JPH0646181B2 - Infrared carbon dioxide analyzer - Google Patents

Infrared carbon dioxide analyzer

Info

Publication number
JPH0646181B2
JPH0646181B2 JP5772288A JP5772288A JPH0646181B2 JP H0646181 B2 JPH0646181 B2 JP H0646181B2 JP 5772288 A JP5772288 A JP 5772288A JP 5772288 A JP5772288 A JP 5772288A JP H0646181 B2 JPH0646181 B2 JP H0646181B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
gas
sample
wavelength
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5772288A
Other languages
Japanese (ja)
Other versions
JPH01229941A (en
Inventor
敏弘 穴見
尚之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP5772288A priority Critical patent/JPH0646181B2/en
Publication of JPH01229941A publication Critical patent/JPH01229941A/en
Publication of JPH0646181B2 publication Critical patent/JPH0646181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、食品パックの中の炭酸ガス濃度を測定する場
合等のように、微量の試料ガスをもって炭酸ガス濃度を
測定するに好適な赤外線式炭酸ガス分析計に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention provides an infrared ray suitable for measuring the carbon dioxide concentration with a small amount of sample gas, such as when measuring the carbon dioxide concentration in a food pack. The present invention relates to a carbon dioxide analyzer.

[従来の技術] 昨今、食品添加物に対する法的規制の強化及び消費者の
無添加食品指向の流れの中で、食品のガス充填包装が脚
光を浴びている。なかでも、炭酸ガスは無味、無臭、無
色てあって、微生物に対する代謝阻害作用や静菌作用に
基づくシエルフライフの延長の為に広く用いられ、か
つ、かかる包装食品の保存性等の調査研究の為に、それ
に充填されている炭酸ガスの濃度測定が必要とされてい
る。
[Prior Art] In recent years, gas-filled packaging of foods has been in the spotlight due to the tightening of legal restrictions on food additives and the trend toward consumer-free foods. Among them, carbon dioxide gas is tasteless, odorless, and colorless, and is widely used for the purpose of prolonging the shelf life based on the metabolic inhibitory action and bacteriostatic action on microorganisms, and the research study on the preservability of such packaged foods. Therefore, it is necessary to measure the concentration of carbon dioxide gas filled in it.

[発明が解決しようとする課題] しかし、かかる包装食品に充填されている炭酸ガス量が
少量である為、微量の試料ガス(サンプルガス)をもっ
ての濃度測定が余儀無くされ、その為、それに適したガ
ス分析計の開発が急がれていた。
[Problems to be Solved by the Invention] However, since the amount of carbon dioxide gas filled in such a packaged food is small, it is unavoidable to measure the concentration with a very small amount of sample gas (sample gas), which is suitable for it. There was an urgent need to develop a gas analyzer.

本発明は、このような背景下において発明されたもので
あって、微量の試料ガス(サンプルガス)をもっての炭
酸ガス濃度測定を正確に行うことができる赤外線式炭酸
ガス分析計を提供しようとするものである。
The present invention has been invented under such a background, and an object thereof is to provide an infrared carbon dioxide analyzer capable of accurately measuring the carbon dioxide concentration with a small amount of sample gas (sample gas). It is a thing.

[課題を解決するための手段] かかる目的を達成する本発明に係る赤外線式炭酸ガス分
析計は、赤外線が照射される試料セルに試料ガスを供給
し、前記試料セルにおける透過光の増減を検出すると共
に、それを増幅せしめて演算処理部に出力することによ
り炭酸ガス濃度を測定し得るように構成された赤外線式
炭酸ガス分析計において、注射器を介してシリンジに注
入される前記試料ガスを、前記試料セル及び圧力センサ
に供給し得るように配設された試料供給管路と、同一光
源からの前記赤外線を、測定波長(炭酸ガスの特性吸収
を示す波長)の赤外線と比較波長(測定ガスに吸収され
ない波長)の赤外線とに分けて両者を交互に前記試料セ
ルに照射せしめる照射手段とを備え、かつ、前記演算処
理部への前記出力を、前記試料ガスの供給時における圧
力変動を前記圧力センサが検出して前記演算処理部へ出
力してから数秒経過後においてするようにしたことを特
徴とするものである。
[Means for Solving the Problems] An infrared carbon dioxide analyzer according to the present invention that achieves the above object supplies a sample gas to a sample cell irradiated with infrared rays and detects an increase / decrease in transmitted light in the sample cell. In addition, in the infrared type carbon dioxide analyzer configured to be able to measure the carbon dioxide concentration by amplifying it and outputting it to the arithmetic processing unit, the sample gas injected into the syringe via the syringe, A sample supply pipe line arranged so as to be able to supply to the sample cell and the pressure sensor, and the infrared ray from the same light source as an infrared ray of a measurement wavelength (a wavelength showing characteristic absorption of carbon dioxide gas) and a comparison wavelength (measurement gas) And an irradiation means for alternately irradiating the sample cell with infrared rays having a wavelength not absorbed by the sample gas, and supplying the output to the arithmetic processing unit with the sample gas. The present invention is characterized in that the pressure sensor detects a time-dependent pressure fluctuation and outputs it to the arithmetic processing unit after a few seconds have elapsed.

