intensity, the fluctuation of the light source An optoelectronic measuring device has been put into practical use, which performs measurement using a plurality of wavelengths so as to eliminate errors, fluctuations in sensitivity of the sensor element itself, changes in optical system, and errors due to stray light due to surface reflection of a measurement target.

【0004】上記光電測定装置としては、たとえば図9
や図10に示すようなものが提案されている(たとえ
ば、特開昭49−10782号公報参照)。図9の光電
測定装置は、測定対象物1を通過もしくは測定対象物1
から反射して光検出器2に至る光の受光側の光路の途中
に、複数の干渉フィルタ3,3,…を保持して矢印A1
で示すように回転する回転ディスク4を配置するととも
に、この回転ディスク4に設けられたスリット(図示せ
ず。)等を検出して、測定対象物1からの上記光が各干
渉フィルタ3,3,…を通過するタイミングを検出する
タイミング検出器5を備える。そして、上記回転ディス
ク4を回転させて、各々の干渉フィルタ3を通過した光
の強度を一つの上記光検出器2から時系列的に検出する
とともに、上記タイミング検出器5から出力する干渉フ
ィルタ3,3,…の切替位置の認識信号から、個々の干
渉フィルタ3に対応する特定の波長の光の強度信号を分
離し、分離されたこれら光の強度信号を演算処理して吸
光度を検出し、この吸光度に基づいて上記測定対象物1
が有している厚みや成分濃度あるいは含水率などの定性
や定量を行う。
An example of the photoelectric measuring device is shown in FIG.
And that shown in FIG. 10 have been proposed (see, for example, Japanese Patent Laid-Open No. 49-10782). The photoelectric measurement device of FIG. 9 passes through the measurement object 1 or the measurement object 1
In the optical path of the light receiving side of the reflection to the light reaching the photodetector 2 from arrow A 1 holds a plurality of interference filters 3, 3, ... a
The rotating disk 4 which rotates as shown in FIG. 2 is arranged, and a slit (not shown) or the like provided in the rotating disk 4 is detected so that the light from the measuring object 1 causes the interference filters 3 and 3 to be detected. A timing detector 5 for detecting the timing of passing through. Then, the rotating disk 4 is rotated to detect the intensity of light passing through each interference filter 3 from one of the photodetectors 2 in time series and output from the timing detector 5 to the interference filter 3. , 3, ... From the recognition signals of the switching positions, the intensity signals of light of specific wavelengths corresponding to the individual interference filters 3 are separated, and the intensity signals of these separated lights are arithmetically processed to detect the absorbance. The measurement target 1 based on this absorbance
Qualitatively and quantitatively such as the thickness, component concentration, and water content of the product.

【0005】また、図10に示すものは、測定対象物1
から光検出器2aおよび2bに至る受光側の光路をビー
ムスプリッタ等の光学部品6により複数の光路7a,7
bに分岐し、分岐された光路7a,7bの途中に干渉フ
ィルタ8,9を配置したものである。各干渉フィルタ
8,9を透過した光の強度は、個別の光検出器2a,2
bでそれぞれ検出され、検出されたこれら光の強度信号
は演算処理されて吸光度が検出され、上記と同様に、上
記測定対象物1が有している厚みや成分濃度あるいは含
水率などの定性や定量を行う。
Further, the one shown in FIG.
The optical paths on the light-receiving side from the photodetectors 2a and 2b to the photodetectors 2a and 2b are formed by a plurality of optical paths 7a,
The interference filters 8 and 9 are arranged in the middle of the branched optical paths 7a and 7b. The intensity of light transmitted through each interference filter 8 and 9 is determined by the individual photodetectors 2a and 2a.
Each of the intensity signals of these lights detected in step b is subjected to arithmetic processing to detect the absorbance, and in the same manner as described above, the qualitative information such as the thickness, the component concentration, or the water content of the measurement target 1 can be obtained. Quantify.

【0006】[0006]

【発明が解決しようとする課題】ところで、上記図9の
光検出装置では、回転ディスク4の回転により特性吸収
波長の光と参照波長の光とをサンプリングし、いわゆる
時分割方式により測定しているので、測定対象物1が静
止していたり、測定対象物1の特性が時間的に変化しな
い場合には、正しい測定が可能である。しかし、測定対
象物1が高速で移動するときは、特性吸収波長の光と参
照波長の光を測定するタイミングが異なるので、測定対
象物1が移動するとそれぞれの波長の測定位置が異な
る。
By the way, in the photodetector of FIG. 9, the light of the characteristic absorption wavelength and the light of the reference wavelength are sampled by the rotation of the rotary disk 4 and measured by the so-called time division method. Therefore, correct measurement is possible when the measurement object 1 is stationary or when the characteristics of the measurement object 1 do not change with time. However, when the measurement target 1 moves at a high speed, the timings at which the light of the characteristic absorption wavelength and the light of the reference wavelength are measured are different, so that when the measurement target 1 moves, the measurement positions of the respective wavelengths differ.

【0007】このとき、測定対象物1が、特性吸収波長
の光および参照波長の光について、透過率や吸光度等の
場所的な変化が少ないものである場合には、正しい測定
値に近い値を得ることができるが、透過率や吸光度の場
所的な変化が大きいものである場合や、測定対象物1の
移動速度が速い場合には、以下に述べるように、正しい
測定データを得ることは困難になる。
At this time, in the case where the object 1 to be measured is a light having a characteristic absorption wavelength and a light having a reference wavelength with little spatial change in transmittance or absorbance, a value close to a correct measured value is set. Although it can be obtained, it is difficult to obtain correct measurement data as described below when the local change of the transmittance or the absorbance is large or when the moving speed of the measuring object 1 is high. become.

【0008】いま、図9において、光検出器1の光の感
度を含めた出力が、測定対象物1の位置Pにおける特性
吸収波長の光に対してはApであり、参照波長の光に対
してはBpであるとする。また、上記光検出器2の出力
が、測定対象物1の位置Qにおける特性吸収波長の光に
対してはAqであり、参照波長の光の強度に対してはBq
であるとする。干渉フィルタ3,3,…の切替には時間
が必要であるから、測定対象物1の位置Pでは特性吸収
波長の光の強度の測定が行われ、位置Qでは参照波長の
光の強度の測定が行われるものとすると、測定吸光度
は、次の数1で表される。
Now, in FIG. 9, the output including the light sensitivity of the photodetector 1 is A p for the light having the characteristic absorption wavelength at the position P of the measuring object 1, and is the light having the reference wavelength. On the other hand, it is assumed that B p . The output of the photodetector 2 is A q for the light of the characteristic absorption wavelength at the position Q of the measurement object 1 and B q for the intensity of the light of the reference wavelength.
Suppose Since it takes time to switch the interference filters 3, 3, ..., The intensity of the light having the characteristic absorption wavelength is measured at the position P of the measurement target 1, and the intensity of the light having the reference wavelength is measured at the position Q. If the measurement is performed, the measured absorbance is represented by the following mathematical expression 1.

【0009】[0009]

【数1】−log(Ap/Bq## EQU1 ## −log (A p / B q ).

【0010】これに対して、吸光度の真値は、測定対象
物1の位置Pについては、次の数2であらわされる。
On the other hand, the true value of the absorbance is expressed by the following equation 2 for the position P of the measuring object 1.

【0011】[0011]

【数2】−log(Ap/Bp[Equation 2] −log (A p / B p ).

【0012】また、測定対象物1の位置Qについては、
次の数3であらわされる。
Regarding the position Q of the measuring object 1,
It is expressed by the following equation 3.

【0013】[0013]

【数3】−log(Aq/Bq[Equation 3] −log (A q / B q )

【0014】上記数2および数3を数1と対比すれば明
らかなように、測定対象物1が場所的に透過率や吸光度
の変化が大きいときや、測定対象物1の移動速度が速い
ときには、Bq≠Bpであり、また、Ap≠Aqであ
る。したがって、数1であらわされる測定吸光度は、数
2や数3であらわされる真値とは異なることになる。
As is clear from the comparison of the equations (2) and (3) with the equation (1), when the measuring object 1 has a large change in transmittance or absorbance locally or when the moving speed of the measuring object 1 is fast. , Bq ≠ Bp, and Ap ≠ Aq. Therefore, the measured absorbance represented by Formula 1 is different from the true value represented by Formula 2 or Formula 3.

【0015】なお、上記光電測定装置が適用されるプラ
スチックフィルムや紙などの製造では、100m/分以
上の移動速度は普通である。また、化学反応などのよう
に、測定対象物の状態が時間的に変化する場合について
も、上記と同様の問題が生じる。
In the production of plastic films and papers to which the above photoelectric measuring device is applied, a moving speed of 100 m / min or more is common. Further, also in the case where the state of the measurement target changes with time, such as a chemical reaction, the same problem as described above occurs.

【0016】さらに、図9の光電測定装置では、回転デ
ィスク4の回転による特性吸収波長の光と参照波長の光
をサンプリングの周波数と測定対象物1の凹凸の周波数
との間の干渉によるビートが発生するという問題もあっ
た。
Further, in the photoelectric measuring apparatus of FIG. 9, the beat due to the interference between the sampling frequency of the light of the characteristic absorption wavelength and the light of the reference wavelength due to the rotation of the rotating disk 4 and the frequency of the unevenness of the measuring object 1 is generated. There was also a problem that it would occur.

【0017】一方、図10の光電測定装置では、測定対
象物1からの光を分岐させて同時測定を行っているの
で、図9の光電測定装置のような干渉フィルタ3,3,
…の切替に伴う問題は解消される。しかしながら、図1
0の光電測定装置では、複数の光検出器2a,2bを用
いているので、光検出器2a,2b相互間に外的要因に
よる光強度とその出力信号との関係、すなわち感度の変
化に差が生じ、正しい吸光度測定が困難であるという問
題があった。
On the other hand, in the photoelectric measuring apparatus of FIG. 10, the light from the measuring object 1 is branched to perform the simultaneous measurement, so that the interference filters 3, 3, as in the photoelectric measuring apparatus of FIG.
The problem associated with the switch of ... is solved. However, FIG.
In the photoelectric measurement device of No. 0, since a plurality of photodetectors 2a and 2b are used, there is a difference between the photodetectors 2a and 2b in relation to the light intensity due to an external factor and its output signal, that is, a change in sensitivity. However, there is a problem that correct absorbance measurement is difficult.

【0018】特に、光検出器2a,2bは、その感度が
温度に関係する。一定の光強度を有する光が光検出器2
a,2bに入射しているときに、これら光検出器2a,
2bの温度が一定であれば、一定の出力信号が得られる
が、光検出器2a,2bの出力は、その温度が変化する
と、いわゆる温度ドリフトにより変化する。
In particular, the sensitivity of the photodetectors 2a and 2b is related to the temperature. Light having a constant light intensity is detected by the photodetector 2
When incident on a and 2b, these photodetectors 2a,
If the temperature of 2b is constant, a constant output signal is obtained, but the outputs of the photodetectors 2a and 2b change due to so-called temperature drift when the temperature changes.

【0019】この温度ドリフトは、光検出器2a,2b
の各々により異なっているので、図10の光電測定装置
では、温度変化により測定精度が大きな影響を受ける。
たとえば電源が投入されることによる光電測定装置自体
の発熱に基づく温度変化、一日のうちの早朝と日中と夜
半などの温度変化、あるいは一年のうちの季節毎の温度
変化等の長時間にわたってゆっくりと変化する温度変化
があり、この温度変化に基づく温度ドリフトが、上記光
電測定装置による測定結果に経時的な誤差となってあら
われる。
This temperature drift is caused by the photodetectors 2a and 2b.
In the photoelectric measurement device of FIG. 10, the measurement accuracy is greatly affected by the temperature change.
For example, the temperature changes due to the heat generated by the photoelectric measuring device itself when the power is turned on, the temperature changes in the early morning of the day, the daytime and the middle of the night, etc., or the temperature changes of each season in a year, etc. There is a temperature change that changes with time, and a temperature drift based on this temperature change appears as an error over time in the measurement result by the photoelectric measurement device.

【0020】本発明の目的は、複数の光電変換素子を用
いた同時測光により、比較的高速で移動もしくは状態が
変化する測定対象物について、周囲温度の変化によって
測定誤差が生じることがなく、また、測定対象物との距
離変動や角度変動に対しても測定値に誤差が生じること
がなく、測定対象物について正確な測定情報を得ること
ができる光電測定装置を提供することである。
It is an object of the present invention to perform simultaneous photometry using a plurality of photoelectric conversion elements on a measurement object that moves or changes its state at a relatively high speed without causing a measurement error due to a change in ambient temperature. It is an object of the present invention to provide a photoelectric measurement device capable of obtaining accurate measurement information about a measurement object without causing an error in a measurement value even when the distance and the angle of the measurement object change.

【0021】本発明のいま一つの目的は、外装ケースが
複数の光電変換素子の各々の温度が互いに等しくなるよ
うな冷却空気の循環構造を有するコンパクトな光電測定
装置を提供することである。
Another object of the present invention is to provide a compact photoelectric measuring device having an outer case having a cooling air circulation structure in which the temperatures of a plurality of photoelectric conversion elements are equal to each other.

【0022】[0022]

【課題を解決するための手段】上記目的を達成するた
め、請求項1にかかる光電測定装置は、測定対象物から
入射する光を分光し、分光された特定の波長を有する光
をそれぞれ電気−光変換素子で電気信号に変換し、変換
されたこれら電気信号を処理手段で処理して上記測定対
象物が有している情報を検出する光電変換装置であっ
て、上記光電変換素子の固定部材を備えて上記光電変換
素子を熱結合状態で互いに近接して同一平面上に固定す
る光電変換素子固定筺体と、この光電変換素子固定筺体
の内部に配置され、上記測定対象物から入射する光を上
記各光電変換素子にそれぞれ対応して複数の光路に分岐
させるとともに、分岐後の光を等しい光路長を有して上
記光電変換素子にそれぞれ入射させる光路分岐光学系と
を備えたことを特徴とする。
In order to achieve the above object, a photoelectric measuring device according to a first aspect of the present invention disperses light incident from an object to be measured, and electrically separates the light having a spectroscopically separated wavelength. A photoelectric conversion device for converting an electric signal by a light conversion element, processing the converted electric signal by a processing means, and detecting information contained in the measurement object, which is a fixing member of the photoelectric conversion element. The photoelectric conversion element fixed housing for fixing the photoelectric conversion element in the thermal coupling state close to each other on the same plane, and arranged inside the photoelectric conversion element fixed housing, the light incident from the measurement object is provided. While branching into a plurality of optical paths respectively corresponding to each of the photoelectric conversion elements, an optical path branching optical system for causing the branched light to enter each of the photoelectric conversion elements with an equal optical path length, That.

【0023】上記目的を達成するため、請求項2にかか
る光電測定装置は、測定対象物から入射する光を分光
し、分光された特定の波長を有する光をそれぞれ電気−
光変換素子で電気信号に変換し、変換されたこれら電気
信号を処理手段で処理して上記測定対象物が有している
情報を検出する光電変換装置であって、上記測定対象物
に光を投射する光源と、この光源を収容する光源収容筺
体と、上記光電変換素子の固定部材を備えて上記光電変
換素子を熱結合状態で互いに近接して同一平面上に固定
する光電変換素子固定筺体と、この光電変換素子固定筺
体の内部に配置され、上記光源から投射されて上記測定
対象物にて反射もしくは透過して入射する光を上記各光
電変換素子にそれぞれ対応して複数の光路に分岐させる
とともに、分岐後の光を等しい光路長を有して上記光電
変換素子にそれぞれ入射させる光路分岐光学系とを備え
たことを特徴とする。
In order to achieve the above object, a photoelectric measuring device according to a second aspect of the present invention disperses light incident from an object to be measured and electrically separates the light having a spectroscopically separated specific wavelength.
A photoelectric conversion device for converting information into an electric signal with a light conversion element and processing the converted electric signals with a processing means to detect information contained in the measurement object, wherein light is applied to the measurement object. A light source for projecting, a light source housing for housing the light source, and a photoelectric conversion element fixing housing for fixing the photoelectric conversion elements close to each other in a thermally coupled state on the same plane by including a fixing member of the photoelectric conversion element. , Arranged inside the photoelectric conversion element fixed housing, and splits the light projected from the light source and reflected or transmitted by the measurement object to be incident on a plurality of optical paths corresponding to the photoelectric conversion elements. At the same time, an optical path branching optical system that makes the branched light enter the photoelectric conversion elements with the same optical path length is provided.

【0024】上記目的を達成するため、請求項3にかか
る光電測定装置は、請求項1または2にかかる光電測定
装置において、上記光電変換素子固定筺体の光電変換素
子の固定部材がヒートシンクであることを特徴とする。
In order to achieve the above object, the photoelectric measuring device according to claim 3 is the photoelectric measuring device according to claim 1 or 2, wherein the fixing member of the photoelectric conversion element of the photoelectric conversion element fixing housing is a heat sink. Is characterized by.

【0025】上記目的を達成するため、請求項4にかか
る光電測定装置は、請求項1から3のいずれか一にかか
る光電測定装置において、光電変換素子固定筺体の光電
変換素子の固定部材にその温度を制御するための温度制
御素子が取り付けられていることを特徴とする。
In order to achieve the above object, a photoelectric measuring device according to a fourth aspect of the present invention is the photoelectric measuring device according to any one of the first to third aspects, in which a photoelectric conversion element fixing member of a photoelectric conversion element fixing housing is fixed to the photoelectric conversion element fixing member. It is characterized in that a temperature control element for controlling the temperature is attached.

【0026】上記目的を達成するため、請求項5にかか
る光電測定装置は、請求項1から4のいずれか一にかか
る光電測定装置において、上記光路分岐光学系は、測定
対象物から入射する入射光の入射光路に配置されるビー
ムスプリッタと、このビームスプリッタにて分岐された
各光路上の上記ビームスプリッタからの距離が等しい位
置に配置された反射ミラーとからなることを特徴とす
る。
In order to achieve the above object, a photoelectric measuring device according to a fifth aspect of the present invention is the photoelectric measuring device according to any one of the first to fourth aspects, wherein the optical path branching optical system is incident from an object to be measured. It is characterized by comprising a beam splitter arranged in the incident light path of light, and a reflection mirror arranged in a position where the distance from the beam splitter on each optical path branched by the beam splitter is equal.

【0027】上記いま一つの目的を達成するため、請求
項6にかかる光電測定装置は、測定対象物から入射する
光を分光し、分光された特定の波長を有する光をそれぞ
れ電気−光変換素子で電気信号に変換し、変換されたこ
れら電気信号を処理手段で処理して上記測定対象物が有
している情報を検出する光電測定装置であって、外装ケ
ースと、上記測定対象物に光を投射する光源と、この光
源を収容する光源収容筺体と、この光源収容筺体との間
に冷却空気の流通空間をおいて配置され、上記光電変換
素子の固定部材を備えて上記光電変換素子を熱結合状態
で互いに近接して同一平面上に固定する光電変換素子固
定筺体と、この光電変換素子固定筺体の内部に配置さ
れ、上記光源から投射されて上記測定対象物で反射もし
くは透過して入射する光を上記各光電変換素子にそれぞ
れ対応して複数の光路に分岐させるとともに、分岐後の
光を等しい光路長を有して上記光電変換素子にそれぞれ
入射させる光路分岐光学系と、上記光源収容筺体、光電
変換素子固定筺体および光路分岐光学系を上記外装ケー
ス内にて支持するとともに、上記外装ケースの内部を上
記光源収容筺体、光電変換素子固定筺体および光電変換
素子固定筺体の収容空間と上記処理手段の回路基板の収
容空間とに区画し、冷却空気の上記流通空間からこの回
路基板の収容空間に連通する連通孔および上記回路基板
の収容空間から上記光源収容筺体に連通する連通孔とを
備えてなる区画部材とを備え、上記外装ケースは、その
外部から上記流通空間に連通する冷却空気の導入孔と、
上記光源収容筺体内から上記外装ケースの外部に連通す
る上記冷却空気の排出孔とを有し、上記冷却空気がその
冷却空気の上記流通空間を通して上記回路基板の収容空
間に至り、さらに上記回路基板の収容空間から上記光源
収容筺体内を通って外装ケースの外部に至る冷却空気の
循環通路が上記外装ケースの内部に形成されていること
を特徴とする。
In order to achieve the above-mentioned another object, a photoelectric measuring device according to a sixth aspect disperses light incident from an object to be measured, and separates the light having a spectroscopic specific wavelength into an electro-optical conversion element. In the photoelectric measurement device for converting the electric signals in, and processing the converted electric signals by the processing means to detect the information that the measurement object has, the outer case and the measurement object having the light A light source that projects the light source, a light source housing that houses the light source, and a cooling air circulation space between the light source housing and the light source housing, and the photoelectric conversion element is provided with a fixing member for the photoelectric conversion element. A photoelectric conversion element fixed housing that is fixed to the same plane in the thermal coupling state so as to be close to each other, and arranged inside the photoelectric conversion element fixed housing, projected from the light source and reflected or transmitted by the measurement object and incident. You An optical path branching optical system for branching light into a plurality of optical paths corresponding to the photoelectric conversion elements, respectively, and making the branched light enter the photoelectric conversion elements with the same optical path length, and the light source housing While supporting the photoelectric conversion element fixed housing and the optical path branching optical system in the outer case, the inside of the outer case is the light source housing, the photoelectric conversion element fixed housing and the housing space of the photoelectric conversion element fixed housing and the processing. And a communication hole that communicates from the circulation space of the cooling air to the accommodation space of the circuit board and a communication hole that communicates from the accommodation space of the circuit board to the light source accommodation housing. The outer case, the introduction hole of the cooling air communicating from the outside to the circulation space,
And a discharge hole for the cooling air communicating from the light source housing to the outside of the outer case, the cooling air reaching the accommodation space of the circuit board through the circulation space of the cooling air, and further the circuit board. A circulation passage for cooling air, which extends from the housing space through the light source housing to the outside of the outer case, is formed inside the outer case.

【0028】上記いま一つの目的を達成するため、請求
項7にかかる光電測定装置は、請求項1から6のいずれ
か一にかかる光電測定装置において、上記光電素子固定
筺体内部に光路分岐光学系が気密状態に封止されている
ことを特徴とする。
In order to achieve the another object, the photoelectric measuring device according to claim 7 is the photoelectric measuring device according to any one of claims 1 to 6, wherein the optical path branching optical system is provided inside the photoelectric element fixing housing. Is hermetically sealed.

【0029】[0029]

【発明の作用および効果】請求項1にかかる光電測定装
置によれば、複数の光電変換素子が光電変換素子固定筺
体の固定部材に熱結合状態で互いに近接して同一平面上
に固定され、光電変換素子固定筺体に配置した光路分岐
光学系により測定対象物から入射する光が各光電変換素
子にそれぞれ対応して複数の光路に分岐されるととも
に、分岐後の光が等しい光路長を有して各光電変換素子
にそれぞれ入射するので、周囲温度が変化しても互いに
熱結合状態で固定部材に固定されている各光電変換素子
の温度ドリフトは等しくなってその影響が相殺され、周
囲温度の変化によって生じる測定誤差が抑えられ、ま
た、測定対象物から入射する光の分岐後の各光路の光路
長が等しく、各光電変換素子に入射する光ビームの径が
等しくなり、測定対象物との距離変動や角度変動に対し
ても測定値に誤差が生じることがなく、複数の光電変換
素子を用いた同時測光により、比較的高速で移動もしく
は状態が変化する測定対象物について、正確な測定情報
を得ることができる。
According to the photoelectric measuring device of the first aspect of the present invention, the plurality of photoelectric conversion elements are fixed to the fixing member of the photoelectric conversion element fixing housing in the thermal coupling state so as to be close to each other and fixed on the same plane. Light incident from the measurement object is branched into a plurality of optical paths corresponding to each photoelectric conversion element by an optical path branching optical system arranged in the conversion element fixed housing, and the light after branching has an equal optical path length. Since each photoelectric conversion element is incident on each photoelectric conversion element, even if the ambient temperature changes, the temperature drifts of the photoelectric conversion elements that are fixed to the fixing member in a thermally coupled state are equal to each other and the effect is canceled out, and the ambient temperature changes. The measurement error caused by is suppressed, the optical path length of each optical path after the branch of the light incident from the measurement object is equal, the diameter of the light beam incident on each photoelectric conversion element is equal, There is no error in the measured values due to distance fluctuations and angle fluctuations, and simultaneous photometry using multiple photoelectric conversion elements makes it possible to obtain accurate measurements for objects that move or change states at relatively high speeds. Measurement information can be obtained.

【0030】また、請求項2にかかる光電測定装置によ
れば、光源を有してこの光源から測定対象物に投射され
て測定対象物から入射する光が光電変換素子固定筺体に
配置した光路分岐光学系により各光電変換素子にそれぞ
れ対応して複数の光路に分岐されるとともに、分岐後の
光が等しい光路長を有して、光電変換素子固定筺体の固
定部材に熱結合状態で互いに近接して同一平面上に固定
されてなる複数の光電変換素子にそれぞれ入射するの
で、周囲温度が変化しても互いに熱結合状態で固定部材
に固定されている各光電変換素子の温度ドリフトは等し
くなってその影響が相殺され、周囲温度の変化によって
生じる測定誤差が抑えられ、また、測定対象物から入射
する光の分岐後の各光路の光路長が等しく、各光電変換
素子に入射する光ビームの径が等しくなり、測定対象物
との距離変動や角度変動に対しても測定値に誤差が生じ
ることがなく、光源から測定対象物に投射された光に基
づく測定対象物からの光の各光電変換素子における同時
測光により、比較的高速で移動もしくは状態が変化する
測定対象物について、正確な測定情報を得ることができ
る。
According to a second aspect of the photoelectric measuring apparatus, a light source having a light source, and light projected from the light source to the measuring object and incident from the measuring object is disposed on the photoelectric conversion element fixing housing in an optical path branching. The optical system branches the light into a plurality of optical paths corresponding to the respective photoelectric conversion elements, and the light beams after branching have the same optical path length and are close to each other in a thermally coupled state to the fixing member of the photoelectric conversion element fixing housing. Since each of them is incident on a plurality of photoelectric conversion elements that are fixed on the same plane, even if the ambient temperature changes, the temperature drift of each photoelectric conversion element that is fixed to the fixing member in a thermally coupled state is equal. The effects are canceled out, the measurement error caused by the change in ambient temperature is suppressed, and the optical path length of each optical path after the branching of the light entering from the measurement object is equal, and the optical beam entering each photoelectric conversion element is Since the diameters of the beams are equal, there is no error in the measured values even when the distance and angle of the measurement object are changed, and the light from the measurement object based on the light projected onto the measurement object from the light source Simultaneous photometry in each photoelectric conversion element makes it possible to obtain accurate measurement information about a measurement object that moves or changes its state at a relatively high speed.

【0031】また、請求項3にかかる光電測定装置によ
れば、各光電変換素子がヒートシンクに固定されるの
で、各光電変換素子の温度がより均一になり、温度ドリ
フトの影響を大幅に少なくすることができる。
According to the photoelectric measuring device of the third aspect, since each photoelectric conversion element is fixed to the heat sink, the temperature of each photoelectric conversion element becomes more uniform, and the influence of temperature drift is greatly reduced. be able to.

【0032】さらに、請求項4にかかる光電測定装置に
よれば、光電変換素子固定筺体の光電変換素子の固定部
材が温度制御素子によりその温度が一定に制御されるの
で、各光電変換素子の温度ドリフトが抑えられ、精度の
高い光電測定を行うことができる。
Further, according to the photoelectric measuring device of the fourth aspect, the temperature of the fixing member of the photoelectric conversion element of the photoelectric conversion element fixing housing is controlled to be constant by the temperature control element, so that the temperature of each photoelectric conversion element is controlled. Drift is suppressed, and highly accurate photoelectric measurement can be performed.

【0033】さらにまた、請求項5にかかる光電変換装
置によれば、測定対象物からビームスプリッタに入射し
て分岐された光がビームスプリッタからの距離が等しい
位置に配置された反射ミラーでそれぞれ反射されて各光
電変換素子にそれぞれ入射するので、ビームスプリッタ
と反射ミラーを用いて、簡単かつコンパクトな構成によ
り、入射光の分岐後の光を、等しい光路長を有して、近
接して配置された光電変換素子に入射することができ
る。
Further, according to the photoelectric conversion device of the fifth aspect, the light which is incident on the beam splitter from the object to be measured and is branched off is reflected by the reflecting mirrors arranged at the same distance from the beam splitter. Since it is incident on each photoelectric conversion element, the beam splitter and the reflection mirror are used, and the light after the branch of the incident light is arranged in close proximity with an equal optical path length by a simple and compact structure. It can be incident on the photoelectric conversion element.

【0034】さらにまた、請求項6にかかる光電変換装
置によれば、外装ケースの内部が光源収容筺体、光電変
換素子固定筺体および光電変換素子固定筺体の収容空間
と処理手段の回路基板の収容空間とに区画され、冷却空
気が外装ケース内部の光電変換素子固定筺体の収容空間
を通って回路基板の収容空間に至り、さらに回路基板の
収容空間から光源収容筺体内を通って外装ケースの外部
に至る冷却空気の循環通路が形成されるので、光電変換
素子には光源が発生する熱が伝わることがなく、光電変
換素子とともに光源を同じ外装ケース内に組み込んで
も、冷却空気の接触により光電変換素子の温度を、常
に、ほぼ一定の温度に保持することができ、したがっ
て、光源を組み込んだ光電測定装置をコンパクトに実現
することができる。
According to a sixth aspect of the photoelectric conversion device of the present invention, the interior of the outer case has a light source accommodating housing, a photoelectric conversion element fixing housing, a photoelectric conversion element fixing housing and a circuit board housing space of the processing means. And cooling air passes through the accommodation space of the photoelectric conversion element fixing housing inside the outer case to the accommodation space of the circuit board, and further passes from the accommodation space of the circuit board to the outside of the outer case through the light source accommodation housing. Since the circulation passage of the cooling air to reach is formed, the heat generated by the light source is not transmitted to the photoelectric conversion element. Can always be maintained at a substantially constant temperature, and therefore, the photoelectric measurement device incorporating the light source can be realized compactly.

【0035】さらにまた、請求項7にかかる光電変換装
置によれば、光電素子固定筺体内部が気密状態に封止さ
れているので、光電素子固定筺体内部に収容されている
光電素子及び光路分岐光学系には冷却空気が流入するこ
とがなく、光路分岐光学系や光電変換素子の光入射面等
に冷却空気に含まれている湿気等の影響が及ぶのを防止
することができる。
Furthermore, according to the photoelectric conversion device of the seventh aspect, since the inside of the photoelectric element fixing housing is hermetically sealed, the photoelectric element and the optical path branching optics housed inside the photoelectric element fixing housing. Since cooling air does not flow into the system, it is possible to prevent the influence of moisture contained in the cooling air on the light path branching optical system, the light incident surface of the photoelectric conversion element, and the like.

【0036】[0036]

【実施例】以下に、添付の図面を参照して本発明の実施
例を説明する。本発明にかかる光電測定装置の内部構成
を図1および図2に示す。
Embodiments of the present invention will be described below with reference to the accompanying drawings. The internal configuration of the photoelectric measurement device according to the present invention is shown in FIGS. 1 and 2.

【0037】上記光電測定装置11は、一つの外装ケー
ス12の内部に、図示しない測定対象物に光を投射する
光源13、この光源13を収容する光源収容筺体14お
よび上記測定対象物からの光が入射する光電変換素子1
5a,15bが固定される光電変換素子固定筺体16を
収容してなるものである。
The photoelectric measuring device 11 includes a light source 13 for projecting light to an object to be measured (not shown), a light source housing 14 for accommodating the light source 13, and light from the object to be measured, inside one outer case 12. Photoelectric conversion element 1 on which light is incident
The photoelectric conversion element fixing housing 16 to which 5a and 15b are fixed is housed.

【0038】上記外装ケース12は直方体形状を有し、
その内部にて底板21に対向して平行に固定された四角
形状の区画部材22により、上記光源13、光源収容筺
体14および光電変換素子固定筺体16が収容される上
記区画部材22の一側の空間と上記光電変換素子15
a,15bからの信号を増幅して図示しない処理回路に
供給する増幅回路の回路基板23(図5参照)等が収容
される他側の空間とに区画される。
The outer case 12 has a rectangular parallelepiped shape,
Inside the partition member 22 in which the light source 13, the light source accommodating housing 14 and the photoelectric conversion element fixing housing 16 are accommodated, the rectangular partition member 22 is fixed in parallel to the bottom plate 21 so as to face the bottom plate 21. Space and the photoelectric conversion element 15
It is divided into a space on the other side in which the circuit board 23 (see FIG. 5) of the amplifier circuit for amplifying the signals from a and 15b and supplying them to the processing circuit (not shown) is housed.

【0039】上記光源収容筺体14は、区画部材22の
一つのコーナ部を取り囲むようにこの区画部材22から
上記一側の空間内に立上り、外装ケース12の上記底板
21の一端側から直角に立ち上がる側板24に対して直
角をなす側板部14a、側板24に対して平行な側板部
14bおよび上記側板24に対して傾斜する傾斜側板部
14cと、上記区画部材22と、上記外装ケース12の
側板24,25と、蓋板26から構成される。上記光源
収容筺体14には、その内部にたとえばハロゲンランプ
等からなる上記光源13のランプハウス13aが収容さ
れる。このランプハウスの側壁は熱放出効率が高いこと
が望まれ、例えばステンレス等の熱しやすく、冷めやす
い材料から構成され、なお好ましくは外表がフィン状の
構造をしている方が良い。さらにその支持部は、上記区
画部材22に伝わる光源13が発生する熱ができるだけ
小さくなるように、その支持部と上記区画部材22との
接触面積が小さくなるようにしている。また、上記光源
収容筺体14の傾斜側板部14cには、上記光源13か
ら出射する光を図示しない測定対象物に投射するための
投光光学系27が取り付けられる。この投光光学系27
からは、図1の矢印A2で示すように、光源収容筺体1
4の上記傾斜側板部14cに垂直な方向に、光が出射さ
れる。
The light source housing 14 rises in the space on one side from the partition member 22 so as to surround one corner of the partition member 22 and at a right angle from one end side of the bottom plate 21 of the outer case 12. The side plate portion 14a forming a right angle with the side plate 24, the side plate portion 14b parallel to the side plate 24, and the inclined side plate portion 14c inclined with respect to the side plate 24, the partition member 22, and the side plate 24 of the outer case 12. , 25 and a cover plate 26. The light source housing 14 houses therein a lamp house 13a of the light source 13 including, for example, a halogen lamp. It is desired that the side wall of the lamp house has a high heat release efficiency, and it is preferably made of a material that is easy to heat and cool, such as stainless steel, and it is more preferable that the outer surface has a fin-shaped structure. Furthermore, the contact area of the support part and the partition member 22 is made small so that the heat generated by the light source 13 transmitted to the partition member 22 is made as small as possible. Further, a light projecting optical system 27 for projecting the light emitted from the light source 13 onto an object to be measured (not shown) is attached to the inclined side plate portion 14c of the light source housing 14. This projection optical system 27
As shown by the arrow A 2 in FIG. 1, the light source housing 1
Light is emitted in a direction perpendicular to the inclined side plate portion 14c of No. 4.

【0040】一方、光電変換素子固定筺体16は、上記
光源収容筺体14との間に後に説明する冷却空気の流通
空間18をおいて、区画部材22から外装ケース12の
上記側板24と平行に、区画部材22の上記一側に立ち
上がる側板部材16a、この側板部材16aの先端部か
ら外装ケース12の底板21の他端部からこの底板21
に対して直角に立ち上がるいま一つの側板28に向かっ
て直角に折れ曲がる光電変換素子15a,15bの平板
状の固定部材16bおよび外装ケース12の側板25,
29から構成される。
On the other hand, the photoelectric conversion element fixing housing 16 has a space 18 for cooling air, which will be described later, between the photoelectric conversion element fixing housing 16 and the light source housing housing 14, and is parallel to the side plate 24 of the exterior case 12 from the partition member 22. The side plate member 16a that rises to the one side of the partition member 22, and the bottom plate 21 from the other end of the bottom plate 21 of the outer case 12 from the tip of the side plate member 16a.
To the other side plate 28 that rises at a right angle with respect to the flat plate fixing member 16b of the photoelectric conversion elements 15a and 15b and the side plate 25 of the outer case 12,
It is composed of 29.

【0041】上記光電変換素子固定筺体16の光電変換
素子15a,15bの上記固定部材16bは、たとえば
アルミニュームや銅等の良好な熱伝導性を有する材料か
らなる。そして、上記固定部材16bには、たとえばフ
ォトダイオード等の光電変換素子15a,15bが、上
記固定部材16bに対して良好な熱結合状態で、かつ、
互いに近接して固定される。上記光電変換素子固定筺体
16の内部には、上記区画部材22の上に光路分岐光学
系31が配置される。この光路分岐光学系31の構成を
図3に示す。
The fixing members 16b of the photoelectric conversion elements 15a and 15b of the photoelectric conversion element fixing housing 16 are made of a material having good thermal conductivity such as aluminum or copper. Then, photoelectric conversion elements 15a and 15b such as photodiodes are attached to the fixing member 16b in a good thermal coupling state with the fixing member 16b, and
Fixed close to each other. Inside the photoelectric conversion element fixed housing 16, an optical path branching optical system 31 is arranged on the partition member 22. The structure of this optical path branching optical system 31 is shown in FIG.

【0042】上記光路分岐光学系31は光路分岐ブロッ
ク32を備える。この光路分岐ブロック32は、図3に
示すように、各一端にて互いに直角をなして結合された
2つの光路ブロック部32a,32bからなるL字形状
を有するものである。上記光路分岐ブロック32の内部
には、2つの上記光路ブロック部32a,32bの結合
部分に、上記光路ブロック部32a,32bの各光軸に
対して45度の角度をなしてビームスプリッタとしてハ
ーフミラー33を配置するとともに、このハーフミラー
33から等距離の位置に、反射ミラー34a,34bを
それぞれ配置している。これら反射ミラー34a,34
bの各々は、2つの上記光路ブロック部34a,34b
の光軸を含む面に対して45度の角度で傾斜しており、
上記ハーフミラー33で分岐された後にそれぞれ入射す
る光の各々を、上記面に対して垂直な方向に同じ向きに
それぞれ反射させる。
The optical path branching optical system 31 includes an optical path branching block 32. As shown in FIG. 3, the optical path branching block 32 has an L-shape including two optical path block portions 32a and 32b which are connected to each other at right angles to each other. Inside the optical path branching block 32, a half mirror as a beam splitter is formed in the coupling portion of the two optical path block portions 32a and 32b with an angle of 45 degrees with respect to each optical axis of the optical path block portions 32a and 32b. 33 is arranged, and reflection mirrors 34a and 34b are arranged at positions equidistant from the half mirror 33, respectively. These reflection mirrors 34a, 34
Each of b is the two optical path block portions 34a and 34b.
Is inclined at an angle of 45 degrees with respect to the plane including the optical axis of
The respective lights that are respectively incident after being branched by the half mirror 33 are reflected in the same direction in the direction perpendicular to the surface.

【0043】したがって、図1および図2の上記光源1
3から投射されて図示しない測定対象物で反射もしくは
透過した光が、図3に矢印A3で示すように、上記光路
分岐ブロック32に設けられた入射開口35を通して光
路分岐ブロック32に入射すると、被測定対象物からの
光は、ハーフミラー33により、一つの光路ブロック部
32aの光軸に沿う光路に沿って矢印A4で示すように
進む光と、いま一つの光路ブロック部32bの光軸に沿
って矢印A5で示すように進む光とに分岐される。そし
て、一つの光路ブロック部32bの光軸に沿う光路を進
む光は、反射ミラー34aにて、2つの光路ブロック部
32a,32bの各光軸を含む上記面に垂直な方向に矢
印A6で示す方向に反射される。また、いま一つの光路
ブロック部32bの光軸に沿う光路を進む光は、反射ミ
ラー34bにて、上記反射ミラー34aで反射される光
と同じ方向に矢印A7で示す向きに反射される。
Therefore, the light source 1 shown in FIGS. 1 and 2 is used.
When the light projected from 3 and reflected or transmitted by an object to be measured (not shown) enters the optical path branching block 32 through the entrance opening 35 provided in the optical path branching block 32, as shown by an arrow A 3 in FIG. The light from the object to be measured travels by the half mirror 33 along the optical path along the optical axis of one optical path block portion 32a as shown by arrow A 4 , and the optical axis of the other optical path block portion 32b. It is branched into a light traveling as indicated by arrow a 5 along. Then, the light traveling along the optical path along the optical axis of one optical path block portion 32b is reflected by the reflecting mirror 34a by an arrow A 6 in a direction perpendicular to the surface including the optical axes of the two optical path block portions 32a and 32b. It is reflected in the direction shown. Further, light traveling the optical path along the optical axis of the optical path block portion 32b of good enough, at the reflecting mirror 34b, is reflected in the direction indicated by the arrow A 7 in the same direction as the light reflected by the reflecting mirror 34a.

【0044】上記反射ミラー34aで反射された光は、
光路分岐ブロック32に設けられた出射開口36aを通
して、図1,図2に示す光電変換素子固定筺体16の光
電変換素子15a,15bの固定部材16bに固定され
た光電変換素子15aに入射する。同様に、いま一つの
反射ミラー34bで反射された光は、光路分岐ブロック
32に設けられたいま一つの出射開口34bを通して、
図1,図2に示す上記固定部材16bに固定されたいま
一つの光電変換素子15bに入射する。光電変換素子1
5a,15bは、2つの光路ブロック部32a,32b
の各光軸を含む上記面から等距離の位置にて、その各光
電変換面の中心が光路分岐ブロック32の上記出射開口
36a,36bを通る各光軸にそれぞれ合致するよう
に、上記固定部材16bに固定される。
The light reflected by the reflection mirror 34a is
The light enters the photoelectric conversion element 15a fixed to the fixing member 16b of the photoelectric conversion elements 15a and 15b of the photoelectric conversion element fixing housing 16 shown in FIGS. 1 and 2 through the emission opening 36a provided in the optical path branching block 32. Similarly, the light reflected by another reflection mirror 34b passes through another emission opening 34b provided in the optical path branch block 32,
The light is incident on another photoelectric conversion element 15b fixed to the fixing member 16b shown in FIGS. Photoelectric conversion element 1
5a and 15b are two optical path block parts 32a and 32b.
Of the fixing member so that the centers of the photoelectric conversion surfaces thereof are aligned with the optical axes passing through the emission openings 36a and 36b of the optical path branching block 32 at positions equidistant from the surface including the optical axes of. It is fixed to 16b.

【0045】光路分岐光学系31の以上の構成により、
上記ハーフミラー33にて分岐された光は、等しい光路
長で、上記光電変換素子15a,15bに入射する。図
4はこのことを模式的に示している。なお、具体的には
図示しないが、上記ハーフミラー33から光電変換素子
15a,15bに至る光路の途中または、上記光電変換
素子15a,15b自身に、測定波長の光を透過させる
バンドパスフィルタおよび参照波長の光を透過させるバ
ンドパスフィルタがそれぞれ配置される。
With the above configuration of the optical path branching optical system 31,
The light branched by the half mirror 33 enters the photoelectric conversion elements 15a and 15b with the same optical path length. FIG. 4 schematically shows this. Although not specifically shown, a bandpass filter and a reference for transmitting light of the measurement wavelength to the middle of the optical path from the half mirror 33 to the photoelectric conversion elements 15a and 15b or to the photoelectric conversion elements 15a and 15b themselves. Bandpass filters that transmit light of a wavelength are arranged.

【0046】再び、図1および図2に戻って、外装ケー
ス12の内部をその一側の空間と他側の空間とに区画す
る上記区画部材22は、光電変換素子固定筺体16が収
容されている上記一側の空間内の冷却空気の流通空間か
ら回路基板23(図5参照)が収容された上記他側の空
間に連通する連通孔41を備えるとともに、上記他側の
空間から上記光源収容筺体14に連通する連通孔42を
備える。また、外装ケース12は、図5に示すように、
その外部から冷却空気を上記流通空間に導入するための
冷却空気の導入孔43を備えるとともに、上記外装ケー
ス12に導入された上記冷却空気を上記外装ケース12
の外部に排出するための冷却空気の排出孔44を備え
る。
Referring back to FIGS. 1 and 2, the partition member 22 for partitioning the inside of the outer case 12 into a space on one side and a space on the other side accommodates the photoelectric conversion element fixing housing 16. There is a communication hole 41 communicating from the circulation space of the cooling air in the space on the one side to the space on the other side in which the circuit board 23 (see FIG. 5) is accommodated, and the light source accommodation from the space on the other side. A communication hole 42 that communicates with the housing 14 is provided. In addition, as shown in FIG.
A cooling air introduction hole 43 for introducing cooling air from the outside into the distribution space is provided, and the cooling air introduced into the outer case 12 is provided in the outer case 12.
A cooling air discharge hole 44 for discharging the cooling air to the outside.

【0047】上記外装ケース12の内部には、図5にお
いて矢印A11からA17で示すように、冷却空気の上記導
入孔43から外装ケース12に導入された冷却空気が光
電変換素子固定筺体16を冷却しながら区画部材22の
一側の冷却空気の流通空間18に導入され、連通孔41
を通過して、上記回路基板23が収容された区画部材2
2の他側の空間に至り、さらにこの他側の空間から、上
記区画部材22に形成された連通孔42を通して、上記
光源収容筺体14内に至り、光源13を冷却した後、冷
却空気が排気孔44を通して外装ケース12の外部に排
出される冷却空気の循環通路が形成される。
Inside the outer case 12, as shown by arrows A 11 to A 17 in FIG. 5, the cooling air introduced into the outer case 12 through the cooling air introduction hole 43 is fixed to the photoelectric conversion element fixing housing 16. While being cooled, the cooling air is introduced into the circulation space 18 on one side of the partition member 22, and the communication hole 41
And the partition member 2 that passes through the circuit board and accommodates the circuit board 23.
2 to the space on the other side, and further from this space on the other side to the inside of the light source housing 14 through the communication hole 42 formed in the partition member 22, and after cooling the light source 13, the cooling air is exhausted. A circulation passage for the cooling air discharged to the outside of the outer case 12 through the hole 44 is formed.

【0048】上記冷却空気の循環通路により、光電変換
素子15a,15bには光源13が発生する熱が伝わる
ことがない。したがって、光電変換素子15a,15b
とともに光源13を同じ外装ケース12内に組み込んで
も、外装ケース12に導入される冷却空気の接触によ
り、光電変換素子15a,15bの温度を、常に、ほぼ
一定の温度に保持することができる。
Due to the circulation passage of the cooling air, the heat generated by the light source 13 is not transmitted to the photoelectric conversion elements 15a and 15b. Therefore, the photoelectric conversion elements 15a and 15b
Even if the light source 13 is incorporated in the same outer case 12, the temperature of the photoelectric conversion elements 15a and 15b can always be maintained at a substantially constant temperature due to the contact of the cooling air introduced into the outer case 12.

【0049】冷却空気の上記循環通路に、40リットル
/分および55リットル/分の冷却空気をそれぞれ循環
させて、上記光源13を点灯させたときの外装ケース1
2の各部の温度を測定した測定結果を図6に示す。この
図6において、曲線h1は、×印51を付して示すラン
プハウス13aの側壁近くに設置した温度センサの温度
測定値であり、曲線h2は、×印52を付して示すラン
プハウス13aの支持部の近くの区画部材22に設置し
た温度センサの温度測定値であり、曲線h3は、外装ケ
ース12内の回路基板23が収容された区画部材22の
他側の空間内に×印53を付して示す位置に配置した温
度センサの温度測定値であり、また、曲線h4は、外装
ケース12内の上記区画部材22の一側の冷却空気の流
通空間内に×印54を付して示す位置に配置した温度セ
ンサの温度測定値である。なお、ランプハウス13aの
材料は厚さ0.1ミリメートルのステンレスであり、外
装ケース12の寸法は、高さ×幅×奥行き=100mm
×130mm×60mmであった。
40 l / min and 55 l / min of cooling air are circulated in the cooling air circulation passage to turn on the light source 13, and the outer case 1 is turned on.
The measurement result of measuring the temperature of each part of No. 2 is shown in FIG. In FIG. 6, a curve h 1 is a temperature measurement value of a temperature sensor installed near the side wall of the lamp house 13 a indicated by a cross mark 51, and a curve h 2 is a lamp indicated by a cross mark 52. The curve h 3 is the temperature measurement value of the temperature sensor installed in the partition member 22 near the support portion of the house 13a, and the curve h 3 is in the space on the other side of the partition member 22 in which the circuit board 23 in the outer case 12 is accommodated. The temperature measurement value of the temperature sensor arranged at the position indicated by a cross mark 53 is shown, and the curve h 4 is indicated by a cross mark in the cooling air circulation space on one side of the partition member 22 in the outer case 12. It is the temperature measurement value of the temperature sensor arranged at the position shown with 54. The material of the lamp house 13a is stainless steel having a thickness of 0.1 mm, and the outer case 12 has dimensions of height × width × depth = 100 mm.
It was × 130 mm × 60 mm.

【0050】図6から、光源13の電源をオンまたはオ
フとしても、外装ケース12の上記冷却空間内の×印5
4の位置では、温度変化がほとんどないことがわかる。
したがって、光電変換素子15a,15bの温度ドリフ
トが抑えられことがわかる。しかも、これら光電変換素
子15a,15bは、互いに熱結合状態で同じ固定部材
16bに固定されているので、その温度ドリフトは等し
くなってその影響が相殺され、上記のように温度ドリフ
トが抑えられることと相俟って、測定誤差が小さくな
る。
From FIG. 6, even when the power source of the light source 13 is turned on or off, the cross mark 5 in the cooling space of the outer case 12 is used.
It can be seen that at the position of 4, there is almost no temperature change.
Therefore, it can be seen that the temperature drift of the photoelectric conversion elements 15a and 15b is suppressed. Moreover, since the photoelectric conversion elements 15a and 15b are fixed to the same fixing member 16b in a thermally coupled state with each other, their temperature drifts become equal and their influences are canceled out, so that the temperature drifts are suppressed as described above. Combined with the above, the measurement error is reduced.

【0051】また、光源13から測定対象物(図示せ
ず。)に投射されてこの測定対象物から光電変換素子1
5a,15bにそれぞれ入射する光は、光路分岐光学系
31のハーフミラー33により分岐された分岐後の光が
等しい光路長を有して、上記光電変換素子15a,15
bにそれぞれ入射される。したがって、各光電変換素子
15a,15bに入射する光ビームの径が等しくなり、
測定対象物との距離変動や角度変動に対しても測定値に
誤差が生じることがない。
Also, the photoelectric conversion element 1 is projected from the measuring object by projecting it from the light source 13 onto the measuring object (not shown).
The light beams 5a and 15b respectively have the same optical path length as the light beams after being branched by the half mirror 33 of the optical path branching optical system 31 and have the above-mentioned photoelectric conversion elements 15a and 15b.
b. Therefore, the diameters of the light beams incident on the photoelectric conversion elements 15a and 15b become equal,
There is no error in the measured value even when the distance to the measurement object changes or the angle changes.

【0052】これにより、2つの光電変換素子15a,
15bを用いた、光源13から測定対象物に投射された
光に基づく測定対象物からの光の各光電変換素子15
a,15bにおける同時測光を行うことができ、したが
って、比較的高速で移動もしくは状態が変化する測定対
象物について、測定対象との距離変動や角度変動あるい
は温度変動の影響を受けることなく正確な測定情報を得
ることができる。
As a result, the two photoelectric conversion elements 15a,
Each photoelectric conversion element 15 of the light from the measuring object based on the light projected from the light source 13 onto the measuring object using 15 b
Since it is possible to perform simultaneous photometry in a and 15b, accurate measurement can be performed on a measurement object that moves or changes its state at a relatively high speed without being affected by distance fluctuations, angle fluctuations, or temperature fluctuations with the measurement object. You can get information.

【0053】上記実施例では、ハーフミラー33により
分岐された光は、反射ミラー34a,34bにて、図3
の2つの光路ブロック部32a,32bの各光軸を含む
面に垂直な方向に矢印A6,A7で示す方向に反射させる
ようにしたが、上記反射ミラー34a,34bおよび光
電変換素子15a,15bの固定部材16bは、上記ハ
ーフミラー33により分岐された光が、2つの光路ブロ
ック部32a,32b(図3参照)の各光軸を含む上記
面内で、図7において矢印A6´およびA7´で示すよう
に、光電変換素子15a,15bに入射するように配置
してもよい。この場合、上記反射ミラー34a,34b
および光電変換素子15a,15bは、ハーフミラー3
3で分岐されて光電変換素子15a,15bに入射する
までの光の光路が等しくなるように設定される。
In the above embodiment, the light split by the half mirror 33 is reflected by the reflecting mirrors 34a and 34b as shown in FIG.
The two optical path block portions 32a and 32b are reflected in the directions perpendicular to the planes including the optical axes in the directions indicated by the arrows A 6 and A 7 , but the reflection mirrors 34a and 34b and the photoelectric conversion elements 15a, In the fixing member 16b of 15b, the light branched by the half mirror 33 is in the plane including the optical axes of the two optical path block portions 32a and 32b (see FIG. 3), and the arrow A 6 ′ in FIG. As indicated by A 7 ′, they may be arranged so as to enter the photoelectric conversion elements 15 a and 15 b. In this case, the reflection mirrors 34a and 34b
The photoelectric conversion elements 15a and 15b are the half mirror 3
It is set so that the optical paths of the light that is branched at 3 and enters the photoelectric conversion elements 15a and 15b are equal.

【0054】また、上記実施例では、一枚のハーフミラ
ー33を使用して、被測定対象物からの光を2つの光に
分岐し、それを2つの光電変換素子15a,15bで測
定するようにしたが、たとえば図8に示すように、2枚
(またはそれ以上)のハーフミラー33a,33b(お
よび33c)および3個(またはそれ以上)の光電変換
素子15a,15b,15cを用いて、測定光と参照光
の光電測定を行なうこともできる。
Further, in the above embodiment, one half mirror 33 is used to split the light from the object to be measured into two lights, which are measured by the two photoelectric conversion elements 15a and 15b. However, for example, as shown in FIG. 8, using two (or more) half mirrors 33a, 33b (and 33c) and three (or more) photoelectric conversion elements 15a, 15b, 15c, It is also possible to perform photoelectric measurement of the measurement light and the reference light.

【0055】さらに、上記実施例において、光電変換素
子15a,15bは、光電変換素子固定筺体16の平板
状の固定部材16bに固定するようにしたが、この固定
部材16bに代えて、多数の放熱フィンを有するヒート
シンクに光電変換素子15a,15bを組み込むように
してもよい。このようにすれば、光電変換素子15a,
15bは、ヒートシンクを通して温度がほぼ一定の温度
を有する冷却空気でより有効に温度制御されることにな
り、光電変換素子15a,15bの温度ドリフトが大幅
に抑えられる。
Further, in the above-mentioned embodiment, the photoelectric conversion elements 15a and 15b are fixed to the plate-shaped fixing member 16b of the photoelectric conversion element fixing housing 16, but instead of the fixing member 16b, a large number of heat radiations are used. The photoelectric conversion elements 15a and 15b may be incorporated in a heat sink having fins. By doing so, the photoelectric conversion elements 15a,
The temperature of 15b is more effectively controlled by the cooling air having a substantially constant temperature through the heat sink, so that the temperature drift of the photoelectric conversion elements 15a and 15b is significantly suppressed.

【0056】さらにまた、上記実施例において、光電変
換素子固定筺体16の平板状の固定部材16bまたは上
記ヒートシンクには、ペルチェ素子等の温度制御素子を
取り付けて、これら固定部材16bやヒートシンクに取
り付けられた光電変換素子15a,15bの温度を一定
に制御するようにしてもよい。このようにすれば、光電
変換素子15a,15bの温度ドリフトがさらに抑えら
れる。
Furthermore, in the above-described embodiment, a temperature control element such as a Peltier element is attached to the flat plate-shaped fixing member 16b of the photoelectric conversion element fixing housing 16 or the heat sink, and is attached to the fixing member 16b and the heat sink. Alternatively, the temperatures of the photoelectric conversion elements 15a and 15b may be controlled to be constant. By doing so, the temperature drift of the photoelectric conversion elements 15a and 15b can be further suppressed.

【0057】上記実施例では、外装ケース12に光源1
3を内蔵した光電測定装置について説明したが、本発明
は、測定対象物の放射温度等を測定する場合等には、外
装ケース内に光源を内蔵しないものにも適用することが
できる。この場合も、測定対象物との距離変動や角度変
動に対して測定値に誤差が生じることがなく、また、光
電変換素子の温度ドリフトが相殺され、温度変動による
測定誤差の少ない光電測定を行なうことができる。
In the above embodiment, the light source 1 is placed in the outer case 12.
Although the photoelectric measurement device having the built-in 3 has been described, the present invention can be applied to a device in which the light source is not built in the outer case when measuring the radiation temperature or the like of the measurement target. Also in this case, an error does not occur in the measurement value due to the distance variation and the angle variation with the object to be measured, and the temperature drift of the photoelectric conversion element is canceled to perform the photoelectric measurement with less measurement error due to the temperature variation. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明にかかる光電測定装置の一実施例の内
部構造を示す一部破断斜視図である。
FIG. 1 is a partially cutaway perspective view showing an internal structure of an embodiment of a photoelectric measurement device according to the present invention.

【図2】 図1と異なる方向からみた光電測定装置の一
部破断斜視図である。
FIG. 2 is a partially cutaway perspective view of the photoelectric measurement device viewed from a direction different from FIG.

【図3】 光路分岐光学系の斜視図である。FIG. 3 is a perspective view of an optical path branching optical system.

【図4】 図3の光路分岐光学系を説明するための模式
図である。
FIG. 4 is a schematic diagram for explaining the optical path branching optical system of FIG.

【図5】 図1および図2の光電測定装置の内部を循環
する冷却空気の循環経路の説明図である。
5 is an explanatory diagram of a circulation path of cooling air that circulates inside the photoelectric measurement device of FIGS. 1 and 2. FIG.

【図6】 図5において×印を付して示された部分の温
度の測定データである。
FIG. 6 is measurement data of the temperature of a portion indicated by a mark X in FIG.

【図7】 本発明にかかる光電測定装置の分岐光学系の
変形例の説明図である。
FIG. 7 is an explanatory diagram of a modified example of the branch optical system of the photoelectric measurement device according to the present invention.

【図8】 3つの光電変換素子を用いて光電測定を行な
う場合の本発明にかかる光電測定装置の分岐光学系の説
明図である。
FIG. 8 is an explanatory diagram of a branch optical system of a photoelectric measurement device according to the present invention when performing photoelectric measurement using three photoelectric conversion elements.

【図9】 従来の光電測定装置の説明図である。FIG. 9 is an explanatory diagram of a conventional photoelectric measurement device.

【図10】 従来のいま一つの光電測定装置の説明図で
ある。
FIG. 10 is an explanatory view of another conventional photoelectric measurement device.

【符号の説明】[Explanation of symbols]

11 光電測定装置 12 外装ケース 13 光源 14 光源収容筺体 15a 光電変換素子 15b 光電変換素子 16 光電変換素子固定筺体 16a 側板部材 16b 固定部材 18 流通空間 21 底板 22 区画部材 23 回路基板 27 投光光学系 31 光路分岐光学系 32 光路分岐ブロック 32a 光路ブロック部 32b 光路ブロック部 33 ハーフミラー 34a 反射ミラー 34b 反射ミラー 41 連通孔 42 連通孔 43 冷却空気の導入孔 44 冷却空気の排出孔 DESCRIPTION OF SYMBOLS 11 Photoelectric measuring device 12 Outer case 13 Light source 14 Light source housing 15a Photoelectric conversion element 15b Photoelectric conversion element 16 Photoelectric conversion element fixed housing 16a Side plate member 16b Fixing member 18 Distribution space 21 Bottom plate 22 Partition member 23 Circuit board 27 Projection optical system 31 Optical path branching optical system 32 Optical path branching block 32a Optical path block part 32b Optical path block part 33 Half mirror 34a Reflecting mirror 34b Reflecting mirror 41 Communication hole 42 Communication hole 43 Cooling air introducing hole 44 Cooling air discharging hole 44

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 測定対象物から入射する光を分光し、分
光された特定の波長を有する光をそれぞれ電気−光変換
素子で電気信号に変換し、変換されたこれら電気信号を
処理手段で処理して上記測定対象物が有している情報を
検出する光電変換装置であって、 上記光電変換素子の固定部材を備えて上記光電変換素子
を熱結合状態で互いに近接して同一平面上に固定する光
電変換素子固定筺体と、この光電変換素子固定筺体の内
部に配置され、上記測定対象物から入射する光を上記各
光電変換素子にそれぞれ対応して複数の光路に分岐させ
るとともに、分岐後の光を等しい光路長を有して上記光
電変換素子にそれぞれ入射させる光路分岐光学系とを備
えたことを特徴とする光電測定装置。
1. A light incident from a measurement object is dispersed, each of the separated light having a specific wavelength is converted into an electric signal by an electro-optical conversion element, and the converted electric signal is processed by a processing means. A photoelectric conversion device for detecting information contained in the object to be measured, comprising a fixing member for the photoelectric conversion element, and fixing the photoelectric conversion elements in proximity to each other in a thermally coupled state on the same plane. The photoelectric conversion element fixed housing to be, and is disposed inside the photoelectric conversion element fixed housing, the light incident from the measurement object is branched into a plurality of optical paths corresponding to the photoelectric conversion elements, respectively, after branching An optical path branching optical system for causing light to enter the photoelectric conversion elements with the same optical path length.
【請求項2】 測定対象物から入射する光を分光し、分
光された特定の波長を有する光をそれぞれ電気−光変換
素子で電気信号に変換し、変換されたこれら電気信号を
処理手段で処理して上記測定対象物が有している情報を
検出する光電変換装置であって、 上記測定対象物に光を投射する光源と、この光源を収容
する光源収容筺体と、上記光電変換素子の固定部材を備
えて上記光電変換素子を熱結合状態で互いに近接して同
一平面上に固定する光電変換素子固定筺体と、この光電
変換素子固定筺体の内部に配置され、上記光源から投射
されて上記測定対象物にて反射もしくは透過して入射す
る光を上記各光電変換素子にそれぞれ対応して複数の光
路に分岐させるとともに、分岐後の光を等しい光路長を
有して上記光電変換素子にそれぞれ入射させる光路分岐
光学系とを備えたことを特徴とする光電測定装置。
2. Light incident from a measurement object is dispersed, each of the separated light having a specific wavelength is converted into an electric signal by an electro-optical conversion element, and the converted electric signal is processed by a processing means. A photoelectric conversion device for detecting the information that the measurement object has, a light source that projects light onto the measurement object, a light source housing that houses the light source, and the photoelectric conversion element fixed A photoelectric conversion element fixed housing that is provided with a member and fixes the photoelectric conversion elements in the thermal coupling state to be close to each other and fixed on the same plane, and is disposed inside the photoelectric conversion element fixed housing and projected from the light source to perform the measurement. The light reflected or transmitted by the object and incident on it is branched into a plurality of optical paths corresponding to the photoelectric conversion elements, respectively, and the branched light is incident on the photoelectric conversion elements with the same optical path length. Photoelectric measuring apparatus characterized by comprising an optical path branching optical system for.
【請求項3】 上記光電変換素子固定筺体の光電変換素
子の固定部材がヒートシンクであることを特徴とする請
求項1または2記載の光電測定装置。
3. The photoelectric measurement device according to claim 1, wherein the fixing member of the photoelectric conversion element of the photoelectric conversion element fixing housing is a heat sink.
【請求項4】 上記光電変換素子固定筺体の光電変換素
子の固定部材にその温度を制御するための温度制御素子
が取り付けられていることを特徴とする請求項1から3
のいずれか一記載の光電測定装置。
4. The temperature control element for controlling the temperature of the photoelectric conversion element fixing member of the photoelectric conversion element fixing housing is attached to the fixing member.
The photoelectric measurement device according to any one of 1.
【請求項5】 上記光路分岐光学系は、測定対象物から
入射する入射光の入射光路に配置されるビームスプリッ
タと、このビームスプリッタにて分岐された各光路上の
上記ビームスプリッタからの距離が等しい位置に配置さ
れた反射ミラーとからなることを特徴とする請求項1か
ら4のいずれか一記載の光電測定装置。
5. The optical path branching optical system comprises a beam splitter arranged in an incident optical path of incident light entering from an object to be measured, and a distance from the beam splitter on each optical path branched by the beam splitter. The photoelectric measuring device according to claim 1, wherein the photoelectric measuring device comprises reflection mirrors arranged at the same position.
【請求項6】 測定対象物から入射する光を分光し、分
光された特定の波長を有する光をそれぞれ電気−光変換
素子で電気信号に変換し、変換されたこれら電気信号を
処理手段で処理して上記測定対象物が有している情報を
検出する光電測定装置であって、 外装ケースと、上記測定対象物に光を投射する光源と、
この光源を収容する光源収容筺体と、この光源収容筺体
との間に冷却空気の流通空間をおいて配置され、上記光
電変換素子の固定部材を備えて上記光電変換素子を熱結
合状態で互いに近接して同一平面上に固定する光電変換
素子固定筺体と、この光電変換素子固定筺体の内部に配
置され、上記光源から投射されて上記測定対象物で反射
もしくは透過して入射する光を上記各光電変換素子にそ
れぞれ対応して複数の光路に分岐させるとともに、分岐
後の光を等しい光路長を有して上記光電変換素子にそれ
ぞれ入射させる光路分岐光学系と、上記光源収容筺体、
光電変換素子固定筺体および光路分岐光学系を上記外装
ケース内にて支持するとともに、上記外装ケースの内部
を上記光源収容筺体、光電変換素子固定筺体および光電
変換素子固定筺体の収容空間と上記処理手段の回路基板
の収容空間とに区画し、冷却空気の上記流通空間からこ
の回路基板の収容空間に連通する連通孔および上記回路
基板の収容空間から上記光源収容筺体に連通する連通孔
とを備えてなる区画部材とを備え、上記外装ケースは、
その外部から上記流通空間に連通する冷却空気の導入孔
と、上記光源収容筺体内から上記外装ケースの外部に連
通する上記冷却空気の排出孔とを有し、上記冷却空気が
その冷却空気の上記流通空間を通して上記回路基板の収
容空間に至り、さらに上記回路基板の収容空間から上記
光源収容筺体内を通って外装ケースの外部に至る冷却空
気の循環通路が上記外装ケースの内部に形成されている
ことを特徴とする光電測定装置。
6. The light incident from the object to be measured is dispersed, the dispersed light having a specific wavelength is converted into an electric signal by an electro-optical conversion element, and the converted electric signal is processed by a processing means. And is a photoelectric measurement device for detecting the information that the measurement object has, an outer case, a light source that projects light on the measurement object,
A light source housing that houses the light source and a cooling air circulation space are arranged between the light source housing and the light source housing, and the photoelectric conversion element is provided with a fixing member so that the photoelectric conversion elements are close to each other in a thermally coupled state. Then, the photoelectric conversion element fixing housing fixed on the same plane, and arranged inside the photoelectric conversion element fixing housing, the light projected from the light source and reflected or transmitted by the measurement object is incident on each of the photoelectric conversion elements. While branching into a plurality of optical paths respectively corresponding to the conversion element, an optical path branching optical system that makes the branched light respectively incident on the photoelectric conversion element with an equal optical path length, and the light source housing.
The photoelectric conversion element fixing housing and the optical path branching optical system are supported in the outer case, and the inside of the outer case is the light source accommodating housing, the photoelectric conversion element fixing housing and the accommodating space of the photoelectric conversion element fixing housing, and the processing means. And a communication hole that communicates from the circulation space of the cooling air to the accommodation space of the circuit board and a communication hole that communicates from the accommodation space of the circuit board to the light source accommodation housing. And a partition member that is
The cooling air has an introduction hole that communicates with the circulation space from the outside, and a discharge hole for the cooling air that communicates with the outside of the exterior case from the light source housing, and the cooling air is the cooling air. A circulation passage of cooling air is formed inside the exterior case, which reaches the accommodation space for the circuit board through the circulation space, and further extends from the accommodation space for the circuit board to the outside of the exterior case through the light source accommodation housing. A photoelectric measurement device characterized by the above.
【請求項7】 上記光電素子固定筺体内部が気密状態に
封止されていることを特徴とする請求項1から6のいず
れか一記載の光電測定装置。
7. The photoelectric measuring device according to claim 1, wherein the inside of the photoelectric element fixing housing is hermetically sealed.
JP5349867A 1993-12-29 1993-12-29 Photoelectric measuring instrument Pending JPH07198597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5349867A JPH07198597A (en) 1993-12-29 1993-12-29 Photoelectric measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5349867A JPH07198597A (en) 1993-12-29 1993-12-29 Photoelectric measuring instrument

Publications (1)

Publication Number Publication Date
JPH07198597A true JPH07198597A (en) 1995-08-01

Family

ID=18406657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5349867A Pending JPH07198597A (en) 1993-12-29 1993-12-29 Photoelectric measuring instrument

Country Status (1)

Country Link
JP (1) JPH07198597A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146702A (en) * 1998-11-05 2000-05-26 Hitachi Ltd Infrared sensor
JP2002318107A (en) * 2001-04-20 2002-10-31 Shin Meiwa Ind Co Ltd Mirror box
JP2005274517A (en) * 2004-03-26 2005-10-06 Shimadzu Corp Spectrophotometer
JP2006105660A (en) * 2004-10-01 2006-04-20 National Institute Of Advanced Industrial & Technology Circuit characteristic measuring apparatus having port extending device
JP2008145397A (en) * 2006-12-13 2008-06-26 Nippon Signal Co Ltd:The Gas detection device
WO2012176851A1 (en) * 2011-06-24 2012-12-27 株式会社島津製作所 Spectroscopic device
JPWO2016121687A1 (en) * 2015-01-30 2017-11-09 Jsr株式会社 Method for evaluating lithium storage state, electrode manufacturing method, apparatus for evaluating lithium storage state, and electrode manufacturing system
WO2018088556A1 (en) * 2016-11-14 2018-05-17 浜松ホトニクス株式会社 Spectroscopic measurement device and spectrometry system
WO2018088553A1 (en) * 2016-11-14 2018-05-17 浜松ホトニクス株式会社 Spectroscopic measurement device and spectrometry system
WO2018088555A1 (en) * 2016-11-14 2018-05-17 浜松ホトニクス株式会社 Spectroscopic measurement device and spectrometry system
JP2018194397A (en) * 2017-05-16 2018-12-06 株式会社クボタ Measuring apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325348A (en) * 1989-06-10 1991-02-04 Draegerwerk Ag Sensor instrument for measuring gas component
JPH04104243A (en) * 1990-08-24 1992-04-06 Hitachi Ltd Spectral image device
JPH04118638U (en) * 1991-04-04 1992-10-23 株式会社堀場製作所 optical equipment
JPH05172641A (en) * 1991-12-24 1993-07-09 Yokogawa Electric Corp Photodetector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325348A (en) * 1989-06-10 1991-02-04 Draegerwerk Ag Sensor instrument for measuring gas component
JPH04104243A (en) * 1990-08-24 1992-04-06 Hitachi Ltd Spectral image device
JPH04118638U (en) * 1991-04-04 1992-10-23 株式会社堀場製作所 optical equipment
JPH05172641A (en) * 1991-12-24 1993-07-09 Yokogawa Electric Corp Photodetector

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146702A (en) * 1998-11-05 2000-05-26 Hitachi Ltd Infrared sensor
JP2002318107A (en) * 2001-04-20 2002-10-31 Shin Meiwa Ind Co Ltd Mirror box
JP2005274517A (en) * 2004-03-26 2005-10-06 Shimadzu Corp Spectrophotometer
JP2006105660A (en) * 2004-10-01 2006-04-20 National Institute Of Advanced Industrial & Technology Circuit characteristic measuring apparatus having port extending device
JP2008145397A (en) * 2006-12-13 2008-06-26 Nippon Signal Co Ltd:The Gas detection device
US9459143B2 (en) 2011-06-24 2016-10-04 Shimadzu Corporation Spectroscopic device
WO2012176851A1 (en) * 2011-06-24 2012-12-27 株式会社島津製作所 Spectroscopic device
JPWO2016121687A1 (en) * 2015-01-30 2017-11-09 Jsr株式会社 Method for evaluating lithium storage state, electrode manufacturing method, apparatus for evaluating lithium storage state, and electrode manufacturing system
WO2018088556A1 (en) * 2016-11-14 2018-05-17 浜松ホトニクス株式会社 Spectroscopic measurement device and spectrometry system
WO2018088553A1 (en) * 2016-11-14 2018-05-17 浜松ホトニクス株式会社 Spectroscopic measurement device and spectrometry system
WO2018088555A1 (en) * 2016-11-14 2018-05-17 浜松ホトニクス株式会社 Spectroscopic measurement device and spectrometry system
US10520362B2 (en) 2016-11-14 2019-12-31 Hamamatsu Photonics K.K. Spectroscopic measurement device and spectrometry system
US10928249B2 (en) 2016-11-14 2021-02-23 Hamamatsu Photonics K.K. Spectroscopic measurement device and spectrometry system
JP2018194397A (en) * 2017-05-16 2018-12-06 株式会社クボタ Measuring apparatus

Similar Documents

Publication Publication Date Title
US8472026B2 (en) Compact surface plasmon resonance apparatus and method
US6836330B2 (en) Optical beamsplitter for a polarization insensitive wavelength detector and a polarization sensor
JPH07198597A (en) Photoelectric measuring instrument
US4746214A (en) Spectrophotometer
EP0082007B1 (en) Apparatus for measuring thickness of a film
US5546185A (en) Angle detecting apparatus for detecting angle of inclination of scanning mirror provided on michelson interferometer
JP2000019108A (en) Infrared gas analyzer
EP0176826A2 (en) Method and apparatus for dual-beam spectral transmission measurements
EP1017995A1 (en) Method and apparatus for measuring properties of paper
JPS6212994Y2 (en)
JPS5957123A (en) Apparatus for measuring surface color of moving object
GB2101299A (en) Spectrophotometer
JP2004257909A (en) Grain size distribution measuring device
JPS6153549A (en) Optical measuring apparatus
JPH07174526A (en) Optical device
US20220128405A1 (en) Spectrophotometer
US12092568B2 (en) Optical measuring unit and optical measuring method for obtaining measurement signals of fluid media
JPS594258Y2 (en) double beam spectrophotometer
RU2213942C1 (en) Device for contact-free measurement of temperature
JPS62289749A (en) Reflection factor measuring instrument
JPS5821142A (en) Fourier transform infrared spectrophotometer
SU823989A1 (en) Device for measuring absolute reflection and transmission factors
JPS6014132A (en) Colorimetric device of surface of moving object
JP3309537B2 (en) Fourier transform spectrophotometer
KR20010079209A (en) Fast Scanning Double Beam Spectrophotometer for Multichannel Spectroscopy