JP2010249726A - Gas analyzer - Google Patents

Gas analyzer Download PDF

Info

Publication number
JP2010249726A
JP2010249726A JP2009100910A JP2009100910A JP2010249726A JP 2010249726 A JP2010249726 A JP 2010249726A JP 2009100910 A JP2009100910 A JP 2009100910A JP 2009100910 A JP2009100910 A JP 2009100910A JP 2010249726 A JP2010249726 A JP 2010249726A
Authority
JP
Japan
Prior art keywords
gas
filter
optical path
window
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009100910A
Other languages
Japanese (ja)
Inventor
Toyohiko Tanaka
豊彦 田中
Fumiaki Odera
文章 大寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2009100910A priority Critical patent/JP2010249726A/en
Publication of JP2010249726A publication Critical patent/JP2010249726A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas analyzer using a spectral absorption analysis method for checking an aging variation or the like of the device without using standard gas by a simple operation. <P>SOLUTION: A spectral absorption analyzer having a gas cell 1 includes a filter inserting/removing mechanism 5 that sequentially inserts one and a plurality of optical filters having the same absorbance into an optical path A of measuring light while changing the number of filters, and removes them from the insertion position. By this, the plurality of optical filters of different absorbance doubly, triply or more instead of standard gas is sequentially inserted into the optical path, and the checking of the performance the device can be easily performed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、分光吸光分析法により気体中の微量成分を計測するガス分析装置に関する。   The present invention relates to a gas analyzer that measures trace components in a gas by spectrophotometric analysis.

以下、レーザー光を用いる分光吸光分析装置を例示して説明する。
レーザー分光吸光分析装置は、例えば特許文献1に従来技術として記述されているように、光源となる波長可変半導体レーザー装置、これより発せられるレーザー光を試料ガス中に通すためのガスセル、及びガスセルを通過したレーザー光の光強度を測定する光検出器等で構成され、感度・精度の高いことから半導体材料ガス中の微量水分の測定等の用途がある。レーザー光の波長は、半導体レーザー装置の駆動電流または動作温度により制御することができるので、光源に分光器等の光学系を必要としない利点もある。
Hereinafter, a spectrophotometric analyzer using laser light will be described as an example.
For example, as described in Patent Document 1 as a prior art, a laser spectroscopic absorption spectrometer includes a wavelength tunable semiconductor laser device serving as a light source, a gas cell for passing laser light emitted from the laser light into a sample gas, and a gas cell. It consists of a photodetector that measures the light intensity of the laser beam that has passed through it, and has high sensitivity and accuracy, and therefore has applications such as measurement of trace moisture in semiconductor material gases. Since the wavelength of the laser beam can be controlled by the driving current or operating temperature of the semiconductor laser device, there is an advantage that an optical system such as a spectroscope is not required for the light source.

図5に、試料ガス中の微量水分測定用のレーザー分光吸光分析装置の従来の構成の一例を示す。この装置の構成は、同図に示す如く、ガスセル1と光学系室2に大別され、光学系室2にはレーザー光源3と光検出器4が収められている。ガスセル1は、ガス入口13、ガス出口14以外は密閉された円筒状金属容器で、対向する2枚の球面鏡11、12がその両端内面に保持されている。   FIG. 5 shows an example of a conventional configuration of a laser spectrophotometric analyzer for measuring trace moisture in a sample gas. As shown in the figure, the configuration of this apparatus is roughly divided into a gas cell 1 and an optical system chamber 2, and a laser light source 3 and a photodetector 4 are housed in the optical system chamber 2. The gas cell 1 is a sealed cylindrical metal container except for the gas inlet 13 and the gas outlet 14, and two spherical mirrors 11 and 12 facing each other are held on the inner surfaces of both ends.

ガスセル1と光学系室2との間は、光透過性の材料(石英、サファイア等)から成る光透過窓15、16で区画されており、レーザー光源3から発せられたレーザー光は、図中に一点鎖線で光路Aを示すように、一方の光透過窓15を通してガスセル1内に導入され、2枚の球面鏡11、12の間で多重反射しながら試料ガス中を通過した後、他方の光透過窓16を経て光検出器4に到達する。   The gas cell 1 and the optical system chamber 2 are partitioned by light transmitting windows 15 and 16 made of a light transmissive material (quartz, sapphire, etc.), and the laser light emitted from the laser light source 3 is shown in the figure. As shown by an alternate long and short dash line, the optical path A is introduced into the gas cell 1 through one light transmission window 15, passes through the sample gas while being subjected to multiple reflections between the two spherical mirrors 11 and 12, and then the other light. The light reaches the photodetector 4 through the transmission window 16.

上記構成において、レーザー光源3として所要の波長範囲で波長走査可能な波長可変レーザー装置を用い、その出力光を試料ガスを充たしたガスセル1に通した後、フォトダイオード等から成る光検出器4で受光することにより、例えば図6に示すスペクトルが得られる。
図6は微量水分の測定例であって、水分特有の波長(1.3686μm)における吸収ピークが見られる。なお、同図において、縦軸は受光光度、横軸は波長を示し、波長目盛はピークの中心波長との差を波数(cm−1)で表されている。
In the above configuration, a wavelength tunable laser device capable of wavelength scanning in a required wavelength range is used as the laser light source 3, and the output light is passed through the gas cell 1 filled with the sample gas, and then is detected by the photodetector 4 including a photodiode or the like. By receiving light, for example, a spectrum shown in FIG. 6 is obtained.
FIG. 6 shows a measurement example of trace moisture, and an absorption peak at a wavelength peculiar to moisture (1.3686 μm) is observed. In the figure, the vertical axis represents the received light intensity, the horizontal axis represents the wavelength, and the wavelength scale represents the difference from the peak center wavelength in wave numbers (cm-1).

特開2001−21493号公報JP 2001-21493 A

一般にガス分析装置においては、装置の経時変化をチェックし精度を維持するために、濃度既知の標準ガスを用いて定期的に校正を行う。分析装置の出力は濃度に比例するとは限らないので、濃度の異なる2種以上の標準ガスを用いて直線性のチェックも行うのが普通である。しかし、例えばppmレベルの微量水分を測定する場合は、濃度の安定した標準ガスを幾種類も準備することが困難である。   In general, in a gas analyzer, calibration is periodically performed using a standard gas with a known concentration in order to check the time-dependent change of the apparatus and maintain accuracy. Since the output of the analyzer is not always proportional to the concentration, it is common to check linearity using two or more standard gases having different concentrations. However, for example, when measuring a trace amount of moisture at the ppm level, it is difficult to prepare several kinds of standard gases with stable concentrations.

主に液体を分析対象とする紫外可視領域の分光吸光分析においては、標準試料の代わりに吸光度値が正確に値付けされた光学フィルタが校正に用いられるが、ガスを対象とする赤外線領域の分光吸光分析においてはこの種の光学フィルタは一般に入手困難である。   In the spectrophotometric analysis in the UV-visible region, mainly for liquid analysis, an optical filter with an accurate absorbance value is used for calibration instead of a standard sample, but in the infrared region for gas. This type of optical filter is generally difficult to obtain in absorbance analysis.

本発明は上記の事情に鑑みてなされたものであり、標準ガスを用いることなく装置の経時変化等を簡単な操作でチェックすることが可能な分光吸光分析法によるガス分析装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is intended to provide a gas analyzer using a spectrophotometric method capable of checking a change with time of the apparatus with a simple operation without using a standard gas. Objective.

本発明は、上記課題を解決するために、ガスセルを備えた分光吸光分析装置において、同一の吸光度を有する複数の光学フィルタの1枚または複数枚を測定光の光路中に枚数を変えて逐次に挿入し、またその挿入位置から離脱させるフィルタ挿脱機構を備える。
この構成により、標準ガスの代わりに吸光度が2倍、3倍等に異なる複数の光学フィルタを光路中に逐次に挿入して、簡便に装置の性能チェックを行うことができる。
In order to solve the above-mentioned problems, the present invention provides a spectrophotometric apparatus equipped with a gas cell, wherein one or a plurality of optical filters having the same absorbance are sequentially changed in the optical path of measurement light. A filter insertion / removal mechanism is provided for insertion and removal from the insertion position.
With this configuration, it is possible to easily check the performance of the apparatus by sequentially inserting a plurality of optical filters having different absorbances of 2 times, 3 times, etc. in the optical path instead of the standard gas.

本発明は上記のように構成されているので、標準ガスを用いることなく装置の経時変化等を容易にチェックできるので、測定の信頼度を維持することが可能となる。   Since the present invention is configured as described above, it is possible to easily check the change over time of the apparatus without using a standard gas, so that the reliability of measurement can be maintained.

本発明の一実施例を示す図である。It is a figure which shows one Example of this invention. 本発明の一実施例の一部を示す図である。It is a figure which shows a part of one Example of this invention. 本発明の変形例を示す図である。It is a figure which shows the modification of this invention. 本発明装置の動作説明図である。It is operation | movement explanatory drawing of this invention apparatus. 従来の構成例を示す図である。It is a figure which shows the example of a conventional structure. 分光吸光分析による実測例を示す図である。It is a figure which shows the example of an actual measurement by a spectral absorption analysis.

本発明の最良の形態は、同一の吸光度を有する複数の光学フィルタの1枚または複数枚を測定光の光路中に枚数を変えて逐次に挿脱するフィルタ挿脱機構を備えて成るレーザー分光吸光分析装置である。   The best mode of the present invention is a laser spectroscopic absorption comprising a filter insertion / removal mechanism that sequentially inserts / removes one or a plurality of optical filters having the same absorbance in the optical path of measurement light. It is an analysis device.

図1に本発明の一実施例を示す。同図において、図5と同一物については同符号を付すことで再度の説明を省く。本実施例が図5に示す従来例と相違する点は、フィルタ挿脱機構5を備え、その一部である回転円板51が光路Aを横断していることである。図2はフィルタ挿脱機構5の構成をさらに詳しく示すもので、同図(a)は正面図、(b)は平面図である。   FIG. 1 shows an embodiment of the present invention. In the figure, the same components as those in FIG. The present embodiment is different from the conventional example shown in FIG. 5 in that a filter insertion / removal mechanism 5 is provided, and a rotating disk 51 that is a part thereof crosses the optical path A. FIG. 2 shows the configuration of the filter insertion / removal mechanism 5 in more detail. FIG. 2 (a) is a front view and FIG. 2 (b) is a plan view.

図2に示す如く、モータ55によって軸B(この例ではモータ55の回転軸)の回りに回転する回転円板51に90°間隔で開設された4つの窓のうち、単一フィルタ窓52には1枚の石英板6が貼設され、これと対角に位置する複数フィルタ窓53には複数枚(この例では2枚)の石英板6が重ねて貼設され、残る2つの窓(ブランク窓54)は素通しである。石英板6は光学フィルタとして機能するもので、サイズは例えば直径10mm、厚さ1mm程度であり、全て同一光学特性を有するが、その吸光度値は既知である必要はない。   As shown in FIG. 2, a single filter window 52 out of four windows opened at 90 ° intervals on a rotating disc 51 rotated around a shaft B (in this example, the rotating shaft of the motor 55) by a motor 55. Is attached with a plurality of (two in this example) quartz plates 6 on the plurality of filter windows 53 located diagonally thereto, and the remaining two windows ( The blank window 54) is transparent. The quartz plate 6 functions as an optical filter, and has a size of, for example, a diameter of about 10 mm and a thickness of about 1 mm, all having the same optical characteristics, but the absorbance value need not be known.

このフィルタ挿脱機構5は、図1に示す如く回転円板51が光路Aを直角に横断し、測定光が窓の1つを通過する位置に配置される。この構成により、モータ55が90°回転するごとに、ブランク窓54、単一フィルタ窓52、ブランク窓54、複数フィルタ窓53の順に光路A中に挿入される。   As shown in FIG. 1, the filter insertion / removal mechanism 5 is disposed at a position where the rotating disk 51 crosses the optical path A at a right angle and the measurement light passes through one of the windows. With this configuration, each time the motor 55 rotates 90 °, the blank window 54, the single filter window 52, the blank window 54, and the plurality of filter windows 53 are inserted into the optical path A in this order.

図1の装置で通常の測定を行うときは、ブランク窓54の1つが光路Aを横切る位置でフィルタ挿脱機構5を止めておく。この状態では、図5に示す従来構成と変わらず、測定光は光学フィルタの影響を受けずに光検出器4に到達する。   When performing normal measurement with the apparatus of FIG. 1, the filter insertion / removal mechanism 5 is stopped at a position where one of the blank windows 54 crosses the optical path A. In this state, the measurement light reaches the photodetector 4 without being affected by the optical filter, unlike the conventional configuration shown in FIG.

性能チェックを行うときは、まず、レーザー光の波長を測定対象である水分による吸収のない波長に固定する。即ち、図6の実測例で、水分の吸収ピークから外れた波長領域R1またはR2内でできるだけ水分の吸収ピーク波長に近い波長を選定する。波長はレーザー光の駆動電流、または動作温度を変えることで設定可能である。
次に、フィルタ挿脱機構5を作動させて、ブランク窓54、単一フィルタ窓52、ブランク窓54、複数フィルタ窓53の順に光路A中に挿入し、光検出器4による受光光度を測定する。
When performing a performance check, first, the wavelength of the laser beam is fixed to a wavelength that is not absorbed by the moisture to be measured. That is, in the actual measurement example of FIG. 6, a wavelength as close as possible to the water absorption peak wavelength is selected within the wavelength region R1 or R2 deviated from the water absorption peak. The wavelength can be set by changing the driving current of the laser beam or the operating temperature.
Next, the filter insertion / removal mechanism 5 is operated to insert the blank window 54, the single filter window 52, the blank window 54, and the plurality of filter windows 53 in this order into the optical path A, and measure the light intensity received by the photodetector 4. .

図4はその結果を模式的に示す図である。同図に示すように、ブランク窓54の透過光の光度I、単一フィルタ窓52の透過光の光度I、複数フィルタ窓53の透過光の光度Iとすると、単一フィルタ窓52の当該波長における吸光度D、複数フィルタ窓53の当該波長における吸光度Dは次式で算出される。
=Log(I/I)・・・・・・・・・・・・(1)
=Log(I/I)・・・・・・・・・・・・(2)
光学フィルタの吸光度は一定と見なせるから、上記性能チェックの結果、実測されたDまたはDの値に経時的な変化が見られる場合は、装置の経時変化によるものと考えるべきである。
さらに、公知のランバート・ベールの法則により、石英板6を重ねた光学フィルタの吸光度はその厚さ、即ち枚数に比例するから、D、Dの間には次の関係が成り立たなければならない。
=D/N・・・・・・・・・・・・・・・・・・・・・・(3)
なお、Nは複数フィルタ窓53の石英板6の枚数(本実施例では、N=2)である。
(1)〜(3)式を総合すると次式が導かれる。
Log(I/I)=(1/N)×Log(I/I)・・・(4)
FIG. 4 is a diagram schematically showing the result. As shown in the figure, assuming that the light intensity I 0 of the transmitted light through the blank window 54, the light intensity I 1 of the transmitted light through the single filter window 52, and the light intensity I 2 of the transmitted light through the multiple filter windows 53, the single filter window 52. The absorbance D 1 at the wavelength and the absorbance D 2 at the wavelength of the plurality of filter windows 53 are calculated by the following equations.
D 1 = Log (I 0 / I 1 ) (1)
D 2 = Log (I 0 / I 2 ) (2)
Since the absorbance of the optical filter can be regarded as constant, the performance check result, if the temporal change is observed in the measured values of D 1 or D 2 are to be considered to be due to aging of the apparatus.
Further, according to the known Lambert-Beer law, the absorbance of the optical filter on which the quartz plates 6 are stacked is proportional to the thickness, that is, the number of sheets, so the following relationship must be established between D 1 and D 2. .
D 1 = D 2 / N ······················ (3)
N is the number of quartz plates 6 of the plurality of filter windows 53 (N = 2 in this embodiment).
When the equations (1) to (3) are combined, the following equation is derived.
Log (I 0 / I 1 ) = (1 / N) × Log (I 0 / I 2 ) (4)

本発明における性能チェックはこの(4)式に基づいて行う。即ち、(4)式が成立することを検証することで出力値の直線性をチェックし、また、(4)式の左辺(または右辺)の値が一定値を示すことで測定精度を確認する。その結果、異常と判断される場合は、例えばデータ処理の過程で補正係数の値を修正する等の数学的補正を行い、また場合によってはハードウェア的な調整を行うことにより装置を正常な状態に保ち、測定の信頼性を維持することができる。   The performance check in the present invention is performed based on the equation (4). That is, the linearity of the output value is checked by verifying that the expression (4) holds, and the measurement accuracy is confirmed by the value of the left side (or right side) of the expression (4) being a constant value. . As a result, when it is determined that the device is abnormal, for example, mathematical correction such as correction of the correction coefficient value is performed in the course of data processing, and in some cases, hardware adjustment is performed to make the device in a normal state. And the reliability of measurement can be maintained.

フィルタ挿脱機構5については図2に示すものに限らず、種々の変形の可能性がある。
図3は、フィルタ挿脱機構5のいくつかの変形例を示す図である。
同図(a)は、測定光を素通しさせるには強いて窓の中を通過させる必要がないことから、図2(a)における回転円板51からブランク窓54を省いて簡略化したものである。長方形の回転板56上に図2と同様の単一フィルタ窓52及び複数フィルタ窓53を設け、図2と同様に軸Bの回りに回転させる構造であって、機能的には図2の例と変わるところはない。
The filter insertion / removal mechanism 5 is not limited to that shown in FIG.
FIG. 3 is a diagram illustrating some modified examples of the filter insertion / removal mechanism 5.
FIG. 6A is a simplified diagram in which the blank window 54 is omitted from the rotating disk 51 in FIG. 2A because it is not necessary to pass through the measurement light to pass through the window. . A single filter window 52 and a plurality of filter windows 53 similar to those shown in FIG. 2 are provided on a rectangular rotating plate 56, and are rotated around an axis B as in FIG. There is no change.

図3(b)は、図2における回転運動を直線往復運動に変えた変形例で、単一フィルタ窓52、ブランク窓54及び複数フィルタ窓53を有するスライド板57をスライド駆動部59により左右方向に移動させて、窓の1つを光路A中に挿入/離脱させる構造である。   FIG. 3B is a modification in which the rotary motion in FIG. 2 is changed to a linear reciprocating motion. A slide plate 57 having a single filter window 52, a blank window 54, and a plurality of filter windows 53 is moved left and right by a slide drive unit 59. In this structure, one of the windows is inserted / removed into / from the optical path A.

図3(c)は、単一フィルタ窓52のみを備えた複数(図では3枚)の揺動板58を軸Bの回りに一定角度範囲内で揺動運動させ、例えば、揺動運動の下端の位置で窓が光路A中に挿入され、上端の位置では揺動板58が光路Aを遮らないように構成する。この構成で、各揺動板58を個別に制御することで、所要枚数の光学フィルタを光路A中に挿入しまた離脱させることができる。揺動運動の駆動源としては、例えば揺動板58のそれぞれにソレノイド(図示しない)等を設置すればよい。   FIG. 3C shows a plurality of (three in the figure) oscillating plates 58 having only a single filter window 52 oscillated around an axis B within a certain angle range. The window is inserted into the optical path A at the lower end position, and the swing plate 58 is configured not to block the optical path A at the upper end position. With this configuration, by individually controlling each swing plate 58, a required number of optical filters can be inserted into and removed from the optical path A. As a drive source for the swing motion, for example, a solenoid (not shown) or the like may be installed on each swing plate 58.

なお、図2、図3に示す複数フィルタ窓53は1つに限らず、貼設される石英板6の枚数がそれぞれ異なる複数の複数フィルタ窓53を設けてもよい。これにより、より精度の高い直線性チェックを行うことが可能となる。   2 and 3 are not limited to one, and a plurality of filter windows 53 having different numbers of quartz plates 6 to be attached may be provided. This makes it possible to perform a linearity check with higher accuracy.

以上、レーザー分光吸光分析装置を例として説明したが、本発明はこれに限らず、フーリエ変換赤外分光光度計など各種の分光吸光分析法によるガス分析装置にも適用可能である。また、上記実施例は多重反射セルを用いた例であるが、本発明はこれに限らず、直通形のセルを用いる場合にも適用できることは自明である。   As described above, the laser spectrophotometric analyzer has been described as an example. However, the present invention is not limited to this, and the present invention can be applied to various gas spectrophotometric gas analyzers such as a Fourier transform infrared spectrophotometer. Moreover, although the said Example is an example using a multiple reflection cell, it is obvious that this invention is applicable not only when this but using a direct-through type cell.

本発明は、分光吸光分析法により気体中の微量成分を計測するガス分析装置に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for a gas analyzer that measures trace components in a gas by spectrophotometric analysis.

1 ガスセル
2 光学系室
3 レーザー光源
4 光検出器
5 フィルタ挿脱機構
6 石英板
11 球面鏡
12 球面鏡
13 ガス入口
14 ガス出口
15 光透過窓
16 光透過窓
51 回転円板
52 単一フィルタ窓
53 複数フィルタ窓
54 ブランク窓
55 モータ
56 回転板
57 スライド板
58 揺動板
59 スライド駆動部
A 光路
B 軸
DESCRIPTION OF SYMBOLS 1 Gas cell 2 Optical system chamber 3 Laser light source 4 Photo detector 5 Filter insertion / extraction mechanism 6 Quartz plate 11 Spherical mirror 12 Spherical mirror 13 Gas inlet 14 Gas outlet 15 Light transmissive window 16 Light transmissive window 51 Rotating disk 52 Single filter window 53 Multiple Filter window 54 Blank window 55 Motor 56 Rotating plate 57 Slide plate 58 Oscillating plate 59 Slide drive part A Optical path B axis

Claims (1)

波長可変の測定光を試料ガスで充たされたガスセル内を通過させた後、光検出器によりその光強度を検出する分光吸光分析法によるガス分析装置において、同一の吸光度を有する複数の光学フィルタを備えると共に、その1枚または複数枚を枚数を変えて前記測定光の光路中に逐次に挿入、また挿入位置から離脱させるフィルタ挿脱機構を備えて成るガス分析装置。   A plurality of optical filters having the same absorbance in a gas analyzer using a spectrophotometric method in which a variable wavelength measurement light is passed through a gas cell filled with a sample gas and then the light intensity is detected by a photodetector. A gas analyzer comprising a filter insertion / removal mechanism that sequentially inserts or removes one or a plurality of the plurality of sheets into or from the optical path of the measurement light.
JP2009100910A 2009-04-17 2009-04-17 Gas analyzer Pending JP2010249726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009100910A JP2010249726A (en) 2009-04-17 2009-04-17 Gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009100910A JP2010249726A (en) 2009-04-17 2009-04-17 Gas analyzer

Publications (1)

Publication Number Publication Date
JP2010249726A true JP2010249726A (en) 2010-11-04

Family

ID=43312224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009100910A Pending JP2010249726A (en) 2009-04-17 2009-04-17 Gas analyzer

Country Status (1)

Country Link
JP (1) JP2010249726A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017220675A (en) * 2017-07-26 2017-12-14 セイコーエプソン株式会社 Method for manufacturing atom cell, atom cell, quantum interference device, atomic oscillator, and electronic equipment and mobile body
KR20200144651A (en) * 2019-06-19 2020-12-30 주식회사 템퍼스 Gas sensing apparatus and its calibration method
JP7219002B2 (en) 2017-09-11 2023-02-07 i-PRO株式会社 Endoscope

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017220675A (en) * 2017-07-26 2017-12-14 セイコーエプソン株式会社 Method for manufacturing atom cell, atom cell, quantum interference device, atomic oscillator, and electronic equipment and mobile body
JP7219002B2 (en) 2017-09-11 2023-02-07 i-PRO株式会社 Endoscope
KR20200144651A (en) * 2019-06-19 2020-12-30 주식회사 템퍼스 Gas sensing apparatus and its calibration method
KR102255960B1 (en) 2019-06-19 2021-05-25 주식회사 템퍼스 Gas sensing apparatus and its calibration method

Similar Documents

Publication Publication Date Title
US6028310A (en) Linear cavity laser system for intracavity laser spectroscopy
US5039855A (en) Dual beam acousto-optic tunable spectrometer
US20130003045A1 (en) Optical absorption spectroscopy with multi-pass cell with adjustable optical path length
KR100401035B1 (en) Contaminant identification and concentration determination by monitoring the temporal characteristics of an intracavity laser
AU2006324129B2 (en) Apparatus and method for spectrophotometric analysis
US10132787B2 (en) Device for optically determining the concentration of alcohol and carbohydrates in a liquid sample
JP2005524079A (en) Ultra-sensitive spectrophotometer
US11519855B2 (en) Close-coupled analyser
AU2005311440B2 (en) Spectrophotometer
US9448215B2 (en) Optical gas analyzer device having means for calibrating the frequency spectrum
WO2007044486A1 (en) Spectroscopic determination of sucrose
JP2010249726A (en) Gas analyzer
US5999259A (en) Contaminant identification and concentration determination by monitoring the wavelength, or intensity at a specific wavelength, of the output of an intracavity laser
US5991032A (en) Contaminant identification and concentration determination by monitoring the intensity of the output of an intracavity laser
JP2011232205A (en) Light analyzer
JP2017129594A (en) Gas analyzing device
JP2007040981A (en) Method and device for measuring wafer temperature
JP4486805B2 (en) Spectroscopic analyzer
RU2672183C1 (en) Analyzer of natural gas composition
JP5088940B2 (en) Equipment for measuring the internal quality of agricultural products
JP2003161654A (en) Optical spectrum analyzer and method of measuring optical spectrum
EA028603B1 (en) Method for measuring composition of sample
Brown et al. Ultraviolet and Visible Analyzers
Lam Performance Verification of UV–VIS Spectrophotometers
Otto et al. MEMS analyzer for fast determination of mixed gases