[実施例] 以下、本発明に係る実施例について述べると、第1図に
おいて、赤外線を発する光源1はセラミックヒータが用
いられているが、かかる赤外線は、照射手段14によ
り、測定波長(炭酸ガスの特性吸収を示す波長)の赤外
線と、比較波長(測定ガスに吸収されない波長)の赤外
線とに分けられ、かつ、それらが交互に試料セル4に照
射される。
[Examples] Examples of the present invention will be described below. In FIG. 1, a ceramic heater is used as the light source 1 that emits infrared rays. The infrared ray having a characteristic absorption of 1) and the infrared ray having a comparative wavelength (a wavelength not absorbed by the measurement gas) are divided into two, and these are alternately irradiated to the sample cell 4.

すなわち、照射手段14は、モータ3で駆動回転させ得
るように装着されているフイルタホイール2に、測定波
長(炭酸ガスの特性吸収を示す波長)の赤外線だけを透
過させる光学フイルタ2aと、比較波長(測定ガスに吸
収されない波長)の赤外線だけを透過させる光学フイル
タ2bとを装着しているので、モータ3の一方々向への
回転により、一方の光学フイルタ2aと他方の光学フイ
ルタ2bとを交互に赤外線照射位置へ移動させることが
でき、従って、光源1から発せられる赤外線を、測定波
長(炭酸ガスの特性吸収を示す波長)の赤外線と、比較
波長(測定ガスに吸収されない波長)の赤外線とに分
け、かつ、それらを交互に試料セル4に照射することが
できる。
That is, the irradiating means 14 has an optical filter 2a for transmitting only infrared rays of a measurement wavelength (a wavelength showing characteristic absorption of carbon dioxide gas) to the filter wheel 2 mounted so as to be driven and rotated by the motor 3, and a comparison wavelength. Since the optical filter 2b that transmits only infrared rays (wavelength not absorbed by the measurement gas) is mounted, one optical filter 2a and the other optical filter 2b are alternately rotated by rotating the motor 3 in one direction. Therefore, the infrared light emitted from the light source 1 is the infrared light of the measurement wavelength (the wavelength showing the characteristic absorption of carbon dioxide gas) and the infrared light of the comparison wavelength (the wavelength which is not absorbed by the measurement gas). And the sample cell 4 can be alternately irradiated with them.

なお、このようにして、測定波長(炭酸ガスの特性吸収
を示す波長)の赤外線と比較波長(測定ガスに吸収され
ない波長)の赤外線とを交互を照射する一方において、
試料セル4における透過光の増減が受光素子5で検出さ
れ、それが増幅器6で増幅されて演算処理部7へ出力さ
れる。この点については、更に詳細に後述する。
In this way, while irradiating the infrared rays of the measurement wavelength (wavelength indicating characteristic absorption of carbon dioxide gas) and the infrared rays of the comparison wavelength (wavelength not absorbed by the measurement gas) alternately,
The increase / decrease in the transmitted light in the sample cell 4 is detected by the light receiving element 5, amplified by the amplifier 6, and output to the arithmetic processing unit 7. This point will be described later in more detail.

次に、試料セル4は、ガス供給口4aとガス排出口4b
とを有している微小セル(例えば、その容積が約25μ
lといった微小セル)で構成され、更に、注射器13を
介してシリンジ10に注入される試料ガスを、試料セル
4及び圧力センサ11(半導体圧力センサで構成されて
いる。)に供給し得るように試料供給管路8が配設され
ていると共に、シリンジ10の排出口側にフイルタ9が
装着されている。
Next, the sample cell 4 includes a gas supply port 4a and a gas discharge port 4b.
A microcell having, for example, a volume of about 25 μ
(a micro cell such as 1), and the sample gas injected into the syringe 10 via the injector 13 can be supplied to the sample cell 4 and the pressure sensor 11 (which is composed of a semiconductor pressure sensor). A sample supply conduit 8 is provided, and a filter 9 is attached to the outlet side of the syringe 10.

その為、注射器13を介してシリンジ10中に、3cc
以上の微量の試料ガス(包装食品等から採取した炭酸ガ
ス)を注入すると、かかる試料ガスがフイルタ9を通過
し、試料供給管路8を経て圧力センサ11及び試料セル
4に導かれ、ガス排出口4bから大気中に排出される。
これにより、容積が微小の試料セル4内のガスが、かか
る試料ガスにより瞬時に置換される。
Therefore, 3 cc in the syringe 10 via the syringe 13.
When a small amount of the above sample gas (carbon dioxide gas collected from packaged foods, etc.) is injected, the sample gas passes through the filter 9, is guided to the pressure sensor 11 and the sample cell 4 via the sample supply pipe line 8, and is discharged. It is discharged into the atmosphere through the outlet 4b.
As a result, the gas in the sample cell 4 having a small volume is instantly replaced by the sample gas.

更に、圧力センサ11は、上述のように、試料ガスが、
試料供給管路8を経て圧力センサ11及び試料セル4に
導かれると、その時(試料ガスの供給時)における圧力
変動を検出して演算処理部7へ出力し得るように装着さ
れ、かつ、かかる出力後、数秒経過した時点において、
増幅器6から演算処理部7に出力される。
Further, as described above, the pressure sensor 11 detects that the sample gas is
When it is guided to the pressure sensor 11 and the sample cell 4 via the sample supply pipe line 8, it is mounted so as to detect the pressure fluctuation at that time (when supplying the sample gas) and output it to the arithmetic processing unit 7, and After a few seconds have passed after the output,
It is output from the amplifier 6 to the arithmetic processing unit 7.

すなわち、照射手段14により、測定波長(炭酸ガスの
特性吸収を示す波長)の赤外線と比較波長(測定ガスに
吸収されない波長)の赤外線とが交互に照射される試料
セル4における透過光の増減が受光素子5で検出され、
それが増幅器6で増幅されて演算処理部7へ出力され
る。この態様が第2図及び第3図において示されてい
る。
That is, the irradiation means 14 alternately irradiates infrared rays of a measurement wavelength (a wavelength showing characteristic absorption of carbon dioxide gas) and infrared rays of a comparison wavelength (a wavelength not absorbed by the measurement gas), thereby increasing or decreasing the transmitted light in the sample cell 4. Detected by the light receiving element 5,
It is amplified by the amplifier 6 and output to the arithmetic processing unit 7. This aspect is shown in FIGS. 2 and 3.

なお、演算処理部7には、前回の測定値が保持されてい
るが、圧力センサ11は、試料ガスの供給時の圧力変動
を瞬時に検出して演算処理部7へ出力する。これが第3
図においてAで示されている。かかる出力値は、一時的
に高くなるが、その後、次第に低下されて元の値(大気
圧)より少し高い値になる。この時点が第3図において
Bで示されている。
Although the previous measurement value is held in the arithmetic processing unit 7, the pressure sensor 11 instantaneously detects the pressure fluctuation when the sample gas is supplied and outputs it to the arithmetic processing unit 7. This is the third
This is indicated by A in the figure. The output value temporarily increases, but then gradually decreases to a value slightly higher than the original value (atmospheric pressure). This point is indicated by B in FIG.

続いて、Bから0.5〜3秒、好ましくは1秒経過する
と、すなわち、圧力センサ11が、試料ガスの供給時の
圧力変動を検出し瞬時に演算処理部7に出力した時点か
ら、数秒経過した時点(第3図においてCで示されてい
る大気圧になった時点)において増幅器6から出力さ
れ、かつ、それが演算処理部7に保持され、この保持さ
れた値が演算処理部7のリニアライズ回路(図示されて
いない)において炭酸ガス濃度と一致した値となって表
示出力部12に出力される。
Then, when 0.5 to 3 seconds, preferably 1 second elapses from B, that is, several seconds from the time when the pressure sensor 11 detects the pressure fluctuation during the supply of the sample gas and instantaneously outputs it to the arithmetic processing unit 7. At the time point when it has elapsed (at the time point when the atmospheric pressure indicated by C in FIG. 3 is reached), it is output from the amplifier 6 and is stored in the arithmetic processing unit 7, and the held value is stored in the arithmetic processing unit 7. Is output to the display output unit 12 as a value that matches the carbon dioxide concentration in a linearizing circuit (not shown).

このように、本発明に係るガス分析計は、注射器13等
を介して微量の試料ガスを供給し得るようにしていると
共に照射手段14により、同一光源からの赤外線を、測
定波長(炭酸ガスの特性吸収を示す波長)の赤外線と、
比較波長(測定ガスに吸収されない波長)の赤外線とに
分けて、それらを交互に試料セル4に照射するように
し、しかも、試料セル4における透過光の増減を検出し
て、それを増幅せしめて演算処理部7に出力すること
を、試料ガスの供給時における圧力変動を圧力センサ1
1が検出して演算処理部7へ出力してから数秒経過後、
すなわち、大気圧になった時点においてするようにして
いる。
As described above, the gas analyzer according to the present invention is configured to be able to supply a small amount of sample gas via the injector 13 and the like, and at the same time, the irradiation means 14 emits infrared rays from the same light source to the measurement wavelength (of carbon dioxide gas). Infrared of wavelength) which shows characteristic absorption,
It is divided into infrared rays of a comparative wavelength (wavelength not absorbed by the measurement gas) and these are alternately irradiated to the sample cell 4, and moreover, increase / decrease of transmitted light in the sample cell 4 is detected and amplified. The output to the arithmetic processing unit 7 is the pressure fluctuation of the pressure sensor 1 when the sample gas is supplied.
After several seconds have passed since the detection by 1 and output to the arithmetic processing unit 7,
That is, this is done when the atmospheric pressure is reached.

その為、炭酸ガス特有の吸・脱着性、或いは、試料セル
4のガス供給口及びガス排出口からの試料ガスの拡散等
に起因する、試料セル4内の試料濃度変化による読み取
り誤差を無くすることができて微量の試料ガスをもって
の炭酸ガス濃度測定を正確に行うことができ、従って、
食品パック中の炭酸ガス農を測定する場合において好適
である。
Therefore, a reading error due to a change in the sample concentration in the sample cell 4 caused by the adsorption / desorption characteristic of carbon dioxide gas or the diffusion of the sample gas from the gas supply port and the gas discharge port of the sample cell 4 is eliminated. It is possible to accurately measure the carbon dioxide concentration with a small amount of sample gas, and therefore,
It is suitable for measuring carbon dioxide production in food packs.

[発明の効果] 上述の如く、本発明によると、試料セル内の試料ガス濃
度変化による測定誤差を無くすることができて微量の試
料ガスをもっての炭酸ガス濃度測定を正確に行うことが
でき、従って、食品パック中の炭酸ガス濃度を測定する
場合において好適な赤外線式炭酸ガス分析計を得ること
ができる。
[Advantages of the Invention] As described above, according to the present invention, it is possible to eliminate a measurement error due to a change in the sample gas concentration in the sample cell, and to accurately perform the carbon dioxide concentration measurement with a small amount of sample gas. Therefore, an infrared type carbon dioxide analyzer suitable for measuring the carbon dioxide concentration in the food pack can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は赤外線式炭酸ガス分析計の構成を概略的に示す
図、第2図は増幅器6の出力状態を示す図、第3図は圧
力センサ11の出力状態を示す図である。 1は赤外線を発する光源、2aは測定波長の赤外線だけ
を透過させる光学フイルタ、2bは比較波長の赤外線だ
けを透過させる光学フイルタ、4は試料セル、5は受光
素子、6は増幅器、7は演算処理部、8は試料供給管
路、10はシリンジ、11は圧力センサ、13は注射
器、14は照射手段
FIG. 1 is a diagram schematically showing a configuration of an infrared carbon dioxide analyzer, FIG. 2 is a diagram showing an output state of an amplifier 6, and FIG. 3 is a diagram showing an output state of a pressure sensor 11. Reference numeral 1 is a light source that emits infrared rays, 2a is an optical filter that transmits only infrared rays of a measurement wavelength, 2b is an optical filter that transmits only infrared rays of a comparison wavelength, 4 is a sample cell, 5 is a light receiving element, 6 is an amplifier, 7 is an operation Processing unit, 8 is a sample supply line, 10 is a syringe, 11 is a pressure sensor, 13 is a syringe, and 14 is irradiation means.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】赤外線が照射される試料セルに試料ガスを
供給し、前記試料セルにおける透過光の増減を検出する
と共に、それを増幅せしめて演算処理部に出力すること
により炭酸ガス濃度を測定し得るように構成された赤外
線式炭酸ガス分析計において、注射器を介してシリンジ
に注入される前記試料ガスを、前記試料セル及び圧力セ
ンサに供給し得るように配設された試料供給管路と、同
一光源からの前記赤外線を、測定波長(炭酸ガスの特性
吸収を示す波長)の赤外線と比較波長(測定ガスに吸収
されない波長)の赤外線とに分けて両者を交互に前記試
料セルに照射せしめる照射手段とを備え、かつ、前記演
算処理部への前記出力を、前記試料ガスの供給時におけ
る圧力変動を前記圧力センサが検出して前記演算処理部
へ出力してから数秒経過後においてするようにしたこと
を特徴とする赤外線式炭酸ガス分析計。
1. A carbon dioxide concentration is measured by supplying a sample gas to a sample cell irradiated with infrared rays, detecting an increase / decrease in transmitted light in the sample cell, amplifying it, and outputting it to an arithmetic processing unit. In an infrared carbon dioxide analyzer configured to be capable of, the sample gas injected into the syringe via a syringe, and a sample supply conduit arranged so as to be able to supply the sample cell and the pressure sensor. , The infrared ray from the same light source is divided into an infrared ray of a measurement wavelength (a wavelength showing characteristic absorption of carbon dioxide gas) and an infrared ray of a comparison wavelength (a wavelength not absorbed by the measurement gas), and both are alternately irradiated to the sample cell. An irradiation unit, and the output to the arithmetic processing unit is detected after the pressure sensor detects a pressure fluctuation during the supply of the sample gas and is output to the arithmetic processing unit. Infrared carbon dioxide analyzer, characterized in that so as to after elapse.
JP5772288A 1988-03-10 1988-03-10 Infrared carbon dioxide analyzer Expired - Fee Related JPH0646181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5772288A JPH0646181B2 (en) 1988-03-10 1988-03-10 Infrared carbon dioxide analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5772288A JPH0646181B2 (en) 1988-03-10 1988-03-10 Infrared carbon dioxide analyzer

Publications (2)

Publication Number Publication Date
JPH01229941A JPH01229941A (en) 1989-09-13
JPH0646181B2 true JPH0646181B2 (en) 1994-06-15

Family

ID=13063834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5772288A Expired - Fee Related JPH0646181B2 (en) 1988-03-10 1988-03-10 Infrared carbon dioxide analyzer

Country Status (1)

Country Link
JP (1) JPH0646181B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4948145B2 (en) * 2006-12-13 2012-06-06 日本信号株式会社 Gas detector
KR100871909B1 (en) * 2007-06-15 2008-12-05 한국표준과학연구원 Infrared gas detector having a selective detector module
SG11201701015QA (en) 2014-08-29 2017-03-30 Univ Tohoku Optical concentration measuring method
KR102127636B1 (en) * 2018-09-21 2020-06-29 한국표준과학연구원 Infrared Light Emitting Diode And Infrared Gas Sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055483Y2 (en) * 1987-05-06 1993-02-12

Also Published As

Publication number Publication date
JPH01229941A (en) 1989-09-13

Similar Documents

Publication Publication Date Title
US7895880B2 (en) Photoacoustic cell incorporating a quantum dot substrate
TWI277731B (en) Method of and apparatus for determining the amount of impurity in gas
EP2909329B1 (en) Methods for detecting bacterial infections
WO2000073768A3 (en) Gas sensor configuration
WO2014111847A1 (en) Method and apparatus for monitoring a level of a gaseous species of interest
US11378483B2 (en) System and method for determining the integrity of containers by optical measurement
US8939006B2 (en) Photoacoustic detector with long term drift compensation
CN107709972B (en) NDIR-type gas sensor, gas analyzer, photosynthesis speed measuring device, and photosynthesis speed measuring method
US8994948B2 (en) Apparatus for the non-destructive testing of the integrity and/or suitability of sealed packagings
US4755675A (en) Gas analyzer and a source of IR radiation therefor
JPH0646181B2 (en) Infrared carbon dioxide analyzer
JP4154274B2 (en) Gas concentration detection method and gas concentration detection device
US20190250077A1 (en) Sensor module and detection method
JP2009257808A (en) Infrared gas analyzer
US20030192368A1 (en) Probe for measuring alcohol in liquids
NO300346B1 (en) Photo-acoustic measuring device
JP4790330B2 (en) Gas concentration measuring device
CN107490556A (en) A kind of infrared combustable gas concentration detecting system
JPH0933429A (en) Ozone densitometer
JP7153735B2 (en) Signal processing circuit, measuring device, and signal processing method
JP4906477B2 (en) Gas analyzer and gas analysis method
JP2019109105A (en) Skin gas measuring device and skin gas measuring method
JPS63263447A (en) Gas concentration detector
CN108627429B (en) Nitrous oxide monitoring device and monitoring method thereof
Zhang et al. Research on new algorithm for dust concentration measurement

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees