JP4486805B2 - Spectroscopic analyzer - Google Patents
Spectroscopic analyzer Download PDFInfo
- Publication number
- JP4486805B2 JP4486805B2 JP2003399704A JP2003399704A JP4486805B2 JP 4486805 B2 JP4486805 B2 JP 4486805B2 JP 2003399704 A JP2003399704 A JP 2003399704A JP 2003399704 A JP2003399704 A JP 2003399704A JP 4486805 B2 JP4486805 B2 JP 4486805B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- measurement
- sample
- optical fiber
- incident
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005259 measurement Methods 0.000 claims description 152
- 230000003287 optical effect Effects 0.000 claims description 71
- 239000013307 optical fiber Substances 0.000 claims description 68
- 238000004611 spectroscopical analysis Methods 0.000 claims description 48
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 230000003595 spectral effect Effects 0.000 claims description 3
- 239000000523 sample Substances 0.000 description 95
- 238000002835 absorbance Methods 0.000 description 19
- 238000001228 spectrum Methods 0.000 description 18
- 239000000835 fiber Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- 238000004140 cleaning Methods 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 6
- 238000003908 quality control method Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000012488 sample solution Substances 0.000 description 2
- 238000010183 spectrum analysis Methods 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
Images
Landscapes
- Spectrometry And Color Measurement (AREA)
Description
本発明は、各種の試料に光を照射し、その試料を透過した光を分光してスペクトルを測定することにより、各種試料の吸光度や光透過率などを定性的あるいは定量的に分析する分光分析装置で、詳しくは、光の伝送に光ファイバを用いて構成される分光分析装置に関する。 The present invention is a spectroscopic analysis for qualitatively or quantitatively analyzing the absorbance, light transmittance, etc. of various samples by irradiating various samples with light and measuring the spectrum by spectrally analyzing the light transmitted through the samples. More particularly, the present invention relates to a spectroscopic analysis apparatus configured using an optical fiber for light transmission.
この種の分光分析装置において、長時間に亘る連続測定時における測定環境の温度変化による光学系の変動等に起因する測定誤差を無くして再現性、信頼性の高い分析を行なうためには、試料光の測定のほかに、試料がない状態で光源から出射される光、つまり、参照光を定期的に測定することが必要である。 In this type of spectroscopic analysis device, in order to eliminate measurement errors caused by fluctuations in the optical system due to temperature changes in the measurement environment during continuous measurement over a long period of time, in order to perform analysis with high reproducibility and reliability, In addition to the light measurement, it is necessary to periodically measure the light emitted from the light source in the absence of the sample, that is, the reference light.
このような試料光及び参照光の両方を測定する分光分析装置として、従来、(1)光源からの光を二つに分ける、いわゆる、ダブルビーム方式のもので、一方の光を試料に照射してそれを透過した試料光を分光分析部へ入射させる試料光測定光路と、他方の光を参照光として直接分光分析部へ入射させる参照光測定光路との二つの測定用光路を構成してなるものが知られている(例えば、特許文献1参照)。 As a spectroscopic analyzer for measuring both the sample light and the reference light, conventionally, (1) a so-called double beam system in which light from a light source is divided into two, one light is irradiated onto the sample. The sample light measurement optical path for entering the sample light that has passed through the spectroscopic analysis unit and the reference light measurement optical path for directly entering the other light as the reference light to the spectroscopic analysis unit are configured. Those are known (for example, see Patent Document 1).
また、(2)光源部と、試料を保持する測定部と、分光分析部を含む装置本体とを分離して設け、光源部からの光を測定部に伝送して試料に照射し、その試料を透過した試料光を分光分析部に伝送し入射させる試料光測定用光ファイバと、前記光源部からの光を分岐し、これを参照光として分光分析部に直接に伝送し入射させる参照光測定用光ファイバとを用い、これら両測定用光ファイバを両者の基端部付近で分岐させて光源からの光を同時に分岐ファイバあるいは分光分析部に導入させるように構成した光ファイバ式装置も知られている(例えば、特許文献2参照)。 (2) The light source unit, the measurement unit holding the sample, and the apparatus main body including the spectroscopic analysis unit are provided separately, and the light from the light source unit is transmitted to the measurement unit to irradiate the sample. Sample light measurement optical fiber that transmits the sample light that has passed through the spectroscopic analysis unit to be incident thereon, and the reference light measurement that splits the light from the light source unit and directly transmits the reference light to the spectroscopic analysis unit as incident light There is also known an optical fiber type device that uses optical fibers for optical fiber and is configured so that both optical fibers for measurement are branched near the base ends of both optical fibers and light from the light source is simultaneously introduced into the branched fiber or the spectroscopic analyzer. (For example, refer to Patent Document 2).
さらに、(3)試料をセット可能な測定室に測定光路を形成する光ファイバの端面を臨ませるとともに、回転軸を中心にして回転可能なアームの先端部に測定光を反射させるリファレンスミラーを取付け、測定室に試料をセットしたときは、光ファイバの端面から出射される光が試料に透過し反射されて再び光ファイバの端面に入射され光学系(分光分析部)に入力される試料光測定状態となり、また、測定室から試料を取り除き、かつ、アームを回転させてリファレンスミラーを光ファイバの端面に弾性密着させたときは、光ファイバの端面から出射される光がリファレンスミラーで反射されて再び光ファイバの端面に入射され光学系(分光分析部)に入力される参照光測定状態となるといったように、試料のセットの有無及びアームの回動により、試料光測定状態と参照光測定状態とに切替え可能に構成した光ファイバ式装置も知られている(例えば、特許文献3参照)。 (3) The end face of the optical fiber that forms the measurement optical path faces the measurement chamber where the sample can be set, and a reference mirror that reflects the measurement light is attached to the tip of the arm that can rotate about the rotation axis. When a sample is set in the measurement chamber, light emitted from the end face of the optical fiber is transmitted through and reflected by the sample, is incident on the end face of the optical fiber again, and is input to the optical system (spectral analysis unit). When the sample is removed from the measurement chamber and the reference mirror is elastically adhered to the end face of the optical fiber by rotating the arm, the light emitted from the end face of the optical fiber is reflected by the reference mirror. Whether or not the sample is set and the arm is rotated so that the reference light is again incident on the end face of the optical fiber and enters the optical system (spectral analysis unit). The are also known optical fiber type apparatus configured switchable into a reference light measurement state sample light measurement state (e.g., see Patent Document 3).
しかし、上記した従来の分光分析装置のうち、(1)のダブルビーム方式の装置では、試料光測定光路及び参照光測定光路のそれぞれに、集光レンズ、シャッタ、凹面鏡などを配置する必要があって、それら光学素子数の多さから装置全体が大型化し、設備コストの上昇が避けられないだけでなく、両光路それぞれの光学素子や両光路からの光を選択的に分光分析部へ入射させるために設置されているクロスミラーを構成する二枚のミラーの曇り度合い、汚れ度合いの違いが試料光量と参照光量の比や吸光度などに悪影響を及ぼし、測定再現性、信頼性を低下させるという問題があった。 However, among the above-described conventional spectroscopic analyzers, in the double beam system (1), it is necessary to arrange a condensing lens, a shutter, a concave mirror, and the like in each of the sample light measurement optical path and the reference light measurement optical path. In addition to the large number of optical elements, the overall size of the apparatus is increased, and an increase in equipment cost is inevitable, and light from both optical paths and both optical paths are selectively incident on the spectroscopic analyzer. The difference in the degree of cloudiness and contamination between the two mirrors that make up the cross mirror installed for this purpose adversely affects the ratio of sample light quantity to the reference light quantity, absorbance, etc., and decreases the measurement reproducibility and reliability. was there.
また、(2)の光ファイバ式装置では、参照光測定専用の光ファイバを要するとともに、その参照光測定専用の光ファイバと試料光測定用光ファイバとを分岐させることが必要で、そのために光ファイバ自体の構造が複雑になるのみならず、特殊な分光器を使用しなければならないために、上記(1)のダブルビーム方式以上に分析装置全体がコストアップするという問題があった。 In addition, the optical fiber type apparatus of (2) requires an optical fiber dedicated for reference light measurement, and it is necessary to branch the optical fiber dedicated for reference light measurement and the optical fiber for sample light measurement. Not only is the structure of the fiber itself complicated, but a special spectroscope must be used, so that there is a problem that the cost of the entire analysis apparatus is higher than that of the double beam method of (1).
さらに、(3)の光ファイバ式装置では、試料光測定状態と参照光測定状態との切替えが煩雑で手動切替えに頼らざるを得ない構成であるから、連続自動測定が困難となり、測定効率が非常に悪い上に、測定状態の切替機構部が測定部に設けられているので、例えば半導体工場などで各種洗浄液の濃度等の品質管理をインラインで実施しようとしても、測定部のみをライン上に設置する体制が採りにくく、したがって、インライン型の品質管理用装置としての用途には不適で、用途的に非常に制約があるという問題があった。 Further, in the optical fiber type apparatus of (3), since the switching between the sample light measurement state and the reference light measurement state is complicated and it is necessary to rely on manual switching, continuous automatic measurement becomes difficult and the measurement efficiency is reduced. In addition to being very bad, the measurement state switching mechanism is provided in the measurement unit, so even if you try to perform quality control such as the concentration of various cleaning solutions in-line in a semiconductor factory, for example, only the measurement unit is on the line. There is a problem that the installation system is difficult to adopt, and therefore, it is unsuitable for use as an in-line type quality control device and has very limited use.
本発明は上記のような諸実情に鑑みてなされたもので、その目的は、光学素子及び光ファイバの使用数を減少して装置全体の低コスト化、小型化を図りつつ、再現精度の高い測定が行えて信頼性を向上でき、しかも、インライン型の実施も容易で用途の拡充を図ることができる分光分析装置を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to reduce the number of optical elements and optical fibers to be used, thereby reducing the overall cost and size of the apparatus, and achieving high reproduction accuracy. An object of the present invention is to provide a spectroscopic analyzer that can perform measurement and improve reliability, and that can be easily implemented in-line and can be used for a wider range of applications.
上記目的を達成するために、本発明に係る分光分析装置は、光源とこの光源から出射された光を集束する光集束手段と前記光源からの光を入射させる入射スリット及びこの入射スリットを経て入射される光を分光し、かつ、その分光された各波長の光を検出する検出器を有する分光分析部とを備えた装置本体と、試料を保持する測定部とが分離して設けられているとともに、前記光集束手段により集束された光を前記測定部に伝送して試料に照射する第1光ファイバが前記装置本体に対して前記光源の光出射方向から外れた位置に取り付けられ、さらに、前記装置本体に対して、試料を透過した試料光を伝送し前記分光分析部の入射スリットに向けて出射する第2光ファイバが取り付けられ、前記装置本体内に、前記光集束手段による集束光を1回反射させて第1光ファイバに入射して試料に照射し、その試料光を第2光ファイバを通して前記分光分析部に伝送し入射する試料光測定状態と、前記集束光の第1光ファイバへの入射を遮断してその集束光からなる参照光を1回反射させて前記分光分析部に直接に入射する参照光測定状態とに選択切替可能な測定光路切替手段が設けられ、測定光路切替手段が、前記光源の光出射方向から外れた位置にある回転軸の周りに回動可能なアームにおける前記回転軸から離れた位置に、試料光測定状態では集束光を、参照光測定状態では参照光をそれぞれ同一面で反射させる単一ミラーを付設してなり、前記アームの回動により前記単一ミラーを、集束光が第1光ファイバに入射される第1の反射面角度と参照光が入射スリットに直接入射される第2の反射面角度とに位置変更自在に構成され、前記単一ミラーが前記第1の反射面角度をとるときは、前記光源から出射され前記光集束手段により集束された光が該単一ミラーに反射されて第1光ファイバに入射した後、試料を透過し第2光ファイバを経て入射スリットから入射し、前記単一ミラーが前記第2の反射面角度をとるときは、前記光源から出射され前記光集束手段により集束された光が該単一ミラーに反射されて入射スリットから入射するようにしたものであることを特徴としている。 In order to achieve the above object, a spectroscopic analyzer according to the present invention includes a light source, a light focusing means for focusing the light emitted from the light source, an incident slit for allowing the light from the light source to enter, and the incident through the incident slit. The apparatus main body provided with a spectroscopic analysis unit having a detector that splits the light to be separated and detects the light of each of the divided wavelengths is provided separately from the measurement unit that holds the sample. And a first optical fiber for transmitting the light focused by the light focusing means to the measurement unit and irradiating the sample is attached to a position deviating from the light emitting direction of the light source with respect to the apparatus main body, A second optical fiber that transmits the sample light transmitted through the sample and emits the light toward the entrance slit of the spectroscopic analysis unit is attached to the apparatus body, and the focused light by the light focusing means is installed in the apparatus body. The sample light is reflected once and incident on the first optical fiber to irradiate the sample, the sample light is transmitted to the spectroscopic analysis unit through the second optical fiber, and the sample light measurement state is incident, and the first optical fiber of the focused light Measurement light path switching means is provided, which can selectively switch between the reference light measurement state in which the incident light is blocked and the reference light composed of the focused light is reflected once and directly incident on the spectroscopic analysis unit. The means is located at a position away from the rotation axis in an arm that can be rotated around a rotation axis that is located away from the light emission direction of the light source . A single mirror for reflecting the light on the same surface is provided, and the single mirror is rotated by the rotation of the arm, and the first reflecting surface angle at which the focused light is incident on the first optical fiber and the reference light. direct incident of the entrance slit That the second is repositioned freely configured and reflecting surface angle, when said single mirror takes the first reflecting surface angle, the light is focused by the optical focusing means is emitted from the light source is the single After being reflected by one mirror and entering the first optical fiber, passing through the sample and entering the second slit through the entrance slit, and when the single mirror has the second reflecting surface angle, the light source The light emitted from the light and focused by the light focusing means is reflected by the single mirror so as to enter from the entrance slit .
上記のような特徴構成を有する本発明に係る分光分析装置によれば、装置本体内に設けた測定光路切替手段を切替え動作するだけで光源からの光を分光分析部に直接に入射させる参照光測定状態が得られるので、参照光測定光路専用の多くの光学素子や光ファイバ、さらには光ファイバ分岐のための特殊な分光器などの使用を省いて、装置全体の低コスト化及び小型化を図ることができる。それでいて、長時間に亘る試料光の連続測定に際して、参照光を定期的あるいは不定期的に測定して試料濃度等の経時変化及び測定環境の温度変化による光学系の変動等に起因する測定誤差を少なくできることと、試料光測定光路及び参照光測定光路それぞれにおける光学素子の曇り度合い、汚れ度合い等の違いによる測定誤差要素も大幅に減少できることとが相俟って、再現精度の非常に高い測定が可能で装置の信頼性を著しく向上することができる。しかも、試料を保持する測定部と光源や分光分析部を備えた装置本体とが第1,第2光ファイバで接続されているのみで、両者(測定部と装置本体)を大きく隔離することができるため、測定部をフローセルタイプにして各種液体試料の測定、例えば半導体工場で用いられる各種洗浄液の配管部に測定部を配置してその洗浄液の濃度管理をインラインで実施するなどインライン型の濃度管理装置として使用することも容易で、装置の用途範囲を拡大することができるという効果を奏する。 According to the spectroscopic analysis apparatus according to the present invention having the above-described characteristic configuration, the reference light that directly causes the light from the light source to enter the spectroscopic analysis section simply by switching the measurement optical path switching means provided in the apparatus main body. Since the measurement state can be obtained, the use of many optical elements and optical fibers dedicated to the reference light measurement optical path, as well as special spectrometers for branching the optical fiber, can be omitted, thereby reducing the overall cost and size of the apparatus. Can be planned. Nevertheless, during continuous measurement of sample light over a long period of time, the reference light is measured periodically or irregularly to eliminate measurement errors caused by changes in the optical system due to changes in the sample concentration, etc. over time, and changes in the temperature of the measurement environment. The measurement error factor due to the difference in the degree of haze and contamination of the optical elements in the sample light measurement optical path and the reference light measurement optical path can be greatly reduced. It is possible and the reliability of the apparatus can be remarkably improved. In addition, the measurement unit that holds the sample and the device main body including the light source and the spectroscopic analysis unit are simply connected by the first and second optical fibers, and the two (the measurement unit and the device main body) can be largely separated. Therefore, it is possible to measure various liquid samples by using a flow cell type measurement unit, for example, in-line concentration management, such as placing a measurement unit in the piping section of various cleaning liquids used in semiconductor factories and managing the concentration of the cleaning liquid inline. It is easy to use as a device, and there is an effect that the application range of the device can be expanded.
本発明に係る分光分析装置では、回動アームを用いて単一ミラーの反射面角度を変更するといった極く簡単な構成手段で測定光路の切替えが行えるので、装置全体の低コスト化、小型化を一層促進することができる。 In the spectroscopic analysis apparatus according to the present invention, since allows to switch the very simple measurement light path configuring means such to modify the reflective surface angle of a single mirror with a rotating arm, the cost of the entire apparatus, downsizing Can be further promoted.
また、上記の単一ミラー方式の測定光路切替手段を採用するにあたって、請求項2に記載のように、その測定光路切替手段を構成する前記アームが、参照光測定状態において第2光ファイバと入射スリットとの間に割り込み第2光ファイバから分光分析部への光路を遮断する姿勢に回動されるように構成することにより、参照光の測定時に試料光測定光路を形成する第2光ファイバから分光分析部へ迷光が入射されることを確実に遮断して、S/Nの高い参照光測定を行え、装置の信頼性を一層向上することができる。
Further, in adopting the measurement optical path switching means of the single mirror system, as described in
さらに、本発明に係る分光分析装置おいて、請求項3に記載のように、測定光路切替手段による試料光測定状態と参照光測定状態との選択切替動作を、予め設定したプログラムに基づいて自動制御されるように構成することによって、長時間に亘って試料光を連続測定するとき、測定対象試料の種類や性状等に対応した適正な周期で参照光を、さらには必要に応じてダーク光も定期的かつ全自動的に測定することができ、測定再現性の更なる向上を図ることができる。また、このような測定状態の切替動作にプログラム制御を導入することにより、特に上述したインライン型の品質管理装置としての有効性を一層高めることができる。
また、請求項4に記載のように、測定光路切替手段が、前記光集束手段による集束光を前記単一ミラーにより光源側に反射させ、試料光及び参照光のいずれも分光分析部に入射させないダーク光測定状態にも切替可能であってもよい。
Further, in the spectroscopic analysis apparatus according to the present invention, as described in
According to a fourth aspect of the present invention, the measurement optical path switching unit reflects the focused light from the light focusing unit to the light source side by the single mirror, and neither the sample light nor the reference light is incident on the spectroscopic analysis unit. It may be possible to switch to the dark light measurement state.
以下、本発明の実施の形態を、図面を参照しながら説明する。
図1は本発明の第一実施例に係る分光分析装置Dの概略構成図であり、この分光分析装置Dは、光源1及びこの光源1から出射された光を集光する集束手段となる第1の集光レンズ3を内蔵する入射光学部2と前記光源1からの光を入射させる入射スリット4及びこのスリット4を経て入射される光を分光し、その分光された各波長の光を検出する多チャンネル検出器5を有する分光分析部6とを備えた装置本体7と、試料8を保持する測定部11とが互いに分離して設けられており、装置本体7側には分光分析装置Dの動作制御及び前記多チャンネル検出器5による検出出力に基づいて吸光度や光透過率などを演算する演算制御部30(コンピュータ)が付設されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a spectroscopic analyzer D according to a first embodiment of the present invention. The spectroscopic analyzer D is a
前記装置本体7側の入射光学部2と前記測定部11との間には、光源1から出射され第1の集光レンズ3で集光された光を入射させて測定部11に伝送し試料8に照射するための第1光ファイバ12が、その両端をファイバホルダ13,14に取付けて架設されているとともに、試料8を透過した試料光Sを入射光学部2に伝送し入射スリット4を経て分光分析部6に入射するための第2光ファイバ15が、その両端をファイバホルダ16,17に取付けて架設されている。
Between the incident
前記第1光ファイバ12の入射光学部2側の端部を取付けるファイバホルダ13には第2の集光レンズ18が保持されているとともに、測定部11側の端部を取付けるファイバホルダ14には第1光ファイバ12を通して伝送されてきた光を平行光束として試料8に照射させる入射レンズ9が保持され、また、前記第2光ファイバ15の測定部11側の端部を取付けるファイバホルダ16には試料8を透過した平行光束の試料光Sを収束してファイバ15端部に入射させる出射レンズ10が保持されているとともに、入射光学部2側の端部を取付けるファイバホルダ17には第2光ファイバ15を通して伝送されてきた試料光Sを入射スリット4上に結像させる集光レンズ19が保持されている。
The fiber holder 13 for attaching the end of the first
前記光源1は、例えばハロゲンランプなどよりなる連続スペクトル光源で、その光放射方向に第1の集光レンズ3が配置されている。
The
前記分光分析部6は、例えばツェルニ・ターナー型で、前記した入射スリット4、多チャンネル検出器5のほかに、凹面ミラーからなるコリメートミラー20と、回折格子21と、凹面ミラーからなるカメラミラー22を備えている。
The
そして、装置本体7における入射光学部2内には、試料光Sを第2光ファイバ15を通して分光分析部6に伝送し入射する試料光測定状態と、光源1からの光を参照光Rとして分光分析部6に直接に入射する参照光測定状態と、試料光S及び参照光Rのいずれも分光分析部6に入射させないダーク光測定状態との三状態に選択切替可能な測定光路切替手段23が設けられている。
Then, in the incident
この測定光路切替手段23は、図4に明示するように、DCモータ等の駆動源(図示省略する)を介して回転軸24の軸心周りを矢印方向に駆動回動可能なアーム25の先端部に単一の反射ミラー26を付設して構成されたもので、前記アーム25の回動により反射ミラー26の反射面26aを、図4のA,B,Cに示す角度に位置変更することにより、前述した試料光測定状態と参照光測定状態とダーク光測定状態との三状態に選択切替可能に構成されている。なお、この測定光路切替手段23は、アーム25の回動により反射ミラー26が参照光測定状態の反射面角度に切替えられたとき、そのアーム25が第2光ファイバ15から分光分析部6への光路を遮断する姿勢に回動するように構成されている。また、上記三状態の光路選択切替動作は、演算制御部30に予め設定入力されたプログラムに基づいて自動制御されるように構成されている。
As clearly shown in FIG. 4, the measurement optical path switching means 23 is provided at the tip of an
次に、上記のように構成された第一実施例の分光分析装置Dによる各光の測定動作について説明する。
試料光Sの測定動作時には、測定光路切替手段23におけるアーム25の回動により、反射ミラー26が図1および図4のAに示す反射面角度に固定される。この状態で、光源1から出射された光は第1の集光レンズ3を通り、反射ミラー26の反射面26aで反射され、かつ、第2の集光レンズ18により集光されて第1光ファイバ12に入射される。その入射された光は第1光ファイバ12を通して測定部11に伝送され、入射レンズ9を経て平行光束として試料8に照射される。試料8を透過した光、つまり、試料光Sは出射レンズ10を経て第2光ファイバ15に入射されて、その第2光ファイバ15を通して装置本体7の入射光学部2にまで伝送されたのち、集光レンズ19によって集光されて分光分析部6の入射スリット4上に結像される。
Next, the measurement operation of each light by the spectroscopic analyzer D of the first embodiment configured as described above will be described.
During the measurement operation of the sample light S, the
そして、入射スリット4上で結像された試料光Sは、コリメートミラー20で平行光束となって、回折格子21に所定の角度で入射して波長ごとに分けられたのち、カメラミラー22に向かい、このカメラミラー22で反射集光された各波長の光は多チャンネル検出器5で検出され、これによって、試料光Sに基づく試料スペクトルI(λ)が得られる。
The sample light S imaged on the entrance slit 4 becomes a parallel light beam by the
参照光Rの測定動作時には、測定光路切替手段23におけるアーム25の回動により、反射ミラー26が図2および図4のBに示す反射面角度に変更され固定される。この状態で、光源1から出射された光は第1の集光レンズ3を通り、反射ミラー26の反射面26aで反射され参照光Rとして分光分析部6の入射スリット4に直接に入射されて該入射スリット4上に結像される。そして、入射スリット4上で結像された参照光Rは、コリメートミラー20で平行光束となって、回折格子21に所定の角度で入射して波長ごとに分けられたのち、カメラミラー22に向かい、このカメラミラー22で反射集光された各波長の光は多チャンネル検出器5で検出され、これによって、参照光Rに基づく参照スペクトルIR(λ)が得られる。
During the measurement operation of the reference light R, the
また、ダーク光の測定動作時には、測定光路切替手段23におけるアーム25の回動により、反射ミラー26が図3および図4のCに示す反射面角度に変更され固定されている。この状態で、光源1から出射された光は反射ミラー26の反射面26aで光源1側に反射されて分光分析部6に入射されることはないが、多チャンネル検出器5及びアンプ(図示省略する)から出るノイズにより、光学系とは無関係なダークスペクトルID(λ)が得られる。
Further, during the measurement operation of dark light, the
なお、上記のようにして行われる各光の測定のうち、試料光Sの測定は、例えば数秒に1回の頻度で定期的に行われ、参照光Rの測定は、例えば10分に1回の頻度で定期的に行われ、ダーク光の測定は、例えば1時間に1回の頻度で定期的に行われるのであり、それら各光の測定動作は、試料8の種類や性状、連続測定時間などに応じて各々適正周期に予め設定されたプログラムに基づいて全自動的に制御される。
Of the light measurements performed as described above, the sample light S is periodically measured, for example, once every few seconds, and the reference light R is measured, for example, once every 10 minutes. The measurement of dark light is periodically performed, for example, once every hour, and the measurement operation of each light is performed in accordance with the type and properties of the
そして、上記の各測定によって得られた試料スペクトルI(λ)、参照スペクトルIR(λ)及びダークスペクトルID(λ)を、演算制御部30に入力してそれらを演算処理することにより、試料セル8における試料の吸光度や光透過率が定性的あるいは定量的に測定し分析されるのであるが、以下、本発明の分光分析装置Dを用いて試料の吸光度を測定する方法について簡単に説明する。
Then, by inputting the sample spectrum I (λ), the reference spectrum I R (λ) and the dark spectrum I D (λ) obtained by each of the above measurements to the
試料の吸光度Abs(λ)は、一般に下記の(1)式で表される。
Abs(λ)=log10{IO(λ)/IS(λ)} …(1)
ここで、IO(λ)は試料への照射光量(スペクトル)、IS(λ)は試料光スペクトルを示す。
The absorbance Abs (λ) of the sample is generally expressed by the following formula (1).
Abs (λ) = log 10 {I O (λ) / I S (λ)} (1)
Here, I O (λ) represents the amount of light irradiated to the sample (spectrum), and I S (λ) represents the sample light spectrum.
そして、本発明の場合、参照スペクトルIR(λ)は、図2に示すように、その測定光路に試料が存在しない状態で得られるため、
IR(λ)=IO(λ) …(2)
となり、上記の式(1)及び(2)から、
Abs(λ)=log10{IR(λ)/IS(λ)} …(3)
なる式が得られる。
In the case of the present invention, the reference spectrum I R (λ) is obtained in a state where no sample exists in the measurement optical path, as shown in FIG.
I R (λ) = I O (λ) (2)
From the above formulas (1) and (2),
Abs (λ) = log 10 {I R (λ) / I S (λ)} (3)
The following formula is obtained.
また、上記のような多チャンネル検出器5を用いる場合、一般に暗電流値はチャンネルごとに異なる。また、チャンネルごとに別のアンプを接続する場合、アンプごとにオフセット電圧が異なる。これら暗電流値やオフセット電圧の差異を補正し、かつ、ダーク光量による測定誤差を打ち消すための吸光度の式は、
Abs(λ)=log10{IR(i)−ID(i)}/{IS(i)−ID(i)} …(4)
となる。ここで、iは、多チャンネル検出器5のチャンネル数で、各波長に対応するものであり、ID(i)はダーク光量(スペクトル)を示す。
When the
Abs (λ) = log 10 {I R (i) −I D (i)} / {I S (i) −I D (i)} (4)
It becomes. Here, i is the number of channels of the
なお、試料が液体であり、その試料液が収容される収容部を有し、この収容部に光を透過可能な窓が設けられているような試料セルを対象とする場合において、上記の(4)式で示される吸光度は、試料セルによる吸光も含んだものであり、試料のみの吸光度を求める式は、
Abs(i,t)=log10〔{IR(i,t)−ID(i,t)}/{IS(i,t)−ID(i,t)}〕−log10〔{IR(i)−ID(i)}/{IAir(i)−ID(i)} …(5)
となる。この(5)式で右辺第1項は、試料の濃度変化に伴い経時変化するので、時間tのパラメータとしている。また、右辺第2項は、試料セルによる吸光を補正するための項であり、固定値である。IAir(i)は、試料セルの収容部内に空気を導入したときのサンプル光量である。
In the case where a sample cell is a liquid and has a storage portion in which the sample solution is stored and a window through which light can be transmitted is provided in the storage portion, the above ( 4) The absorbance indicated by the formula includes the absorbance by the sample cell, and the formula for obtaining the absorbance of only the sample is
Abs (i, t) = log 10 [{I R (i, t) −I D (i, t)} / {I S (i, t) −I D (i, t)}] − log 10 [ {I R (i) -I D (i)} / {I Air (i) -I D (i)} ... (5)
It becomes. In the equation (5), the first term on the right side changes with time as the concentration of the sample changes, and is therefore a parameter for time t. The second term on the right side is a term for correcting light absorption by the sample cell, and is a fixed value. I Air (i) is the amount of sample light when air is introduced into the accommodating portion of the sample cell.
上記のようにして得られる吸光度Abs(λ)またはAbs(i,t)を適宜のデータ処理手法によって処理することにより、試料の吸光度や試料液の濃度を測定することができる。 By processing the absorbance Abs (λ) or Abs (i, t) obtained as described above by an appropriate data processing technique, the absorbance of the sample and the concentration of the sample solution can be measured.
因みに、本発明者は、本発明の分光分析装置Dによる吸光度の長時間に亘る測定時に、定期的に参照光及びダーク光を測定することによって得られる再現精度の効果を立証するために、次のような試験を行った。この試験では、紫外域348.9nm波長の光を照射したとき、約0.1Absの吸光度を有する光学フィルタを供試体(試料)とし、分光分析装置の周囲温度を19〜26℃の範囲で変化させて10時間連続して供試体の吸光度測定を実施し、その連続測定時間中の10分に1回の割合で参照光及びダーク光を測定した場合と参照光及びダーク光を測定しない場合それぞれの吸光度を測定したところ、図5に示すような結果が得られた。 Incidentally, in order to prove the effect of the reproduction accuracy obtained by periodically measuring the reference light and the dark light at the time of measuring the absorbance by the spectroscopic analyzer D of the present invention over a long period of time, the present inventor The following tests were conducted. In this test, when irradiated with light having a wavelength of 348.9 nm in the ultraviolet region, an optical filter having an absorbance of about 0.1 Abs is used as a specimen (sample), and the ambient temperature of the spectroscopic analyzer is changed in a range of 19 to 26 ° C. The absorbance of the specimen is measured continuously for 10 hours, and when the reference light and dark light are measured at a rate of once every 10 minutes during the continuous measurement time, and when the reference light and dark light are not measured, respectively. As a result, the results as shown in FIG. 5 were obtained.
図5に示す試験結果からも明らかなように、参照光及びダーク光を測定しない場合は、吸光度(Abs)が周囲温度の変化に伴って±0.001Absの範囲で変動するが、10分に1回の割合で参照光及びダーク光を測定した場合は、吸光度(Abs)が周囲温度の変化にかかわらず殆ど変動しないことが分かった。これによって、参照光及びダーク光を定期的に自動測定するシステム構成が採用されている本発明の分光分析装置Dは、長時間に亘る連続測定中に周囲温度の変化により光学系に変動が生じることが不可避な場合であっても、吸光度の測定再現精度を良好に保持し得ることが確認できた。 As is clear from the test results shown in FIG. 5, when the reference light and dark light are not measured, the absorbance (Abs) fluctuates in the range of ± 0.001 Abs as the ambient temperature changes, but in 10 minutes. When the reference light and dark light were measured at a single rate, it was found that the absorbance (Abs) hardly fluctuated regardless of the change in the ambient temperature. As a result, in the spectroscopic analyzer D of the present invention in which the system configuration for automatically measuring the reference light and the dark light periodically is adopted, the optical system fluctuates due to changes in the ambient temperature during continuous measurement over a long period of time. Even if this is unavoidable, it was confirmed that the measurement reproducibility accuracy of the absorbance could be maintained satisfactorily.
ところで、上記した構成からなる本発明の第一実施例に係る分光分析装置においては、装置本体7内に設けた測定光路切替手段23におけるアーム25を回動させて反射ミラー26の反射面角度を変更するだけで光源1からの光を分光分析部6に直接に入射させる参照光測定状態が得られるので、参照光測定光路専用の多くの光学素子や光ファイバ、さらには光ファイバ分岐のための特殊な分光器などの使用を省けて、装置全体の低コスト化及び小型化を図ることができる。
By the way, in the spectroscopic analyzer according to the first embodiment of the present invention having the above-described configuration, the reflection surface angle of the
それでいて、上述の試験結果でも示したように、長時間に亘る連続測定に際しても測定環境の温度変化による光学系の変動等に起因する測定誤差を少なくできることと、使用する光学素子が非常に少なくそれら光学素子の曇り度合い、汚れ度合い等の違いによる測定誤差要素も大幅に減少できることとが相俟って、非常に良好な測定再現性を保つことができて装置の信頼性を著しく向上することができる。 Nevertheless, as shown in the above test results, measurement errors caused by fluctuations in the optical system due to temperature changes in the measurement environment can be reduced even during continuous measurement over a long period of time, and very few optical elements are used. Combined with the fact that measurement error factors due to differences in the degree of fogging, contamination, etc. of the optical element can be greatly reduced, it is possible to maintain very good measurement reproducibility and significantly improve the reliability of the device. it can.
その上、試料8を保持する測定部11と光源1及び分光分析部6を備えた装置本体7とが第1,第2光ファイバ12,15で接続されているのみで、両者11,7を大きく隔離することが可能であるため、測定部11をフローセルタイプにして各種液体試料の測定、例えば半導体工場で用いられる各種洗浄液の配管部に測定部を配置し、光源1にハロゲンランプを用いて紫外あるいは近赤外吸収スペクトルを測定して、予め演算制御部30に記憶されている検量線によって濃度を算出することが可能であり、これによって、前記洗浄液の濃度管理をインラインで実施するインライン型の濃度管理装置として使用することも容易であり、また、小型であるゆえに、工場内の様々な個所に容易に組み込んで使用することもできて、装置の用途範囲の著しい拡大を図ることができる。
In addition, the
また、参照光の測定時(図2参照)には、測定光路切替手段23におけるアーム25が前記第2光ファイバ15から分光分析部6への光路を遮断する姿勢に回動位置されることになるので、第2光ファイバ15から分光分析部6への迷光の入射を確実に遮断することが可能で、S/Nの高い参照光測定を行え、装置の信頼性をより一層向上することができる。
Further, at the time of measuring the reference light (see FIG. 2), the
図6〜図8は本発明の参考例に係る分光分析装置Dの概略構成図であり、この参考例に係る分光分析装置Dは、装置本体7の入射光学部2内に設けられる測定光路切替手段23’として、以下に説明するような構成を採用した点が第一実施例と異なり、その他の構成は第一実施例と同一であるため、装置の要部となる測定光路切替手段23’を内装している入射光学部2のみを図示し、また、それら図中で第一実施例と同一の構成要素には同一の符号を付して、それらの詳しい説明を省略する。
6 to 8 are schematic configuration diagrams of a spectroscopic analysis apparatus D according to a reference example of the present invention. The spectroscopic analysis apparatus D according to this reference example is configured to switch a measurement optical path provided in the incident
光源1からの光放射方向のうち互いに適宜角度を有する二つの光放射方向には、試料光用の光路を形成する集光レンズ3A及び開閉シャッタ27Aと参照光用の光路を形成する集光レンズ3B及び開閉シャッタ27Bが並列的に配置されているとともに、試料光用光路側には光源1から出射され開閉シャッタ27Aを通過した光を第1光ファイバ12側のファイバホルダ13に保持された第2の集光レンズ18に向けて反射させる反射ミラー28Aが固定配置され、かつ、参照光用の光路側には光源1から出射され開閉シャッタ27Bを通過した参照光Rを後述する可動反射ミラー29に向けて反射させる凹面鏡からなる反射ミラー28Bが固定配置されている。
In two light emission directions having an appropriate angle with respect to each other from the light emission directions from the
前記両固定反射ミラー28A,28B間の略中間位置には、DCモータ等の駆動源(図示省略する)を介して回転軸31の軸心周りに正逆駆動回動可能な回動部材32が設けられ、この回動部材32に前記可動反射ミラー29が保持されており、前記回動部材32を正逆駆動回転させることにより、可動反射ミラー29を、その反射面29aが第2光ファイバ15を通じて伝送され集光レンズ19により集光された試料光Sを分光分析部6の入射スリット4に向けて反射させる姿勢となる試料光測定状態と、その反射面29aが前記固定反射ミラー28Bで反射される参照光Rを分光分析部6の入射スリット4に向けて反射させる姿勢となる参照光測定状態とに選択切替可能に構成している。
At a substantially intermediate position between the two fixed reflecting
次に、上記のような構成の測定光路切替手段23’を有する参考例の分光分析装置Dによる各光の測定動作について簡単に説明すると、試料光Sの測定動作時には、シャッタ27Aを開、シャッタ27Bを閉とする一方、可動反射ミラー29を図6に示すような試料光測定状態の姿勢とする。この状態で、光源1から出射された光は集光レンズ3A、シャッタ27Aを通り、固定反射ミラー28Aで反射され、かつ、第2の集光レンズ18により集光されて第1光ファイバ12に入射され、その第1光ファイバ12を通して測定部11に伝送されて試料8に照射される。この試料8を透過した試料光Sは出射レンズ10を経て第2光ファイバ15に入射され、その第2光ファイバ15を通して装置本体7の入射光学部2にまで伝送され、集光レンズ19によって集光されたのち、可動反射ミラー29の反射面29aで反射されて分光分析部6の入射スリット4上に結像される。それ以降は第一実施例と同様な分光及び検出動作によって試料光Sに基づく試料スペクトルI(λ)が得られる。
Next, the measurement operation of each light by the spectroscopic analyzer D of the reference example having the measurement optical path switching means 23 ′ having the above configuration will be briefly described. During the measurement operation of the sample light S, the
また、参照光Rの測定動作時には、シャッタ27Aを閉、シャッタ27Bを開とする一方、可動反射ミラー29を図7に示すような参照光測定状態の姿勢に切替える。この状態で、光源1から出射された光は集光レンズ3B、シャッタ27Bを通り、固定反射ミラー28Bで反射され、さらに、可動反射ミラー29の反射面29aで反射され参照光Rとして分光分析部6の入射スリット4に直接に入射されて該入射スリット4上に結像される。それ以降は第一実施例と同様な分光及び検出動作によって参照光Rに基づく参照スペクトルIR(λ)が得られる。
In the measurement operation of the reference light R, the
さらに、ダーク光の測定動作時には、図8に示すように、両シャッタ27A,27Bが共に閉とされ、光源1から出射された参照光Rも試料光Sも分光分析部6に入射されることなく、多チャンネル検出器5及びアンプ(図示省略する)から出るノイズにより、光学系とは無関係なダークスペクトルID(λ)が得られる。
Further, during the dark light measurement operation, as shown in FIG. 8, both the
上記のようにして行われる各光の測定のうち、試料光Sの測定は、例えば数秒に1回の頻度で定期的に行われ、参照光Rの測定は、例えば10分に1回の頻度で定期的に行われ、ダーク光の測定は、例えば1時間に1回の頻度で定期的に行われること、並びに、それら各測定によって得られた試料スペクトルI(λ)、参照スペクトルIR(λ)及びダークスペクトルID(λ)を演算制御部30に入力してそれらを演算処理することにより、試料8の吸光度や光透過率が定性的あるいは定量的に測定し分析されることは、上記した第一実施例の場合と同様である。また、各光の測定動作を、試料8の種類や性状、連続測定時間などに応じて各々適正周期に予め設定されたプログラムに基づいて全自動的に制御することが望ましいのは当然である。
Among the measurement of each light performed as described above, the measurement of the sample light S is periodically performed, for example, once every few seconds, and the measurement of the reference light R is performed, for example, once every 10 minutes. The measurement of dark light is periodically performed at a frequency of, for example, once every hour, and the sample spectrum I (λ) and the reference spectrum I R ( λ) and the dark spectrum I D (λ) are input to the
ところで、図6〜図8に示したような構成の測定光路切替手段23’を有する参考例の分光分析装置Dにおいても、第一実施例の分光分析装置と同等な測定再現性、インライン型の濃度管理装置等への適用性などの面で優れた効果を発揮することが可能ではあるが、測定光路切替手段として第一実施例に示したような構成のものを用いる場合は、光学素子の使用数の削減により装置全体をより低コスト化、小型化できるとともに、測定状態の切替えも単純であって、インライン型の実施が一層簡単となる。 By the way, also in the spectroscopic analysis apparatus D of the reference example having the measurement optical path switching means 23 ′ having the configuration shown in FIGS. 6 to 8, measurement reproducibility equivalent to that of the spectroscopic analysis apparatus of the first embodiment, in-line type Although it is possible to exert an excellent effect in terms of applicability to a concentration management device, etc., when using the configuration as shown in the first embodiment as the measurement optical path switching means, By reducing the number of uses, the entire apparatus can be reduced in cost and size, and the measurement state can be easily switched, so that the in-line implementation is further simplified.
なお、上記第一実施例の分光分析装置では、例えば半導体工場で用いられる各種洗浄液の濃度管理をインライン型で実施する場合の適用性について説明したが、これ以外に、例えば測定部11に液晶パネルを配置して該液晶パネルの波長毎の光透過率を測定するように構成することにより、液晶パネルの光透過率に関する品質管理等にも適用することができる。 In the spectroscopic analyzer of the first embodiment, the applicability when the concentration management of various cleaning liquids used in, for example, a semiconductor factory is performed in an inline type has been described. By arranging so that the light transmittance of each wavelength of the liquid crystal panel is measured, the present invention can be applied to quality control relating to the light transmittance of the liquid crystal panel.
1 光源
3 集光レンズ(集光手段)
5 多チャンネル検出器
6 分光分析部
7 装置本体
8 試料
11 測定部
12 第1光ファイバ
15 第2光ファイバ
23,23’ 測定光路切替手段
24 回転軸
25 アーム
26,29 反射ミラー
26a,29a 反射面
S 試料光
R 参照光
D 分光分析装置
1
DESCRIPTION OF
Claims (4)
前記装置本体内に、前記光集束手段による集束光を1回反射させて第1光ファイバに入射して試料に照射し、その試料光を第2光ファイバを通して前記分光分析部に伝送し入射する試料光測定状態と、前記集束光の第1光ファイバへの入射を遮断してその集束光からなる参照光を1回反射させて前記分光分析部に直接に入射する参照光測定状態とに選択切替可能な測定光路切替手段が設けられ、
測定光路切替手段が、前記光源の光出射方向から外れた位置にある回転軸の周りに回動可能なアームにおける前記回転軸から離れた位置に、試料光測定状態では集束光を、参照光測定状態では参照光をそれぞれ同一面で反射させる単一ミラーを付設してなり、前記アームの回動により前記単一ミラーを、集束光が第1光ファイバに入射される第1の反射面角度と参照光が入射スリットに直接入射される第2の反射面角度とに位置変更自在に構成され、
前記単一ミラーが前記第1の反射面角度をとるときは、前記光源から出射され前記光集束手段により集束された光が該単一ミラーに反射されて第1光ファイバに入射した後、試料を透過し第2光ファイバを経て入射スリットから入射し、前記単一ミラーが前記第2の反射面角度をとるときは、前記光源から出射され前記光集束手段により集束された光が該単一ミラーに反射されて入射スリットから入射するようにしたものであることを特徴とする分光分析装置。 Light source and spectrally the light incident through the entrance slit and the incident slit light is incident from the light focusing means for focusing the light emitted the light source from the light source, and the light of each wavelength that the spectral The apparatus main body having a spectroscopic analysis unit having a detector for detecting the light and the measurement unit for holding the sample are provided separately, and the light focused by the light focusing unit is transmitted to the measurement unit The first optical fiber for irradiating the sample is attached to a position deviated from the light emitting direction of the light source with respect to the apparatus main body, and further, the sample light transmitted through the sample is transmitted to the apparatus main body, A second optical fiber that is emitted toward the entrance slit of the spectroscopic analysis unit is attached,
In the apparatus main body, the light focused by the light focusing means is reflected once and incident on the first optical fiber to irradiate the sample, and the sample light is transmitted to the spectroscopic analysis unit through the second optical fiber and incident. Select between the sample light measurement state and the reference light measurement state in which the focused light is blocked from entering the first optical fiber and the reference light composed of the focused light is reflected once and directly incident on the spectroscopic analysis unit. A switchable measuring optical path switching means is provided,
The measurement light path switching means measures the reference light in the sample light measurement state at a position away from the rotation axis in the arm that can be rotated around the rotation axis at a position deviated from the light emission direction of the light source. In the state, a single mirror is provided for reflecting the reference light on the same surface, and the single mirror is rotated by the arm and the angle of the first reflecting surface on which the focused light is incident on the first optical fiber. The reference light is configured to be freely changeable in position to a second reflecting surface angle at which the reference light is directly incident on the incident slit ,
When the single mirror has the first reflecting surface angle, the light emitted from the light source and focused by the light focusing means is reflected by the single mirror and enters the first optical fiber, and then the sample When the single mirror takes the second reflecting surface angle through the second optical fiber through the second optical fiber, the light emitted from the light source and focused by the light focusing means is the single light. A spectroscopic analyzer characterized by being reflected by a mirror and entering from an entrance slit .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003399704A JP4486805B2 (en) | 2003-11-28 | 2003-11-28 | Spectroscopic analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003399704A JP4486805B2 (en) | 2003-11-28 | 2003-11-28 | Spectroscopic analyzer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005164255A JP2005164255A (en) | 2005-06-23 |
JP4486805B2 true JP4486805B2 (en) | 2010-06-23 |
Family
ID=34724175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003399704A Expired - Lifetime JP4486805B2 (en) | 2003-11-28 | 2003-11-28 | Spectroscopic analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4486805B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4658917B2 (en) * | 2006-12-28 | 2011-03-23 | 株式会社堀場製作所 | Analysis equipment for semiconductor manufacturing systems |
JP2011064676A (en) | 2009-08-18 | 2011-03-31 | Horiba Ltd | Analysis device |
WO2021215034A1 (en) * | 2020-04-23 | 2021-10-28 | 株式会社島津製作所 | Spectrometry device |
CN116359132B (en) * | 2023-05-19 | 2023-08-15 | 无锡迅杰光远科技有限公司 | Multifunctional on-line spectrum acquisition device |
-
2003
- 2003-11-28 JP JP2003399704A patent/JP4486805B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005164255A (en) | 2005-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4880791B2 (en) | System for measuring the polarimeter spectrum and other properties of a sample | |
US4771629A (en) | System for chemical analysis | |
RU2437719C2 (en) | Apparatus and method for spectrophotometric analysis | |
JP4791625B2 (en) | Spectrophotometric / turbidimetric detection unit | |
US9448161B2 (en) | Optical device, particularly a polarimeter, for detecting inhomogeneities in a sample | |
JP2010517043A (en) | Chemical analyzers for industrial process control | |
JP2003513236A (en) | Built-in optical probe for spectroscopic analysis | |
AU2005311440B2 (en) | Spectrophotometer | |
US20130276509A1 (en) | Optical gas analyzer device having means for calibrating the frequency spectrum | |
WO2007121593A1 (en) | Method for measurement and determination of concentration within a mixed medium | |
JP4486805B2 (en) | Spectroscopic analyzer | |
EP0176826A2 (en) | Method and apparatus for dual-beam spectral transmission measurements | |
US20170045397A1 (en) | Device for analysing a specimen and corresponding method | |
EP3652511B1 (en) | Advanced reference detector for infrared spectroscopy | |
JP2000206037A (en) | Spectroscopic analytical method | |
US7227642B2 (en) | Absorbance monitor | |
KR100403440B1 (en) | Spectral analysis apparatus | |
JPH0580981B2 (en) | ||
US20130016343A1 (en) | Referenced and stabilized optical measurement system | |
JP2007040981A (en) | Method and device for measuring wafer temperature | |
JP2006242902A (en) | Bio-sensing device | |
US6870617B2 (en) | Accurate small-spot spectrometry systems and methods | |
JP2010249726A (en) | Gas analyzer | |
US6842251B1 (en) | Configurable metrology device that operates in reflectance mode, transmittance mode, or mixed mode | |
JP2000329682A (en) | Analyzer for simultaneous execution of raman spectroscopic analysis and particle size distribution measurement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060320 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090113 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090316 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090811 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20091006 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091013 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100309 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100329 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4486805 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130402 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130402 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130402 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130402 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140402 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |