JP2009257808A - Infrared gas analyzer - Google Patents

Infrared gas analyzer Download PDF

Info

Publication number
JP2009257808A
JP2009257808A JP2008104289A JP2008104289A JP2009257808A JP 2009257808 A JP2009257808 A JP 2009257808A JP 2008104289 A JP2008104289 A JP 2008104289A JP 2008104289 A JP2008104289 A JP 2008104289A JP 2009257808 A JP2009257808 A JP 2009257808A
Authority
JP
Japan
Prior art keywords
gas
infrared light
measurement
infrared
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008104289A
Other languages
Japanese (ja)
Inventor
Hitoshi Hara
仁 原
Naoteru Kishi
直輝 岸
Tetsuya Watanabe
哲也 渡辺
Kentaro Suzuki
健太郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2008104289A priority Critical patent/JP2009257808A/en
Publication of JP2009257808A publication Critical patent/JP2009257808A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an infrared gas analyzer which is made compact, low priced, and maintenence-free by omitting a movable mechanism such as a motor. <P>SOLUTION: An infrared gas analyzer comprises an infrared light source which is electrically directly-modulated and driven in a blinking manner, a first gas chamber which is filled with a measurement gas and into which an output light from the infrared light source is input, a correlation cell having a second gas chamber which is filled with a reference gas that does not absorb an infrared light, and into which the output light from the infrared light source is input, a measurement cell into which a gas to be measured is introduced, a band path filter having a transmissive band which is a little broader than an infrared light absorption band of the measurement gas, and an infrared light detector for detecting the infrared light which passes through the band path filter, wherein the infrared light source and the correletaion cell are provided at one end of the measurement cell, the infrared light detector is provided at the other end of the measurement cell, and the band path filter is provided at either end of the measurement cell. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、赤外線ガス分析計に関し、詳しくは、赤外線を用いた大気中などのガス成分の濃度測定を行うガス分析計において、可動機構を省いたものである。   The present invention relates to an infrared gas analyzer, and more particularly, to a gas analyzer that measures the concentration of gas components such as in the atmosphere using infrared rays, omitting a movable mechanism.

図6は、従来のガス濃度測定装置の一例を示す構成図であり、ガス相関法を用いた例を示している。
赤外光源1の出力光は、チョッパ2→ガス相関セル3→バンドパスフィルタ4→測定セル5を経て赤外検出器6に入射される。
FIG. 6 is a block diagram showing an example of a conventional gas concentration measuring apparatus, showing an example using a gas correlation method.
The output light of the infrared light source 1 enters the infrared detector 6 through the chopper 2 → the gas correlation cell 3 → the band pass filter 4 → the measurement cell 5.

図7は、図6のチョッパ2とガス相関セル3の具体例を示す斜視図である。チョッパ2は円板状に形成されていて、円周方向に沿って光透過部2aと遮光部2bが交互に設けられている。ガス相関セル3は円筒状に形成されていて、内部は、測定ガス室3aと参照ガス室3bに仕切られている。測定ガス室3aには被測定ガスであるたとえばCOガスが高濃度で充填され、参照ガス室3bには赤外光を吸収しないガスとしてたとえばNガスが充填されている。 FIG. 7 is a perspective view showing a specific example of the chopper 2 and the gas correlation cell 3 of FIG. The chopper 2 is formed in a disk shape, and the light transmitting portions 2a and the light shielding portions 2b are alternately provided along the circumferential direction. The gas correlation cell 3 is formed in a cylindrical shape, and the inside is partitioned into a measurement gas chamber 3a and a reference gas chamber 3b. The measurement gas chamber 3a is filled with, for example, CO 2 gas, which is a gas to be measured, at a high concentration, and the reference gas chamber 3b is filled with, for example, N 2 gas as a gas that does not absorb infrared light.

再び図6において、チョッパ2およびガス相関セル3は、モータ6で回転駆動される。測定セル5には、試料ガスの入口5aと出口5bが設けられている。入口5aには、試料ガスとして、たとえばCOを含む大気ガスが導入され、出口5bから連続的に排気される。 In FIG. 6 again, the chopper 2 and the gas correlation cell 3 are rotationally driven by the motor 6. The measurement cell 5 is provided with an inlet 5a and an outlet 5b for sample gas. For example, atmospheric gas containing CO 2 is introduced into the inlet 5a as a sample gas, and is continuously exhausted from the outlet 5b.

バンドパスフィルタ4は、チョッパ2およびガス相関セル3を通過した赤外光源1の出力光のうち測定ガスの赤外線吸収帯より少し広い赤外光領域の光だけを通過させて、測定セル5に入射させる。測定セル5に入射された赤外光は、その一部が測定セル5中に導入された測定ガスによって吸収されて、赤外光検出器6に入射される。赤外光検出器6は、PbSe素子などの赤外光に感度を有する素子で構成されており、入射された赤外光の光強度が検出される。なお、この赤外光検出器6は、安定して赤外光の光強度を検出できるように図示しない恒温槽によって温度制御される。   The bandpass filter 4 allows only the light in the infrared region slightly wider than the infrared absorption band of the measurement gas among the output light of the infrared light source 1 that has passed through the chopper 2 and the gas correlation cell 3 to pass through the measurement cell 5. Make it incident. Part of the infrared light incident on the measurement cell 5 is absorbed by the measurement gas introduced into the measurement cell 5 and is incident on the infrared light detector 6. The infrared light detector 6 is composed of an element having sensitivity to infrared light, such as a PbSe element, and detects the light intensity of the incident infrared light. The infrared light detector 6 is temperature controlled by a thermostat (not shown) so that the light intensity of the infrared light can be detected stably.

特許第3424364号公報Japanese Patent No. 3424364 特開2001−221737号公報JP 2001-221737 A

しかし、このような従来の赤外線ガス分析計は、赤外線を変調(チョッピング)するために、チョッパ2とガス相関セル3をモータ6で回転駆動させなければならず、小型、低価格、メンテナンスを不要(フリー)にすることが難しいという問題がある。   However, such a conventional infrared gas analyzer has to rotate and drive the chopper 2 and the gas correlation cell 3 with a motor 6 in order to modulate (chop) infrared rays, and is small, low cost, and does not require maintenance. There is a problem that it is difficult to make it (free).

本発明は、上記のような問題点を解決するものであり、モータなどの可動機構を省くことにより、小型、低価格、メンテナンスフリーを実現する赤外線ガス分析計を提供することを目的としたものである。   The present invention solves the above-described problems, and an object thereof is to provide an infrared gas analyzer that realizes a small size, low cost, and maintenance-free by omitting a movable mechanism such as a motor. It is.

上記のような目的を達成するために、本発明の請求項1では、電気的に直接変調され点滅駆動される赤外光源と、測定ガスが充填され前記赤外光源の出力光が入射される第1のガス室と赤外光を吸収しない参照ガスが充填され前記赤外光源の出力光が入射される第2のガス室を有する相関セルと、被測定ガスが導入される測定セルと、前記測定ガスの赤外線吸収帯域より少し広い透過帯域を有するバンドパスフィルタと、このバンドパスフィルタを透過する赤外線を検出する赤外光検出器を備え、
前記測定セルの一端には前記赤外光源と相関セルが設けられ、前記測定セルの他端には前記赤外光検出器が設けられ、前記バンドパスフィルタは前記測定セルのいずれかの端部に設けられたことを特徴とする。
In order to achieve the above object, in claim 1 of the present invention, an infrared light source that is directly modulated and driven to blink, and a measurement gas filled with output light from the infrared light source are incident. A correlation cell having a first gas chamber and a second gas chamber filled with a reference gas that does not absorb infrared light and into which the output light of the infrared light source is incident; a measurement cell into which a gas to be measured is introduced; A bandpass filter having a transmission band slightly wider than the infrared absorption band of the measurement gas, and an infrared light detector for detecting infrared light transmitted through the bandpass filter,
One end of the measurement cell is provided with the infrared light source and a correlation cell, the other end of the measurement cell is provided with the infrared light detector, and the bandpass filter is provided at one end of the measurement cell. It is characterized by being provided in.

請求項2では、請求項1の赤外線ガス分析計において、前記赤外光源が1つ設けられてその出力光は前記相関セルの第1のガス室と第2のガス室に共通に入射され、前記赤外光検出器は2つ設けられてこれらガス室を通過した赤外光を個別に検出することを特徴とする。   The infrared gas analyzer according to claim 1, wherein one infrared light source is provided, and the output light is incident on the first gas chamber and the second gas chamber of the correlation cell in common. Two infrared light detectors are provided to individually detect the infrared light that has passed through these gas chambers.

請求項3では、請求項1の赤外線ガス分析計において、前記赤外光源が2つ設けられてそれぞれの出力光は前記相関セルの第1のガス室と第2のガス室に個別に入射され、前記赤外光検出器は1つ設けられてこれらガス室を通過した赤外光を共通に検出することを特徴とする。   According to a third aspect of the present invention, in the infrared gas analyzer according to the first aspect, the two infrared light sources are provided, and the respective output lights are individually incident on the first gas chamber and the second gas chamber of the correlation cell. One infrared light detector is provided to commonly detect infrared light that has passed through these gas chambers.

モータなどの可動機構を省いたことにより、メンテナンスフリー、小型化、低価格化を実現できる。   By eliminating movable mechanisms such as motors, maintenance-free, downsizing, and low cost can be realized.

また、干渉成分の影響を受けにくいガス相関法を用い、電気的に直接変調ができて経時変化の小さい赤外光源と相関セルとを組み合わせることにより、干渉ガスの影響をほとんどなくすことができる。   Further, by using a gas correlation method that is not easily influenced by interference components, and combining an infrared light source that can be directly electrically modulated and has a small change with time, and a correlation cell, the influence of the interference gas can be almost eliminated.

さらに、電気的に直接変調ができて経時変化がない駆動電圧で赤外線を発光できる直接変調赤外光源を用いるため光量の経時変化がないこと、赤外光源が2つと赤外検出器が1つの場合には各出力信号を演算してセンサ出力を求めることから素子の経時変化や周囲温度変動を差動で除くことができる。   Furthermore, since a direct modulation infrared light source that can emit light with an electric voltage that can be directly electrically modulated and does not change with time is used, there is no change in the amount of light with time, two infrared light sources and one infrared detector. In this case, since the sensor output is obtained by calculating each output signal, the change with time of the element and the ambient temperature fluctuation can be removed differentially.

以下、図面を用いて、本発明の赤外線ガス分析計を説明する。図1は、本発明の赤外線ガス分析計の一実施例を示す構成図である。   Hereinafter, the infrared gas analyzer of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the infrared gas analyzer of the present invention.

図1において、光源部11には発光特性の等しい2個の赤外光源11aと11bが設けられている。これら赤外光源11aと11bは、電気的に直接変調ができて経時変化がない駆動電圧で赤外線を発光できる直接変調赤外光源であり、交互に点滅駆動される。一方の赤外光源11aの出力光は相関セル12の測定ガスとして被測定ガスであるたとえばCOガスが高濃度で充填された測定ガス室12aに入射され、他方の赤外光源11bの出力光は相関セル12の赤外光を吸収しない参照ガスとしてたとえばNガスが充填された参照ガス室12bに入射される。これら光源部11と相関セル12は、被測定ガスが導入される円筒状に形成された測定セル13の一端に設けられている。 In FIG. 1, the light source unit 11 is provided with two infrared light sources 11a and 11b having the same light emission characteristics. These infrared light sources 11a and 11b are direct modulation infrared light sources that can emit infrared rays with a driving voltage that can be directly electrically modulated and do not change with time, and are alternately driven to blink. The output light from one infrared light source 11a is incident on a measurement gas chamber 12a filled with a high concentration of, for example, CO 2 gas, which is a measurement gas, as the measurement gas of the correlation cell 12, and the output light from the other infrared light source 11b. Enters the reference gas chamber 12b filled with, for example, N 2 gas as a reference gas that does not absorb the infrared light of the correlation cell 12. The light source unit 11 and the correlation cell 12 are provided at one end of a measurement cell 13 formed in a cylindrical shape into which a gas to be measured is introduced.

測定セル13には、試料ガスの入口13aと出口13bが設けられている。入口13aには、試料ガスとして、たとえばCOを含む大気ガスが導入され、出口13bから連続的に排気される。なお、塵埃をフィルタで除去したりパーマピュアドライヤで赤外光を吸収する水分を除去するサンプリング装置など通した試料ガスを導入することもある。測定セル13の他端には、バンドパスフィルタ14と赤外光検出器15が設けられている。バンドパスフィルタ14は、測定ガスの赤外線吸収帯域よりも少し広い帯域の赤外線を通過させる特性を有する。赤外光検出器15としては、サーモパイル、焦電素子、量子素子などが用いられる。 The measurement cell 13 is provided with an inlet 13a and an outlet 13b for sample gas. For example, atmospheric gas containing CO 2 is introduced into the inlet 13a as a sample gas, and is continuously exhausted from the outlet 13b. In some cases, a sample gas passed through a sampling device or the like that removes dust with a filter or removes moisture that absorbs infrared light with a perm pure dryer may be introduced. A band pass filter 14 and an infrared light detector 15 are provided at the other end of the measurement cell 13. The band-pass filter 14 has a characteristic of allowing infrared light in a band slightly wider than the infrared absorption band of the measurement gas to pass. As the infrared light detector 15, a thermopile, a pyroelectric element, a quantum element, or the like is used.

図1の動作について説明する。
相関セル12の測定ガスが充填された測定ガス室12aを透過した赤外光源11aの赤外光IRaは、試料ガス中の測定ガスの特性吸収の帯域をほとんど吸収しているので、測定セル13内における測定ガスの濃度による光量変化はほとんどない。これに対して、参照ガスが充填された参照ガス室12bを透過した赤外光源11bの赤外光IRbは、測定セル13内における試料ガス中の測定ガスの濃度に応じて光量が変化する。
The operation of FIG. 1 will be described.
Since the infrared light IRa of the infrared light source 11a that has passed through the measurement gas chamber 12a filled with the measurement gas of the correlation cell 12 absorbs almost the characteristic absorption band of the measurement gas in the sample gas, the measurement cell 13 There is almost no change in the amount of light due to the concentration of the measurement gas inside. On the other hand, the amount of light of the infrared light IRb of the infrared light source 11b transmitted through the reference gas chamber 12b filled with the reference gas changes according to the concentration of the measurement gas in the sample gas in the measurement cell 13.

図1の動作を、図2のガス相関法の測定原理図を用いて説明する。
(A)は、赤外光源11bから出力され参照ガスとしてNガスが充填された参照ガス室12bを透過する測定光としての赤外光IRbの透過特性を示している。バンドパスフィルタ14を透過した測定光は、バンドパスフィルタ14の赤外線透過帯域のみが赤外光検出器15に入射される。
The operation of FIG. 1 will be described using the measurement principle diagram of the gas correlation method of FIG.
(A) shows the transmission characteristics of infrared light IRb as measurement light output from the infrared light source 11b and transmitted through the reference gas chamber 12b filled with N 2 gas as the reference gas. The measurement light that has passed through the bandpass filter 14 is incident on the infrared light detector 15 only in the infrared transmission band of the bandpass filter 14.

(B)は、参照ガスとしてNガスが充填された参照ガス室12bを透過しさらに測定セル13を透過した測定光の透過特性を示している。測定セル13の内部に測定ガスとしてたとえばCOが存在する場合、測定ガスCOの濃度に応じて赤外光が吸収される。バンドパスフィルタ14では、測定ガスの赤外線吸収帯域より少し広い帯域を透過することにより、測定ガスCOの吸収分が差し引かれた赤外光IRbが赤外光検出器15に入射される。 (B) shows the transmission characteristics of the measurement light that has passed through the reference gas chamber 12 b filled with N 2 gas as the reference gas and has further passed through the measurement cell 13. When, for example, CO 2 is present as a measurement gas inside the measurement cell 13, infrared light is absorbed according to the concentration of the measurement gas CO 2 . In the band pass filter 14, the infrared light IRb from which the absorption of the measurement gas CO 2 is subtracted is incident on the infrared light detector 15 by passing through a band slightly wider than the infrared absorption band of the measurement gas.

(C)は、赤外光源11aから出力され測定ガスとして高濃度のCOが充填された測定ガス室12aを透過する参照光としての赤外光IRaの透過特性を示している。バンドパスフィルタ14を透過した参照光は、バンドパスフィルタ14における測定ガスCOの赤外線透過帯域より少し広い帯域を透過することにより、測定ガスCOの吸収分が差し引かれた赤外光IRaが赤外光検出器15に入射される。 (C) shows the transmission characteristics of infrared light IRa as reference light that is output from the infrared light source 11a and passes through the measurement gas chamber 12a filled with high-concentration CO 2 as the measurement gas. The reference light transmitted through the bandpass filter 14 passes through a band slightly wider than the infrared transmission band of the measurement gas CO 2 in the bandpass filter 14, so that the infrared light IRa from which the absorption of the measurement gas CO 2 has been subtracted. The light enters the infrared light detector 15.

(D)は、測定ガスとして高濃度のCOが充填された測定ガス室12aを透過しさらに測定セル13を透過した参照光の透過特性を示している。(D)の透過特性から明らかなように、測定セル13の内部に測定ガスとしてたとえばCOが存在していてその濃度が変化してもほとんど光量が変化しない赤外光IRbが赤外光検出器15に入射される。 (D) shows the transmission characteristics of the reference light that has passed through the measurement gas chamber 12a filled with high-concentration CO 2 as the measurement gas and has further passed through the measurement cell 13. As is clear from the transmission characteristics of (D), infrared light IRb is detected by infrared light IRb, in which, for example, CO 2 exists as a measurement gas in the measurement cell 13 and the amount of light hardly changes even if its concentration changes. Is incident on the vessel 15.

赤外光源11aおよび11bから出力され相関セル12および測定セル13を透過した赤外光IRaおよびIRbの光量を赤外光検出器15で検出し、得られた信号に基づきガス相関法として従来から行われている所定の演算を行い、測定ガスたとえばCOの濃度を求める。 The amount of infrared light IRa and IRb output from the infrared light sources 11a and 11b and transmitted through the correlation cell 12 and the measurement cell 13 is detected by the infrared light detector 15, and based on the obtained signal, a gas correlation method has been conventionally used. The predetermined calculation being performed is performed to determine the concentration of the measurement gas, for example, CO 2 .

図3は、ガス相関法における干渉ガス補償の原理説明図である。
赤外線ガス分析計は、一般的に測定ガス以外のガスによって吸収されることにより干渉の影響が生じる。たとえば、測定ガスをCO、測定ガス以外のガスをCOとした場合、図2と同様に考えることができる。
(A)は、赤外光源11bから出力され参照ガスとしてNガスが充填された参照ガス室12bを透過する測定光としての赤外光IRbの透過特性を示している。バンドパスフィルタ14を透過した測定光は、バンドパスフィルタ14の赤外線透過帯域のみが赤外光検出器15に入射されるが、測定セル13内に測定ガス以外のガスCOが存在するとCOによる吸収が生じるため、波形がわずかに削られてしまう。
FIG. 3 is a diagram for explaining the principle of interference gas compensation in the gas correlation method.
Infrared gas analyzers are generally affected by interference by being absorbed by a gas other than the measurement gas. For example, when the measurement gas is CO 2 and the gas other than the measurement gas is CO, it can be considered as in FIG.
(A) shows the transmission characteristics of infrared light IRb as measurement light output from the infrared light source 11b and transmitted through the reference gas chamber 12b filled with N 2 gas as the reference gas. Only the infrared transmission band of the bandpass filter 14 is incident on the infrared light detector 15 when the measurement light transmitted through the bandpass filter 14 is absorbed. If gas CO other than the measurement gas exists in the measurement cell 13, the measurement light is absorbed by the CO. As a result, the waveform is slightly cut.

(B)は、参照ガスとしてNガスが充填された参照ガス室12bを透過しさらに測定セル13を透過した測定光の透過特性を示している。測定セル13の内部に測定ガスとしてたとえばCOが存在する場合、測定ガスCOの濃度に応じて赤外光が吸収される。バンドパスフィルタ14では、測定ガスの赤外線吸収帯域より少し広い帯域を透過することにより、測定ガスCOおよび測定ガス以外のガスCOの吸収分が差し引かれた赤外光IRbが赤外光検出器15に入射される。 (B) shows the transmission characteristics of the measurement light that has passed through the reference gas chamber 12 b filled with N 2 gas as the reference gas and has further passed through the measurement cell 13. When, for example, CO 2 is present as a measurement gas inside the measurement cell 13, infrared light is absorbed according to the concentration of the measurement gas CO 2 . In the band pass filter 14, the infrared light IRb from which the absorption of the measurement gas CO 2 and the gas CO other than the measurement gas is subtracted by passing through a band slightly wider than the infrared absorption band of the measurement gas is used as the infrared light detector. 15 is incident.

(C)は、赤外光源11aから出力され測定ガスとして高濃度のCOが充填された測定ガス室12aを透過する参照光としての赤外光IRaの透過特性を示している。バンドパスフィルタ14を透過した参照光は、バンドパスフィルタ14における測定ガスCOの赤外線透過帯域より少し広い帯域を透過することにより、測定ガスCOの吸収分が差し引かれた赤外光IRaが赤外光検出器15に入射されるが、測定セル13内に測定ガス以外のガスCOが存在するとCOによる吸収が生じるため、波形がわずかに削られてしまう。 (C) shows the transmission characteristics of infrared light IRa as reference light that is output from the infrared light source 11a and passes through the measurement gas chamber 12a filled with high-concentration CO 2 as the measurement gas. The reference light transmitted through the bandpass filter 14 passes through a band slightly wider than the infrared transmission band of the measurement gas CO 2 in the bandpass filter 14, so that the infrared light IRa from which the absorption of the measurement gas CO 2 has been subtracted. Although it is incident on the infrared light detector 15, if a gas CO other than the measurement gas is present in the measurement cell 13, the absorption by the CO occurs, and the waveform is slightly cut off.

(D)は、測定ガスとして高濃度のCOが充填された測定ガス室12aを透過しさらに測定セル13を透過した参照光の透過特性を示している。(D)の透過特性から明らかなように、測定セル13の内部に測定ガスとしてたとえばCOが存在していてその濃度が変化してもほとんど光量が変化しない赤外光IRbが赤外光検出器15に入射されるが、測定セル13内に測定ガス以外のガスCOが存在するとCOによる吸収が生じるため、波形がわずかに削られてしまう。 (D) shows the transmission characteristics of the reference light that has passed through the measurement gas chamber 12a filled with high-concentration CO 2 as the measurement gas and has further passed through the measurement cell 13. As is clear from the transmission characteristics of (D), infrared light IRb is detected by infrared light IRb, in which, for example, CO 2 exists as a measurement gas in the measurement cell 13 and the amount of light hardly changes even if its concentration changes. Although it is incident on the vessel 15, if a gas CO other than the measurement gas exists in the measurement cell 13, the absorption by the CO occurs, so that the waveform is slightly cut.

このように、測定ガスとして高濃度のCOが充填された測定ガス室12aを透過する参照光と参照ガスとしてNガスが充填された参照ガス室12bを透過する測定光における干渉の影響が同程度になるため、図2(B)と(D)で検出された赤外光の演算値と、図3(B)と(D)で検出された赤外光の演算値とがほぼ同じなり、干渉の影響をほとんど受けないことがわかる。 Thus, there is an influence of interference between the reference light transmitted through the measurement gas chamber 12a filled with high concentration CO 2 as the measurement gas and the measurement light transmitted through the reference gas chamber 12b filled with N 2 gas as the reference gas. Since it becomes the same level, the calculated value of the infrared light detected in FIGS. 2B and 2D and the calculated value of the infrared light detected in FIGS. 3B and 3D are almost the same. Thus, it can be seen that it is hardly affected by interference.

また、たとえば水のように広い帯域で吸収特性があり、ベースラインに影響を及ぼすガスにおいても、その干渉の影響を少なくすることができる。   Further, for example, gas having a wide band such as water and having an influence on the base line can reduce the influence of the interference.

図4は、CO濃度と赤外光検出器15の出力信号と演算の関係を示す説明図であり、たとえば、測定セル13内のCO濃度が変化する場合の赤外光検出器15の信号変化をモデル化して示している。図1のように2つの赤外光源11aと11bと1つの赤外光検出器15を設けたことにより、測定ガスとして高濃度のCOが充填された測定ガス室12aを透過した参照光の出力信号Aと、参照ガスとしてNガスが充填された参照ガス室12bを透過した測定光の出力信号Bが交互に得られる場合、出力信号AはCOの濃度が変化しても変動なく、出力信号BはCOの濃度が高くなると共に出力信号が小さく変化している。 FIG. 4 is an explanatory diagram showing the relationship between the CO 2 concentration and the output signal of the infrared light detector 15 and the calculation. For example, the infrared light detector 15 in the case where the CO 2 concentration in the measurement cell 13 changes. The signal change is modeled. As shown in FIG. 1, by providing two infrared light sources 11a and 11b and one infrared light detector 15, the reference light transmitted through the measurement gas chamber 12a filled with high-concentration CO 2 as the measurement gas. When the output signal A and the output signal B of the measurement light transmitted through the reference gas chamber 12b filled with N 2 gas as the reference gas are alternately obtained, the output signal A does not change even if the CO 2 concentration changes. In the output signal B, the CO 2 concentration increases and the output signal changes small.

また、赤外光源11を1つ、赤外光検出器15を2つ設けた場合は、測定ガスとして高濃度のCOが充填された測定ガス室12aを透過した参照光の出力信号Aと、参照ガスとしてNガスが充填された参照ガス室12bを透過した測定光の出力信号Bを同時に得ることができる。出力信号Aと出力信号Bを演算してセンサ出力Soutを求め、あらかじめ求めておいた検量線、つまりCO濃度Ccとセンサ出力Soutの関係から、測定セル13内のCO濃度Ccを求める。 Further, when one infrared light source 11 and two infrared light detectors 15 are provided, the output signal A of the reference light transmitted through the measurement gas chamber 12a filled with high concentration CO 2 as the measurement gas and The output signal B of the measurement light transmitted through the reference gas chamber 12b filled with N 2 gas as the reference gas can be obtained at the same time. The sensor output Sout is obtained by calculating the output signal A and the output signal B, and the CO 2 concentration Cc in the measurement cell 13 is obtained from the calibration curve obtained in advance, that is, the relationship between the CO 2 concentration Cc and the sensor output Sout.

また、赤外光源11を3つ設けた場合は2種類の成分を検出し、赤外光源11を2つ設けた場合は1種類の成分を検出する。つまり、赤外光源11をn個設けた場合は(n−1)種類の成分を検出することができる。   When three infrared light sources 11 are provided, two types of components are detected, and when two infrared light sources 11 are provided, one type of component is detected. That is, when n infrared light sources 11 are provided, (n-1) types of components can be detected.

なお、図1の実施例では、光源部11と相関セル12を一体化して被測定ガスが導入される円筒状に形成された測定セル13の一端に設け、測定セル13の他端にバンドパスフィルタ14と赤外光検出器15を一体化して設ける例を示したが、この組み合わせに限るものではなく、赤外光源11と赤外光検出器15との間に相関セル12と測定セル13とバンドパスフィルタ14が配置される組み合わせであればよく、図5(A)〜(C)に示すように組み合わせることもできる。なお、図5において図1と共通する部分には同一符号を付して示す。   In the embodiment of FIG. 1, the light source unit 11 and the correlation cell 12 are integrated and provided at one end of a measurement cell 13 formed into a cylindrical shape into which a gas to be measured is introduced, and a bandpass is provided at the other end of the measurement cell 13. Although an example in which the filter 14 and the infrared light detector 15 are integrally provided has been shown, the present invention is not limited to this combination, and the correlation cell 12 and the measurement cell 13 are interposed between the infrared light source 11 and the infrared light detector 15. And the band pass filter 14 may be combined, and may be combined as shown in FIGS. 5 that are the same as those in FIG. 1 are denoted by the same reference numerals.

(A)は、赤外光源11と相関セル12をそれぞれ個別に形成して測定セル13の一端に設け、測定セル13の他端にバンドパスフィルタ14と赤外光検出器15を一体化して設けた構成例である。   (A) Infrared light source 11 and correlation cell 12 are individually formed and provided at one end of measurement cell 13, and bandpass filter 14 and infrared light detector 15 are integrated at the other end of measurement cell 13. It is the provided structural example.

(B)は、赤外光源11と相関セル12とバンドパスフィルタ14とを一体化して測定セル13の一端に設け、測定セル13の他端に設けられている赤外光検出器15と赤外線の透過率の高い赤外窓材16を一体化した構成例である。   (B) shows that the infrared light source 11, the correlation cell 12, and the band pass filter 14 are integrated and provided at one end of the measurement cell 13, and the infrared light detector 15 and infrared light provided at the other end of the measurement cell 13. This is a configuration example in which an infrared window material 16 having a high transmittance is integrated.

(C)は、赤外光源11と相関セル12とバンドパスフィルタ14をそれぞれ個別に形成して測定セル13の一端に設け、測定セル13の他端に設けられている赤外光検出器15と赤外線の透過率の高い赤外窓材16を一体化した構成例である。   (C) Infrared light source 11, correlation cell 12, and bandpass filter 14 are individually formed and provided at one end of measurement cell 13, and infrared light detector 15 provided at the other end of measurement cell 13. And an infrared window material 16 having a high infrared transmittance.

また、赤外光源11と相関セル12の組み合わせを増やすことにより、複数のガス成分を測定することができる。   Moreover, a plurality of gas components can be measured by increasing the combination of the infrared light source 11 and the correlation cell 12.

なお、これら図1および図5は、左から右へ赤外光源11→相関セル12→測定セル13→バンドパスフィルタ14→赤外光検出器15または赤外光源11→相関セル12→バンドパスフィルタ14→測定セル13→赤外窓材16→赤外光検出器15の順に構成されているが、右から左へ赤外光源11→相関セル12→測定セル13→バンドパスフィルタ14→赤外光検出器15または赤外光源11→相関セル12→バンドパスフィルタ14→測定セル13→赤外窓材16→赤外光検出器15の順に構成してもよい。   1 and 5 show from left to right the infrared light source 11 → correlation cell 12 → measurement cell 13 → bandpass filter 14 → infrared light detector 15 or infrared light source 11 → correlation cell 12 → bandpass. The filter 14 → the measurement cell 13 → the infrared window material 16 → the infrared light detector 15 are configured in this order. From the right to the left, the infrared light source 11 → the correlation cell 12 → the measurement cell 13 → the bandpass filter 14 → red. The external light detector 15 or infrared light source 11 → correlation cell 12 → bandpass filter 14 → measurement cell 13 → infrared window material 16 → infrared light detector 15 may be configured in this order.

これらの実施例から明らかなように、相関セル12を固定化しているため、モータなどの可動機構を省くことができ、メンテナンスフリーにすることができる。そして、モータなどの可動機構を省くことにより部品数を削減できるため、小型化および低価格化を実現できる。   As is clear from these embodiments, since the correlation cell 12 is fixed, a movable mechanism such as a motor can be omitted and maintenance-free can be achieved. Since the number of parts can be reduced by omitting a movable mechanism such as a motor, downsizing and cost reduction can be realized.

また、電気的に直接変調ができて経時変化がない赤外光源11と固定化された相関セル12とを組み合わせた光学系と干渉成分の影響を受けにくいガス相関法を用いたことにより、干渉ガスの影響をほとんどなくすことができる。   Further, by using an optical system in which an infrared light source 11 that can be directly electrically modulated and does not change with time and a fixed correlation cell 12 and a gas correlation method that is not easily affected by interference components are used, interference is prevented. The effect of gas can be almost eliminated.

また、電気的に直接変調ができて経時変化がない駆動電圧で赤外線を発光できる赤外光源11を用いるため、光量の経時変化を無くすことができる。   In addition, since the infrared light source 11 that can be electrically directly modulated and emits infrared light with a drive voltage that does not change with time, the change in the amount of light with time can be eliminated.

また、測定セル13を多重反射するような構造にする場合には、赤外光源11と赤外光検出器15を同一の基板上に配置することができるので、高精度で小型化にすることができる。   Further, when the measurement cell 13 is structured to be multiple-reflected, the infrared light source 11 and the infrared light detector 15 can be arranged on the same substrate, so that the size can be reduced with high accuracy. Can do.

さらに、赤外光源11を2つ、赤外光検出器15を1つ設けて、測定ガスが充填された測定ガス室12aを透過した参照光の出力信号Aと参照ガスが充填された参照ガス室12bを透過した測定光の出力信号Bを演算してセンサ出力Soutを求めることにより、素子の経時変化や周囲温度変動を差動で除くことができる。   Further, two infrared light sources 11 and one infrared light detector 15 are provided, and an output signal A of the reference light transmitted through the measurement gas chamber 12a filled with the measurement gas and a reference gas filled with the reference gas. By calculating the output signal B of the measurement light that has passed through the chamber 12b and obtaining the sensor output Sout, it is possible to differentially remove changes in the elements over time and ambient temperature fluctuations.

なお、上記各実施例では、測定セルが円筒形に形成されている例について説明したが、測定セルは円筒形に限るものではなく、用途に応じて適宜の形状に形成してもよい。   In each of the above-described embodiments, an example in which the measurement cell is formed in a cylindrical shape has been described. However, the measurement cell is not limited to a cylindrical shape, and may be formed in an appropriate shape depending on the application.

以上説明したように、本発明によれば、モータなどの回転機構を省くことができ、小型で低価格でメンテナンスがフリーの赤外線ガス分析計を実現できる。   As described above, according to the present invention, a rotating mechanism such as a motor can be omitted, and an infrared gas analyzer that is small, inexpensive, and free of maintenance can be realized.

本発明の一実施例を示す構成図である。It is a block diagram which shows one Example of this invention. 本発明で用いるガス相関法の測定原理である。This is the measurement principle of the gas correlation method used in the present invention. 本発明で用いるガス相関法における干渉ガス補償の原理説明図である。It is principle explanatory drawing of interference gas compensation in the gas correlation method used by this invention. 本発明のCO濃度と赤外光検出器15の出力信号と演算の関係を示す説明図である。The CO 2 concentration and the infrared light detector 15 output signal and calculating the relationship of the present invention; FIG. 本発明の他の実施例を示す構成図である。It is a block diagram which shows the other Example of this invention. 従来のガス濃度測定装置の一例を示す構成図である。It is a block diagram which shows an example of the conventional gas concentration measuring apparatus. 図6のチョッパ2とガス相関セル3の具体例を示す斜視図である。It is a perspective view which shows the specific example of the chopper 2 and the gas correlation cell 3 of FIG.

符号の説明Explanation of symbols

11 光源部
12 相関セル
13 測定セル
14 バンドパスフィルタ
15 赤外光検出器
16 赤外窓材
DESCRIPTION OF SYMBOLS 11 Light source part 12 Correlation cell 13 Measurement cell 14 Band pass filter 15 Infrared light detector 16 Infrared window material

Claims (3)

電気的に直接変調され点滅駆動される赤外光源と、測定ガスが充填され前記赤外光源の出力光が入射される第1のガス室と赤外光を吸収しない参照ガスが充填され前記赤外光源の出力光が入射される第2のガス室を有する相関セルと、被測定ガスが導入される測定セルと、前記測定ガスの赤外線吸収帯域より少し広い透過帯域を有するバンドパスフィルタと、このバンドパスフィルタを透過する赤外線を検出する赤外光検出器を備え、
前記測定セルの一端には前記赤外光源と相関セルが設けられ、前記測定セルの他端には前記赤外光検出器が設けられ、前記バンドパスフィルタは前記測定セルのいずれかの端部に設けられたことを特徴とする赤外線ガス分析計。
An infrared light source that is electrically directly modulated and driven to blink, a first gas chamber that is filled with a measurement gas and into which the output light of the infrared light source is incident, and a reference gas that does not absorb infrared light is filled with the red light source. A correlation cell having a second gas chamber into which output light of an external light source is incident, a measurement cell into which a gas to be measured is introduced, a bandpass filter having a transmission band slightly wider than the infrared absorption band of the measurement gas, It has an infrared light detector that detects infrared rays that pass through this bandpass filter,
One end of the measurement cell is provided with the infrared light source and a correlation cell, the other end of the measurement cell is provided with the infrared light detector, and the bandpass filter is provided at one end of the measurement cell. An infrared gas analyzer characterized by being provided in
前記赤外光源が1つ設けられてその出力光は前記相関セルの第1のガス室と第2のガス室に共通に入射され、前記赤外光検出器は2つ設けられてこれらガス室を通過した赤外光を個別に検出することを特徴とする請求項1記載の赤外線ガス分析計。   One infrared light source is provided, and its output light is incident on the first gas chamber and the second gas chamber of the correlation cell in common, and two infrared light detectors are provided, and these gas chambers are provided. The infrared gas analyzer according to claim 1, wherein infrared light that has passed through is individually detected. 前記赤外光源が2つ設けられてそれぞれの出力光は前記相関セルの第1のガス室と第2のガス室に個別に入射され、前記赤外光検出器は1つ設けられてこれらガス室を通過した赤外光を共通に検出することを特徴とする請求項1記載の赤外線ガス分析計。   Two infrared light sources are provided, and each output light is individually incident on the first gas chamber and the second gas chamber of the correlation cell, and one infrared light detector is provided for these gases. The infrared gas analyzer according to claim 1, wherein infrared light passing through the chamber is commonly detected.
JP2008104289A 2008-04-14 2008-04-14 Infrared gas analyzer Withdrawn JP2009257808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008104289A JP2009257808A (en) 2008-04-14 2008-04-14 Infrared gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008104289A JP2009257808A (en) 2008-04-14 2008-04-14 Infrared gas analyzer

Publications (1)

Publication Number Publication Date
JP2009257808A true JP2009257808A (en) 2009-11-05

Family

ID=41385427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008104289A Withdrawn JP2009257808A (en) 2008-04-14 2008-04-14 Infrared gas analyzer

Country Status (1)

Country Link
JP (1) JP2009257808A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013015409A (en) * 2011-07-04 2013-01-24 Toshiba Corp Gas sensor
CN108732176A (en) * 2018-06-29 2018-11-02 深圳大学 A kind of medical respiration carbon dioxide detecting system
US10393591B2 (en) 2015-10-09 2019-08-27 Honeywell International Inc. Electromagnetic radiation detector using a planar Golay cell
US10458900B2 (en) 2015-09-10 2019-10-29 Honeywell International Inc. Gas detector with normalized response and improved sensitivity
US10883875B2 (en) 2015-03-05 2021-01-05 Honeywell International Inc. Use of selected glass types and glass thicknesses in the optical path to remove cross sensitivity to water absorption peaks
WO2021124937A1 (en) * 2019-12-17 2021-06-24 株式会社堀場製作所 Analysis device and analysis system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472092A (en) * 1977-11-18 1979-06-09 Yokogawa Hokushin Electric Corp Infrared ray gas analytical apparatus
JPS6337241A (en) * 1986-07-31 1988-02-17 Shimadzu Corp Infrared type gas analyzer
JPH08184562A (en) * 1994-12-29 1996-07-16 Shimadzu Corp Gas concentration measuring apparatus
JPH08247942A (en) * 1995-03-10 1996-09-27 Horiba Ltd Infrared ray gas analyzer
JPH09196849A (en) * 1996-01-23 1997-07-31 Fuji Electric Co Ltd Infrared gas analyzer
JP2007256242A (en) * 2006-03-27 2007-10-04 Riken Keiki Co Ltd Infrared gas detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472092A (en) * 1977-11-18 1979-06-09 Yokogawa Hokushin Electric Corp Infrared ray gas analytical apparatus
JPS6337241A (en) * 1986-07-31 1988-02-17 Shimadzu Corp Infrared type gas analyzer
JPH08184562A (en) * 1994-12-29 1996-07-16 Shimadzu Corp Gas concentration measuring apparatus
JPH08247942A (en) * 1995-03-10 1996-09-27 Horiba Ltd Infrared ray gas analyzer
JPH09196849A (en) * 1996-01-23 1997-07-31 Fuji Electric Co Ltd Infrared gas analyzer
JP2007256242A (en) * 2006-03-27 2007-10-04 Riken Keiki Co Ltd Infrared gas detector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013015409A (en) * 2011-07-04 2013-01-24 Toshiba Corp Gas sensor
US10883875B2 (en) 2015-03-05 2021-01-05 Honeywell International Inc. Use of selected glass types and glass thicknesses in the optical path to remove cross sensitivity to water absorption peaks
US10458900B2 (en) 2015-09-10 2019-10-29 Honeywell International Inc. Gas detector with normalized response and improved sensitivity
US10393591B2 (en) 2015-10-09 2019-08-27 Honeywell International Inc. Electromagnetic radiation detector using a planar Golay cell
CN108732176A (en) * 2018-06-29 2018-11-02 深圳大学 A kind of medical respiration carbon dioxide detecting system
WO2021124937A1 (en) * 2019-12-17 2021-06-24 株式会社堀場製作所 Analysis device and analysis system

Similar Documents

Publication Publication Date Title
FI96450C (en) Single-channel gas concentration measurement method and equipment
JP2009257808A (en) Infrared gas analyzer
US8143580B1 (en) Crossed biased filtering NDIR gas sensing methodology
EP3198261B1 (en) Optical gas sensing apparatus with explosion-proof enclosure
JP2903457B2 (en) Gas analyzer and gas analyzer
KR20120135299A (en) Gas concentration monitor
US6762410B1 (en) Analysis apparatus
US5936250A (en) Ultraviolet toxic gas point detector
JP2007256242A (en) Infrared gas detector
US8003944B2 (en) Saturation filtering NDIR gas sensing methodology
JP2005292009A (en) Infrared gas detector and detection method
US5429805A (en) Non-dispersive infrared gas analyzer including gas-filled radiation source
US9007592B2 (en) Gas analyzer
US10429363B2 (en) Far-ultraviolet absorbance detection device for liquid chromatography
JPH08247942A (en) Infrared ray gas analyzer
US11353431B2 (en) Photoacoustic sensor
JP4218954B2 (en) Absorption analyzer
JPH07151685A (en) Non-dispersion type infrared gas analyzer
US8729475B1 (en) Absorption biased single beam NDIR gas sensor
JP4727444B2 (en) Gas analyzer and semiconductor manufacturing apparatus
US8866085B1 (en) Differential temperature source NDIR gas sensing methodology
JP2017032317A (en) Gas concentration measurement device
JP2006275641A (en) Spectroscopic gas sensor
JPH0135292B2 (en)
JP2010249726A (en) Gas analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120711

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120718