WO2021215034A1 - Spectrometry device - Google Patents

Spectrometry device Download PDF

Info

Publication number
WO2021215034A1
WO2021215034A1 PCT/JP2020/041172 JP2020041172W WO2021215034A1 WO 2021215034 A1 WO2021215034 A1 WO 2021215034A1 JP 2020041172 W JP2020041172 W JP 2020041172W WO 2021215034 A1 WO2021215034 A1 WO 2021215034A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffraction grating
light
detection unit
holding portion
wavelength
Prior art date
Application number
PCT/JP2020/041172
Other languages
French (fr)
Japanese (ja)
Inventor
亮二 平岡
善央 米澤
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Publication of WO2021215034A1 publication Critical patent/WO2021215034A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors

Definitions

  • the present invention relates to a spectroscopic measuring device.
  • the light to be measured is introduced into a spectroscope to disperse the wavelength, and the wavelength-dispersed light is introduced into a detector for detection.
  • a spectroscopic measuring device using a Zellniterner type spectroscope as disclosed in Patent Document 1 the wavelength of light reaching the detector is scanned by rotating the diffraction grating included in the spectroscope. It is possible to obtain a light intensity distribution over a predetermined wavelength range, that is, an optical spectrum.
  • the detector used for spectroscopic measurement outputs a very small level detection signal, so-called dark current signal, even when no light is incident. Therefore, in order to obtain an accurate optical spectrum, it is necessary to remove the influence of the dark current signal, and it is common to make corrections based on the dark current signal measured without light incident on the detector. ..
  • the measurement of such a dark current signal is called a dark measurement.
  • Patent Document 2 in many cases, in a conventional spectroscopic measuring device, in order to block the light incident on the detector during dark measurement, from the light source or input end of the light to be measured to the detector.
  • a shutter is provided on the optical path of.
  • the widely used shutter is a mechanical shutter, which requires an electric circuit such as a motor driver or a controller in addition to a motor for moving a movable body which is a shutter body.
  • Providing such parts such as a motor for a shutter only for dark measurement is an obstacle in reducing the cost of the spectroscopic measuring device.
  • the present invention has been made to solve these problems, and an object of the present invention is spectroscopic measurement capable of simplifying the configuration for dark measurement, reducing the cost, and reducing the size and weight of the device. To provide the device.
  • a diffraction grating that disperses the light to be measured in wavelength
  • a detection unit that detects light wavelength-dispersed by the diffraction grating directly or via one or more optical elements.
  • the light to be measured travels toward the diffraction grating while rotating the diffraction grating or the holding portion holding the diffraction grating so that the wavelength or wavelength range of the light reaching the detection unit changes.
  • a rotating portion that rotates the diffraction grating or the holding portion to a predetermined position so that the light does not face the detecting portion. Is provided.
  • the "light to be measured” here is the light itself given from the outside.
  • the above-mentioned “measured light” is the transmitted light and the reflected light.
  • the above-mentioned "light to be measured” is the light itself emitted from the light source. Is.
  • the rotating portion may include a motor, a drive circuit thereof, and the like. Similar to a general spectroscopic measuring device, when scanning a wavelength for spectroscopic measurement, the diffraction grating (or holding portion) is rotated by a rotating portion, so that the diffraction grating with respect to the light incident on the diffraction grating is displayed. The angle of the diffraction grating is changed. In the spectroscopic measuring apparatus of the above aspect according to the present invention, this rotating portion is used for dark measurement in addition to wavelength scanning for normal spectroscopic measurement.
  • the diffraction grating (or holding portion) is rotated by the rotating portion to a predetermined position beyond the rotation range at the time of normal spectroscopic measurement. ..
  • the light to be measured traveling toward the diffraction grating from the front stage portion of the diffraction grating, for example, a reflecting mirror or a slit does not hit the diffraction grating or even if it hits the diffraction plane.
  • the diffracted light goes in a direction different from that at the time of normal spectroscopic measurement, and finally does not reach the detection unit. That is, the diffraction grating or the holding portion rotated to a predetermined position at the time of dark measurement has a function of blocking the light incident on the detecting portion, similarly to the shutter.
  • a shutter for blocking light reaching the detection unit for dark measurement a drive mechanism such as a motor for operating the shutter, a drive circuit, and the like, etc. It is not necessary to provide an electric circuit exclusively for dark measurement. Therefore, such members and electric circuits can be removed from the conventional spectroscopic measurement device, and the cost of the device can be reduced and the size and weight of the device can be reduced.
  • the schematic block diagram of the diffraction grating rotating part in the multi-channel spectroscope which is one Embodiment of the spectroscopic measurement apparatus which concerns on this invention.
  • the block diagram of the main part of the multi-channel spectroscope of this embodiment The figure which shows the structure at the time of dark measurement in the multi-channel spectroscope of this embodiment.
  • the block diagram of the main part of the spectroscope which is another embodiment.
  • FIG. 2 is a block diagram of a main part of the multi-channel spectroscope of the present embodiment. This figure shows the arrangement of the main optical elements during normal measurement.
  • This multi-channel spectroscope measures the wavelength distribution of the light intensity of the input light to be measured, that is, the light spectrum, and is an optical input connector 1 for connecting an optical fiber for light input to be measured, an incident optical system. 2.
  • the spectroscopic unit 3 and the detection unit 4 are provided.
  • the spectroscopic unit 3 is a Zellni-Turner type spectroscope, and includes an incident slit 30, a first concave mirror 31, a diffraction grating 32, and a second concave mirror 33. Further, the detection unit 4 is a linear sensor in which a large number of light receiving elements are arranged in the wavelength dispersion direction so that light in a predetermined wavelength range can be detected all at once.
  • FIG. 1 is a schematic configuration diagram of a rotating portion that rotates the diffraction grating 32.
  • the flat plate-shaped diffraction grating 32 is held by the holder 301, and the holder 301 is fixed at a predetermined position on the rotary table 300 which is rotationally driven by the motor 303.
  • the motor drive unit 304 drives the motor 303, thereby rotating the rotary table 300.
  • a diffraction grating 32 is attached to the front surface of the holder 301, and an antireflection portion 302 is formed on the back surface of the holder 301.
  • the antireflection portion 302 can be provided, for example, by attaching an antireflection sheet to the member of the holder 301 or forming an antireflection film on the surface of the member of the holder 301.
  • the control unit 305 can use a computer (including a microcomputer) including a CPU or the like as a hardware resource and perform the following control operations according to the software installed in the computer.
  • a computer including a microcomputer
  • CPU central processing unit
  • a normal measurement operation in the multi-channel spectroscope of the present embodiment will be described with reference to FIGS. 1 and 2.
  • an optical fiber for inputting the light to be measured is connected to the optical input connector 1.
  • the control unit 305 operates the motor 303 to move the rotary table 300 to a predetermined initial position so that the diffraction surface of the diffraction grating 32 has a predetermined angle with respect to the first concave mirror 31.
  • the light to be measured such as laser light is introduced into the apparatus through the optical fiber, the light to be measured is collected by the incident optical system 2 and introduced into the spectroscopic unit 3 through the incident slit 30.
  • the light to be measured hits the first concave mirror 31 in the spectroscopic unit 3, is reflected, and travels toward the diffraction surface of the diffraction grating 32.
  • the light to be measured at this time is substantially parallel light.
  • the light to be measured that hits the diffraction surface of the diffraction grating 32 is wavelength-dispersed and sent to the second concave mirror 33.
  • the wavelength-dispersed light that hits the second concave mirror 33 is reflected while being converged, and reaches each light receiving element of the detection unit 4. Light of different wavelengths reaches each light receiving element of the detection unit 4 within a predetermined wavelength range ⁇ 1 to ⁇ 2.
  • Each light receiving element outputs a detection signal according to the intensity of the incident light.
  • This detection signal corresponds to the spectrum of light in the wavelength range ⁇ 1 to ⁇ 2. Therefore, the spectrum of light within that wavelength range can be obtained in real time.
  • the signal processing unit (not shown) stores the detection signal thus obtained by each light receiving element of the detection unit 4.
  • the signal processing unit may be provided in the multi-channel spectroscope or may be externally provided.
  • the control unit 305 drives the motor 303 via the motor drive unit 304 and rotates the rotary table 300 by a predetermined angle. Move it. Then, the angle of the diffraction grating 32 with respect to the light to be measured coming from the first concave mirror 31 changes, and the wavelength range of the wavelength-dispersed light sent from the diffraction grating 32 to the second concave mirror 33 changes. Therefore, the detection unit 4 can obtain a detection signal for light in a wavelength range (for example, ⁇ 2 to ⁇ 3) different from the wavelength range ⁇ 1 to ⁇ 2.
  • the detection signal obtained as described above includes the dark current signal of the linear sensor itself of the detection unit 4. Therefore, it is necessary to measure the dark current signal in order to obtain an accurate optical spectrum. The operation at the time of dark measurement for that purpose will be described with reference to FIG.
  • the control unit 305 operates the motor 303 via the motor drive unit 304 so that the antireflection unit 302 on the back side of the holder 301 points to the reflection surface of the first concave mirror 31.
  • the rotation angle of the rotary table 300 is determined so that the light to be measured coming from the first concave mirror 31 is incident on the planar antireflection portion 302 at a substantially right angle.
  • the light to be measured from the first concave mirror 31 toward the diffraction grating 32 hits the antireflection section 302 instead of the diffraction grating, and most of it is absorbed by the antireflection section 302.
  • the antireflection unit 302 does not always absorb 100% of the incident light, and some of the incident light may be reflected or scattered. In that case, most of the light reflected or scattered by the antireflection unit 302 passes through a path opposite to that of the incident light, returns to the first concave mirror 31, and is reflected in the direction of the incident slit 30. If the light returned to the vicinity of the incident slit 30 hits a part other than the opening (light-shielding portion) of the incident slit 30 and is reflected, it may become stray light and finally reach the detection unit 4.
  • the antireflection portion 34 is also provided on the back surface side (opposite side of the incident optical system 2) of the incident slit 30. Therefore, most of the light except the light that returns in the direction of the incident slit 30 and passes through the opening is absorbed by the antireflection portion 34. Thereby, it is possible to substantially prevent the return light from becoming a stray light.
  • the light to be measured traveling from the first concave mirror 31 toward the diffraction grating 32 does not reach the detection unit 4. Further, even a small amount of light to be measured reflected by the antireflection unit 302 is less likely to become stray light. Thereby, in the multi-channel spectroscope of the present embodiment, the dark current signal can be accurately measured at the time of dark measurement, and the optical spectrum of the light to be measured can be accurately obtained.
  • the light to be measured coming from the first concave mirror 31 is incident on the antireflection portion 302 at a substantially right angle, but the light to be measured coming from the first concave mirror 31 is the second. It suffices if it is possible to avoid heading toward the concave mirror 33 or directly toward the detection unit 4.
  • the angle at which the light to be measured coming from the first concave mirror 31 enters the antireflection portion 302 is not limited to a right angle, and can be appropriately changed within a range satisfying the above conditions.
  • the antireflection unit 302 is not provided on the back surface of the holder 301, and a structure is adopted so that the light to be measured that hits the holder 301 or the diffraction grating 32 does not finally reach the detection unit 4, or the holder 301 or the diffraction grating 32 is diffracted. Control may be performed so that the light to be measured that hits the grating 32 and is reflected does not finally reach the detection unit 4.
  • the rotation position of the rotary table 300 may be set so that the light to be measured that hits the back surface of the holder 301 is directed in a direction other than the second concave mirror 33 and the detection unit 4. Further, even if the light to be measured coming from the first concave mirror 31 hits the diffraction grating 32, if it is possible to prevent the diffracted light from heading toward the second concave mirror 33 or directly toward the detection unit 4. , Such a configuration can also be adopted.
  • This spectroscope includes an incident slit 50, a concave diffraction grating 52, an exit slit 55, and a detection unit 56.
  • the concave diffraction grating 52 is held by the holder 53, and an antireflection portion 54 is provided on the back surface of the holder 53. Further, an antireflection portion 51 is also provided on the back surface of the incident slit 50.
  • the light to be measured introduced through the incident slit 50 hits the diffraction surface of the concave diffraction grating 52, and the wavelength-dispersed light heads toward the exit slit 55. Only light of a specific wavelength passes through the exit slit 55, enters the detection unit 56, and is detected.
  • the holder 53 for holding the concave diffraction grating 52 is installed on a rotary table (not shown), and when the rotary table is rotated, the concave diffraction grating 52 rotates and is taken out from the exit slit 55.
  • the wavelength of light changes. That is, wavelength scanning can be performed by rotating the concave diffraction grating 52.
  • the rotary table is rotated so that the antireflection portion 54 on the back surface of the holder 53 points toward the incident slit 50 (so that it is at the position of the holder 53A shown by the dotted line in FIG. 4) as in the above embodiment.
  • the light to be measured coming from the incident slit 50 hits the antireflection portion 54, and most of it is absorbed.
  • the antireflection unit 54 most of the reflected light hits the antireflection unit 51 and is absorbed.
  • this spectroscope is also capable of the various modifications mentioned in the above embodiment.
  • the present invention can also be applied to a spectroscopic measuring device for acquisition. That is, the present invention can be applied to any spectroscopic measuring device provided with a spectroscope including a diffraction grating and having a configuration in which the diffraction grating is rotated for wavelength scanning.
  • One aspect of the spectroscopic measuring apparatus is A diffraction grating that disperses the incident light in wavelength, A detection unit that detects light wavelength-dispersed by the diffraction grating directly or via one or more optical elements.
  • the diffraction grating or the holding portion holding the diffraction grating is rotated so that the wavelength or wavelength range of the light reaching the detection unit changes, and the light traveling toward the diffraction grating during dark measurement is detected.
  • a rotating part that rotates the diffraction grating or the holding part to a predetermined position so as not to face the part. Is provided.
  • the function of shading at the time of dark measurement can be realized by utilizing the rotation mechanism and the circuit of the diffraction grating for wavelength scanning. Therefore, according to the spectroscopic measuring apparatus of the above aspect according to the present invention, a shutter for blocking light reaching the detection unit for dark measurement, a drive mechanism such as a motor for operating the shutter, and an electric circuit such as a drive circuit. It is not necessary to provide such as exclusively for dark measurement. Therefore, such members and electric circuits can be removed from the conventional spectroscopic measurement device, and the cost of the device can be reduced and the size and weight of the device can be reduced.
  • the spectroscopic measurement device is a position in the diffraction grating or the holding portion where light reaches when the diffraction grating or the holding portion is rotated to the predetermined position.
  • An antireflection portion may be provided.
  • the antireflection portion comes to the position where the light to be measured reaches.
  • the light to be measured is blocked by this antireflection unit, and the light to be measured does not enter the detection unit.
  • the reflection of the light to be measured traveling toward the diffraction grating can be eliminated or reduced, so that the stray light can be eliminated or suppressed. Thereby, the light incident on the detection unit at the time of dark measurement can be reduced, and the dark current signal can be lowered.
  • the spectroscopic measuring apparatus According to the spectroscopic measuring apparatus according to the third item, even if there is reflection of the light to be measured traveling toward the diffraction grating, the reflected light returns in the reverse direction of the light path of the incident light, so that other than that. Compared with the case where the light is reflected in the direction, the possibility of reaching the detection unit as stray light can be reduced.
  • the light reflected by the diffraction grating or the holding portion and returned in a state where the diffraction grating or the holding portion is rotated to the predetermined position is emitted.
  • Antireflections may be provided at least in part of the reachable positions.
  • the antireflection unit can absorb the light that has returned by substantially reversing the optical path of the incident light to the diffraction grating. Thereby, the possibility that such return light reaches the detection unit as stray light can be further reduced.
  • the spectroscopic measuring apparatus has a Zellnitner type spectroscope in which mirrors are arranged in the front stage and the rear stage of the diffraction grating, respectively. can do.
  • the detection unit is an array-type detector that simultaneously detects light in a predetermined wavelength range
  • the rotating unit is a rotating unit during normal measurement.
  • the spectrum of light in a wide wavelength range can be acquired in real time, and the accuracy of the spectrum can be improved by using a highly accurate dark current signal. Can be done.

Abstract

One aspect of a spectrometry device according to the present invention is provided with: a diffraction grating (32) which carries out wavelength dispersion of incident light; a detection unit (4) which detects, directly or via a plurality of optical elements, light which has been subjected to wavelength dispersion by the diffraction grating; and rotation units (305-303) which rotate the diffraction grating (32) or a retention unit (301) that retains the diffraction grating such that the wavelength or range of wavelengths of the light reaching the detection unit changes, and which rotate the diffraction grating or the retention unit up to a prescribed position such that the light propagated towards the diffraction grating is not directed at the detection unit during dark measurement. According to the spectrometry device of the present aspect, the configuration for dark measurement can be simplified to reduce costs and make the device smaller and lighter.

Description

分光測定装置Spectroscopy device
 本発明は分光測定装置に関する。 The present invention relates to a spectroscopic measuring device.
 一般的な分光測定装置では、被測定光を分光器に導入して波長分散し、その波長分散光を検出器に導入して検出する。例えば特許文献1に開示されているような、ツェルニターナー型分光器を使用した分光測定装置では、分光器に含まれる回折格子を回動させることで検出器に到達する光の波長を走査することができ、所定波長範囲に亘る光の強度分布、つまりは光スペクトルを得ることができる。 In a general spectroscopic measuring device, the light to be measured is introduced into a spectroscope to disperse the wavelength, and the wavelength-dispersed light is introduced into a detector for detection. For example, in a spectroscopic measuring device using a Zellniterner type spectroscope as disclosed in Patent Document 1, the wavelength of light reaching the detector is scanned by rotating the diffraction grating included in the spectroscope. It is possible to obtain a light intensity distribution over a predetermined wavelength range, that is, an optical spectrum.
 分光測定に使用される検出器は、光が全く入射しない状態でも、ごく小さなレベルの検出信号、いわゆる暗電流信号を出力する。そのため、正確な光スペクトルを得るには、暗電流信号の影響を除去する必要があり、検出器に光が入射しない状態で測定された暗電流信号に基く補正が行われるのが一般的である。こうした暗電流信号の測定はダーク測定と呼ばれる。 The detector used for spectroscopic measurement outputs a very small level detection signal, so-called dark current signal, even when no light is incident. Therefore, in order to obtain an accurate optical spectrum, it is necessary to remove the influence of the dark current signal, and it is common to make corrections based on the dark current signal measured without light incident on the detector. .. The measurement of such a dark current signal is called a dark measurement.
 特許文献2に記載されているように、従来の分光測定装置では多くの場合、ダーク測定時に検出器に入射する光を遮断するために、被測定光の光源や入力端から検出器に至るまでの光路上にシャッタが設けられている。 As described in Patent Document 2, in many cases, in a conventional spectroscopic measuring device, in order to block the light incident on the detector during dark measurement, from the light source or input end of the light to be measured to the detector. A shutter is provided on the optical path of.
特開2001-141565号公報Japanese Unexamined Patent Publication No. 2001-141565 特開2009-115695号公報JP-A-2009-115695
 従来、広く利用されているシャッタはメカニカルなシャッタであり、シャッタ本体である可動体を移動させるためのモータのほか、モータドライバやコントローラ等の電気回路が必要である。こうしたシャッタ用のモータ等の部品をダーク測定のためだけに設けることは、分光測定装置のコスト削減を図るうえで障害である。また、シャッタ本体やモータなどを配置するスペースを確保する必要があり、これが分光測定装置を小形化、軽量化するうえでの一つの障害である。 Conventionally, the widely used shutter is a mechanical shutter, which requires an electric circuit such as a motor driver or a controller in addition to a motor for moving a movable body which is a shutter body. Providing such parts such as a motor for a shutter only for dark measurement is an obstacle in reducing the cost of the spectroscopic measuring device. In addition, it is necessary to secure a space for arranging the shutter body, the motor, and the like, which is one of the obstacles in reducing the size and weight of the spectroscopic measuring device.
 本発明はこうした課題を解決するためになされたものであり、その目的とするところは、ダーク測定のための構成を簡素化してコストの削減や装置の小形・軽量化を図ることができる分光測定装置を提供することである。 The present invention has been made to solve these problems, and an object of the present invention is spectroscopic measurement capable of simplifying the configuration for dark measurement, reducing the cost, and reducing the size and weight of the device. To provide the device.
 上記課題を解決するために成された本発明に係る分光測定装置の一態様は、
 被測定光を波長分散する回折格子と、
 前記回折格子で波長分散された光を直接又は一若しくは複数の光学要素を介して検出する検出部と、
 前記検出部に到達する光の波長又は波長範囲が変化するように前記回折格子又は該回折格子を保持する保持部を回動させるとともに、ダーク測定時に、前記回折格子に向かって進行する被測定光が前記検出部に向かわないように所定の位置まで該回折格子又は前記保持部を回動させる回動部と、
 を備えるものである。
One aspect of the spectroscopic measuring apparatus according to the present invention made to solve the above problems is
A diffraction grating that disperses the light to be measured in wavelength,
A detection unit that detects light wavelength-dispersed by the diffraction grating directly or via one or more optical elements.
The light to be measured travels toward the diffraction grating while rotating the diffraction grating or the holding portion holding the diffraction grating so that the wavelength or wavelength range of the light reaching the detection unit changes. A rotating portion that rotates the diffraction grating or the holding portion to a predetermined position so that the light does not face the detecting portion.
Is provided.
 外部から与えられた光のスペクトルを取得する場合、ここでいう「被測定光」とはその外部から与えられた光そのものである。また、光源から発せられた光を試料に照射し、該試料からの透過光や反射光、散乱光、蛍光などを分光測定する場合には、上記「被測定光」とはその透過光、反射光、散乱光、蛍光などである。さらにまた、光源から発せられた光を分光して単色化して試料に照射し、その透過光や反射光などを検出する場合には、上記「被測定光」とは光源から放出された光自体である。 When acquiring the spectrum of light given from the outside, the "light to be measured" here is the light itself given from the outside. Further, when the sample is irradiated with the light emitted from the light source and the transmitted light, the reflected light, the scattered light, the fluorescence, etc. from the sample are spectrally measured, the above-mentioned "measured light" is the transmitted light and the reflected light. Light, scattered light, fluorescence, etc. Furthermore, when the light emitted from the light source is dispersed and monochromaticized to irradiate the sample and the transmitted light or reflected light is detected, the above-mentioned "light to be measured" is the light itself emitted from the light source. Is.
 本発明に係る上記態様の分光測定装置において、回動部はモータやその駆動回路などを含むものとすることができる。一般的な分光測定装置と同様に、分光測定のための波長走査の際には、回動部により回折格子(又は保持部)が回動され、それによって回折格子に入射する光に対する回折格子の回折面の角度が変更される。本発明に係る上記態様の分光測定装置では、この回動部が通常の分光測定のための波長走査のほかに、ダーク測定に利用される。 In the spectroscopic measuring device of the above aspect according to the present invention, the rotating portion may include a motor, a drive circuit thereof, and the like. Similar to a general spectroscopic measuring device, when scanning a wavelength for spectroscopic measurement, the diffraction grating (or holding portion) is rotated by a rotating portion, so that the diffraction grating with respect to the light incident on the diffraction grating is displayed. The angle of the diffraction grating is changed. In the spectroscopic measuring apparatus of the above aspect according to the present invention, this rotating portion is used for dark measurement in addition to wavelength scanning for normal spectroscopic measurement.
 本発明に係る上記態様の分光測定装置では、ダーク測定時に、回折格子(又は保持部)は回動部により、通常の分光測定の際の回動範囲を超えた所定の位置まで回動される。その状態において、回折格子の前段部、例えば反射鏡やスリットなどから回折格子に向かって進行してくる被測定光は、回折格子の回折面に当たらないか、或いは、回折面に当たったとしても回折光(波長分散光)が通常の分光測定時とは異なる方向に向かい、最終的に検出部にまで到達しない。即ち、ダーク測定時に所定の位置まで回動された回折格子又は保持部は、シャッタと同様に、検出部に入射する光を遮断する機能を有する。 In the spectroscopic measuring apparatus of the above aspect according to the present invention, at the time of dark measurement, the diffraction grating (or holding portion) is rotated by the rotating portion to a predetermined position beyond the rotation range at the time of normal spectroscopic measurement. .. In that state, the light to be measured traveling toward the diffraction grating from the front stage portion of the diffraction grating, for example, a reflecting mirror or a slit, does not hit the diffraction grating or even if it hits the diffraction plane. The diffracted light (wavelength dispersed light) goes in a direction different from that at the time of normal spectroscopic measurement, and finally does not reach the detection unit. That is, the diffraction grating or the holding portion rotated to a predetermined position at the time of dark measurement has a function of blocking the light incident on the detecting portion, similarly to the shutter.
 したがって、本発明に係る上記態様の分光測定装置によれば、ダーク測定のために検出部に到達する光を遮断するためのシャッタ、それを動作させるモータ等の駆動機構、さらにはドライブ回路などの電気回路を、ダーク測定専用に設ける必要がない。そのため、従来の分光測定装置から、こうした部材や電気回路などを取り除くことができ、装置のコスト削減や、装置の小形・軽量化を図ることができる。 Therefore, according to the spectroscopic measuring apparatus of the above aspect according to the present invention, a shutter for blocking light reaching the detection unit for dark measurement, a drive mechanism such as a motor for operating the shutter, a drive circuit, and the like, etc. It is not necessary to provide an electric circuit exclusively for dark measurement. Therefore, such members and electric circuits can be removed from the conventional spectroscopic measurement device, and the cost of the device can be reduced and the size and weight of the device can be reduced.
本発明に係る分光測定装置の一実施形態であるマルチチャンネル分光器における回折格子回動部の概略構成図。The schematic block diagram of the diffraction grating rotating part in the multi-channel spectroscope which is one Embodiment of the spectroscopic measurement apparatus which concerns on this invention. 本実施形態のマルチチャンネル分光器の要部の構成図。The block diagram of the main part of the multi-channel spectroscope of this embodiment. 本実施形態のマルチチャンネル分光器におけるダーク測定時の構成を示す図。The figure which shows the structure at the time of dark measurement in the multi-channel spectroscope of this embodiment. 他の実施形態である分光器の要部の構成図。The block diagram of the main part of the spectroscope which is another embodiment.
 以下、本発明に係る分光測定装置の一実施形態であるマルチチャンネル分光器について、添付図面を参照して説明する。 Hereinafter, a multi-channel spectroscope, which is an embodiment of the spectroscopic measuring apparatus according to the present invention, will be described with reference to the attached drawings.
 図2は、本実施形態のマルチチャンネル分光器の要部の構成図である。この図は、通常測定時における主要な光学要素の配置を示している。
 このマルチチャンネル分光器は、入力された被測定光の光強度の波長分布、つまりは光スペクトルを測定するものであり、被測定光入力用の光ファイバを接続する光入力コネクタ1、入射光学系2、分光部3、及び検出部4、を備える。
FIG. 2 is a block diagram of a main part of the multi-channel spectroscope of the present embodiment. This figure shows the arrangement of the main optical elements during normal measurement.
This multi-channel spectroscope measures the wavelength distribution of the light intensity of the input light to be measured, that is, the light spectrum, and is an optical input connector 1 for connecting an optical fiber for light input to be measured, an incident optical system. 2. The spectroscopic unit 3 and the detection unit 4 are provided.
 分光部3はツェル二ターナー型分光器であり、入射スリット30、第1凹面鏡31、回折格子32、及び第2凹面鏡33、を含む。また、検出部4は、所定の波長範囲の光を一斉に検出可能であるように、波長分散方向に多数の受光素子が配置されたリニアセンサである。 The spectroscopic unit 3 is a Zellni-Turner type spectroscope, and includes an incident slit 30, a first concave mirror 31, a diffraction grating 32, and a second concave mirror 33. Further, the detection unit 4 is a linear sensor in which a large number of light receiving elements are arranged in the wavelength dispersion direction so that light in a predetermined wavelength range can be detected all at once.
 図1は、回折格子32を回動させる回動部の概略構成図である。
 図1に示すように、平板状の回折格子32はホルダ301に保持され、このホルダ301はモータ303により回転駆動される回転台300上の所定位置に固定されている。制御部305による制御信号の下で、モータ駆動部304はモータ303を駆動し、それによって回転台300を回動させる。
FIG. 1 is a schematic configuration diagram of a rotating portion that rotates the diffraction grating 32.
As shown in FIG. 1, the flat plate-shaped diffraction grating 32 is held by the holder 301, and the holder 301 is fixed at a predetermined position on the rotary table 300 which is rotationally driven by the motor 303. Under the control signal from the control unit 305, the motor drive unit 304 drives the motor 303, thereby rotating the rotary table 300.
 ホルダ301の前面には回折格子32が取り付けられており、ホルダ301の背面には反射防止部302が形成されている。反射防止部302は例えば、ホルダ301の部材に反射防止シートを貼り付けたり、ホルダ301の部材の表面に反射防止膜を形成したりすることで設けることができる。 A diffraction grating 32 is attached to the front surface of the holder 301, and an antireflection portion 302 is formed on the back surface of the holder 301. The antireflection portion 302 can be provided, for example, by attaching an antireflection sheet to the member of the holder 301 or forming an antireflection film on the surface of the member of the holder 301.
 制御部305は、CPU等から成るコンピュータ(マイクロコンピュータを含む)をハードウェア資源とし、該コンピュータに搭載されたソフトウェアに従って下記のような制御動作を実施するものとすることができる。 The control unit 305 can use a computer (including a microcomputer) including a CPU or the like as a hardware resource and perform the following control operations according to the software installed in the computer.
 本実施形態のマルチチャンネル分光器における通常の測定動作を、図1及び図2を参照して説明する。被測定光の測定時には、該被測定光を入力するための光ファイバが光入力コネクタ1に接続される。
 制御部305は、回折格子32の回折面が第1凹面鏡31に対して所定角度になるように、モータ303を動作させて回転台300を所定の初期位置に移動させる。光ファイバを通してレーザ光等の被測定光が本装置に導入されると、該被測定光は入射光学系2で集光され、入射スリット30を通して分光部3内に導入される。
A normal measurement operation in the multi-channel spectroscope of the present embodiment will be described with reference to FIGS. 1 and 2. When measuring the light to be measured, an optical fiber for inputting the light to be measured is connected to the optical input connector 1.
The control unit 305 operates the motor 303 to move the rotary table 300 to a predetermined initial position so that the diffraction surface of the diffraction grating 32 has a predetermined angle with respect to the first concave mirror 31. When the light to be measured such as laser light is introduced into the apparatus through the optical fiber, the light to be measured is collected by the incident optical system 2 and introduced into the spectroscopic unit 3 through the incident slit 30.
 分光部3内において被測定光は第1凹面鏡31に当たり、反射されて回折格子32の回折面に向かって進行する。このときの被測定光はほぼ平行光である。回折格子32の回折面に当たった被測定光は波長分散され、第2凹面鏡33に送られる。第2凹面鏡33に当たった波長分散光はそれぞれ収束されつつ反射され、検出部4の各受光素子に到達する。検出部4の各受光素子には、所定の波長範囲λ1~λ2内でそれぞれ異なる波長の光が到達する。受光素子はそれぞれ入射した光の強度に応じた検出信号を出力する。この検出信号は、波長範囲λ1~λ2の光のスペクトルに相当する。したがって、その波長範囲内の光のスペクトルをリアルタイムで得ることができる。図示しない信号処理部は、こうして検出部4の各受光素子で得られた検出信号を記憶する。なお、信号処理部は本マルチチャンネル分光器に備えられていてもよいし、外部にあってもよい。 The light to be measured hits the first concave mirror 31 in the spectroscopic unit 3, is reflected, and travels toward the diffraction surface of the diffraction grating 32. The light to be measured at this time is substantially parallel light. The light to be measured that hits the diffraction surface of the diffraction grating 32 is wavelength-dispersed and sent to the second concave mirror 33. The wavelength-dispersed light that hits the second concave mirror 33 is reflected while being converged, and reaches each light receiving element of the detection unit 4. Light of different wavelengths reaches each light receiving element of the detection unit 4 within a predetermined wavelength range λ1 to λ2. Each light receiving element outputs a detection signal according to the intensity of the incident light. This detection signal corresponds to the spectrum of light in the wavelength range λ1 to λ2. Therefore, the spectrum of light within that wavelength range can be obtained in real time. The signal processing unit (not shown) stores the detection signal thus obtained by each light receiving element of the detection unit 4. The signal processing unit may be provided in the multi-channel spectroscope or may be externally provided.
 回折格子32の位置(角度)を固定した状態で所定の波長範囲における検出信号が得られると、制御部305はモータ駆動部304を介してモータ303を駆動し、回転台300を所定角度だけ回動させる。すると、第1凹面鏡31から到来する被測定光に対する回折格子32の回折面の角度が変化し、回折格子32から第2凹面鏡33へと送られる波長分散光の波長範囲が変化する。このため、検出部4では、上記波長範囲λ1~λ2とは異なる波長範囲(例えばλ2~λ3)の光に対する検出信号が得られる。 When a detection signal in a predetermined wavelength range is obtained with the position (angle) of the diffraction grating 32 fixed, the control unit 305 drives the motor 303 via the motor drive unit 304 and rotates the rotary table 300 by a predetermined angle. Move it. Then, the angle of the diffraction grating 32 with respect to the light to be measured coming from the first concave mirror 31 changes, and the wavelength range of the wavelength-dispersed light sent from the diffraction grating 32 to the second concave mirror 33 changes. Therefore, the detection unit 4 can obtain a detection signal for light in a wavelength range (for example, λ2 to λ3) different from the wavelength range λ1 to λ2.
 こうして回折格子32を少しずつ回動させながら、検出部4で得られた所定の波長範囲に亘る検出信号の取得を繰り返す。それによって、幅広い波長範囲の光のスペクトルを表す情報を得ることができる。 While rotating the diffraction grating 32 little by little in this way, the acquisition of the detection signal over the predetermined wavelength range obtained by the detection unit 4 is repeated. Thereby, information representing the spectrum of light in a wide wavelength range can be obtained.
 上述したように得られた検出信号は、検出部4のリニアセンサ自体の暗電流信号を含む。そのため、正確な光スペクトルを求めるには暗電流信号を測定する必要がある。そのためのダーク測定時の動作を図3を参照して説明する。 The detection signal obtained as described above includes the dark current signal of the linear sensor itself of the detection unit 4. Therefore, it is necessary to measure the dark current signal in order to obtain an accurate optical spectrum. The operation at the time of dark measurement for that purpose will be described with reference to FIG.
 ダーク測定の際に、制御部305は、ホルダ301の背面側の反射防止部302が第1凹面鏡31の反射面に指向するように、モータ駆動部304を介してモータ303を動作させる。ここでは、図3に示すように、第1凹面鏡31から到来する被測定光が平面状である反射防止部302に略直角に入射するように、回転台300の回転角度を定める。これにより、第1凹面鏡31から回折格子32に向かう被測定光は回折面ではなく反射防止部302に当たり、その大部分が反射防止部302に吸収される。 At the time of dark measurement, the control unit 305 operates the motor 303 via the motor drive unit 304 so that the antireflection unit 302 on the back side of the holder 301 points to the reflection surface of the first concave mirror 31. Here, as shown in FIG. 3, the rotation angle of the rotary table 300 is determined so that the light to be measured coming from the first concave mirror 31 is incident on the planar antireflection portion 302 at a substantially right angle. As a result, the light to be measured from the first concave mirror 31 toward the diffraction grating 32 hits the antireflection section 302 instead of the diffraction grating, and most of it is absorbed by the antireflection section 302.
 反射防止部302は必ずしも入射する光の100%を吸収するとは限らず、一部の入射光は反射又は散乱される場合もある。その場合、反射防止部302で反射された又は散乱された光の多くは、入射光とは逆の経路を通り、第1凹面鏡31に戻って入射スリット30の方向に反射される。入射スリット30付近まで戻った光が入射スリット30の開口部以外(遮光部)に当たって反射してしまうと、迷光となって最終的に検出部4に到達する可能性がある。これに対し、本実施形態のマルチチャンネル分光器では、入射スリット30の背面側(入射光学系2とは反対側)にも反射防止部34が設けられている。そのため、入射スリット30の方向に戻って開口部を通過する光を除く大部分の光は、反射防止部34に当たって吸収される。それによって、戻り光が迷光になることも実質的に回避することができる。 The antireflection unit 302 does not always absorb 100% of the incident light, and some of the incident light may be reflected or scattered. In that case, most of the light reflected or scattered by the antireflection unit 302 passes through a path opposite to that of the incident light, returns to the first concave mirror 31, and is reflected in the direction of the incident slit 30. If the light returned to the vicinity of the incident slit 30 hits a part other than the opening (light-shielding portion) of the incident slit 30 and is reflected, it may become stray light and finally reach the detection unit 4. On the other hand, in the multi-channel spectroscope of the present embodiment, the antireflection portion 34 is also provided on the back surface side (opposite side of the incident optical system 2) of the incident slit 30. Therefore, most of the light except the light that returns in the direction of the incident slit 30 and passes through the opening is absorbed by the antireflection portion 34. Thereby, it is possible to substantially prevent the return light from becoming a stray light.
 上述したように、ダーク測定時には、第1凹面鏡31から回折格子32に向かって進行する被測定光は検出部4に到達しない。また、反射防止部302で反射した僅かな被測定光も迷光になりにくい。それによって、本実施形態のマルチチャンネル分光器では、ダーク測定時に暗電流信号を正確に測定することができ、ひいては被測定光の光スペクトルを精度良く求めることができる。 As described above, at the time of dark measurement, the light to be measured traveling from the first concave mirror 31 toward the diffraction grating 32 does not reach the detection unit 4. Further, even a small amount of light to be measured reflected by the antireflection unit 302 is less likely to become stray light. Thereby, in the multi-channel spectroscope of the present embodiment, the dark current signal can be accurately measured at the time of dark measurement, and the optical spectrum of the light to be measured can be accurately obtained.
 なお、上記説明では、ダーク測定時に、第1凹面鏡31から到来する被測定光が反射防止部302に略直角に入射するようにしていたが、第1凹面鏡31から到来する被測定光が第2凹面鏡33に向かうことや検出部4に直接向かうことを回避できればよい。 In the above description, at the time of dark measurement, the light to be measured coming from the first concave mirror 31 is incident on the antireflection portion 302 at a substantially right angle, but the light to be measured coming from the first concave mirror 31 is the second. It suffices if it is possible to avoid heading toward the concave mirror 33 or directly toward the detection unit 4.
 したがって、第1凹面鏡31から到来する被測定光が反射防止部302に入射する角度は直角に限るものではなく、上述の条件を満たす範囲で適宜に変更することができる。また、ホルダ301の背面に反射防止部302を設けず、ホルダ301や回折格子32に当たって反射した被測定光が最終的に検出部4に到達しにくいような構造を採用したり、ホルダ301や回折格子32に当たって反射した被測定光が最終的に検出部4に到達しにくいような制御を実行したりしてもよい。具体的には、例えばホルダ301の背面に当たった被測定光が第2凹面鏡33及び検出部4以外の方向に向かうように、回転台300の回転位置を設定すればよい。また、第1凹面鏡31から到来する被測定光が回折格子32の回折面に当たったとしても、その回折光が第2凹面鏡33に向かうことや検出部4に直接向かうことを回避可能であれば、そうした構成を採ることもできる。 Therefore, the angle at which the light to be measured coming from the first concave mirror 31 enters the antireflection portion 302 is not limited to a right angle, and can be appropriately changed within a range satisfying the above conditions. Further, the antireflection unit 302 is not provided on the back surface of the holder 301, and a structure is adopted so that the light to be measured that hits the holder 301 or the diffraction grating 32 does not finally reach the detection unit 4, or the holder 301 or the diffraction grating 32 is diffracted. Control may be performed so that the light to be measured that hits the grating 32 and is reflected does not finally reach the detection unit 4. Specifically, for example, the rotation position of the rotary table 300 may be set so that the light to be measured that hits the back surface of the holder 301 is directed in a direction other than the second concave mirror 33 and the detection unit 4. Further, even if the light to be measured coming from the first concave mirror 31 hits the diffraction grating 32, if it is possible to prevent the diffracted light from heading toward the second concave mirror 33 or directly toward the detection unit 4. , Such a configuration can also be adopted.
 次に、本発明に係る分光測定装置の他の実施形態である分光器について、図4を参照して説明する。
 この分光器は、入射スリット50と、凹面回折格子52と、出射スリット55と、検出部56と、を備える。凹面回折格子52はホルダ53に保持され、ホルダ53の背面には反射防止部54が設けられている。また、入射スリット50の背面にも反射防止部51が設けられている。
Next, a spectroscope according to another embodiment of the spectroscopic measuring apparatus according to the present invention will be described with reference to FIG.
This spectroscope includes an incident slit 50, a concave diffraction grating 52, an exit slit 55, and a detection unit 56. The concave diffraction grating 52 is held by the holder 53, and an antireflection portion 54 is provided on the back surface of the holder 53. Further, an antireflection portion 51 is also provided on the back surface of the incident slit 50.
 通常の測定時には、入射スリット50を通して導入された被測定光は凹面回折格子52の回折面に当たり、波長分散光が出射スリット55に向かう。特定の波長の光のみが出射スリット55を通り抜け、検出部56に入射して検出される。上記実施形態と同様に、凹面回折格子52を保持するホルダ53は図示しない回転台上に設置され、該回転台が回動されると凹面回折格子52が回動し、出射スリット55から取り出される光の波長が変化する。即ち、凹面回折格子52を回動させることで波長走査を行うことができる。 During normal measurement, the light to be measured introduced through the incident slit 50 hits the diffraction surface of the concave diffraction grating 52, and the wavelength-dispersed light heads toward the exit slit 55. Only light of a specific wavelength passes through the exit slit 55, enters the detection unit 56, and is detected. Similar to the above embodiment, the holder 53 for holding the concave diffraction grating 52 is installed on a rotary table (not shown), and when the rotary table is rotated, the concave diffraction grating 52 rotates and is taken out from the exit slit 55. The wavelength of light changes. That is, wavelength scanning can be performed by rotating the concave diffraction grating 52.
 ダーク測定時には、上記実施形態と同様に、ホルダ53背面の反射防止部54が入射スリット50に指向するように(図4中に点線で示すホルダ53Aの位置になるように)回転台を回動させる。これにより、入射スリット50から到来する被測定光は反射防止部54に当たり、その殆どが吸収される。また、一部の被測定光が反射防止部54で反射したとしても、その反射光の殆どは反射防止部51に当たって吸収される。これによって、この実施形態の分光器においても、ダーク測定時に検出部56に到達する光を抑えることができる。また、この分光器においても、上記実施形態について挙げた各種の変形が可能であることは明らかである。 At the time of dark measurement, the rotary table is rotated so that the antireflection portion 54 on the back surface of the holder 53 points toward the incident slit 50 (so that it is at the position of the holder 53A shown by the dotted line in FIG. 4) as in the above embodiment. Let me. As a result, the light to be measured coming from the incident slit 50 hits the antireflection portion 54, and most of it is absorbed. Further, even if a part of the light to be measured is reflected by the antireflection unit 54, most of the reflected light hits the antireflection unit 51 and is absorbed. As a result, even in the spectroscope of this embodiment, the light that reaches the detection unit 56 at the time of dark measurement can be suppressed. It is also clear that this spectroscope is also capable of the various modifications mentioned in the above embodiment.
 また、上記実施形態では、光ファイバを通して導入された光(被測定光)を分光部で波長分散して検出する構成を想定していたが、試料の吸光スペクトルや反射スペクトル、或いは蛍光スペクトルなどを取得するための分光測定装置に本発明を適用することもできることは明らかである。即ち、回折格子を含む分光器を備え、且つ波長走査のために該回折格子を回動させる構成の分光測定装置であれば、本発明を適用することが可能である。 Further, in the above embodiment, it is assumed that the light introduced through the optical fiber (light to be measured) is detected by wavelength dispersion in the spectroscopic unit, but the absorption spectrum, reflection spectrum, fluorescence spectrum, etc. of the sample can be detected. It is clear that the present invention can also be applied to a spectroscopic measuring device for acquisition. That is, the present invention can be applied to any spectroscopic measuring device provided with a spectroscope including a diffraction grating and having a configuration in which the diffraction grating is rotated for wavelength scanning.
 さらにまた、上記実施形態は本発明の一例にすぎず、上記の変形例以外の点について、本発明の趣旨の範囲で適宜変形や修正、追加を行っても本願特許請求の範囲に包含されることは明らかである。 Furthermore, the above-described embodiment is merely an example of the present invention, and points other than the above-mentioned modified examples are included in the claims of the present application even if they are appropriately modified, modified, or added within the scope of the purpose of the present invention. It is clear that.
 [種々の態様]
 上述した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
[Various aspects]
It will be understood by those skilled in the art that the above-described exemplary embodiments are specific examples of the following embodiments.
 (第1項)本発明に係る分光測定装置の一態様は、
 入射光を波長分散する回折格子と、
 前記回折格子で波長分散された光を直接又は一若しくは複数の光学要素を介して検出する検出部と、
 前記検出部に到達する光の波長又は波長範囲が変化するように前記回折格子又は該回折格子を保持する保持部を回動させるとともに、ダーク測定時に前記回折格子に向かって進行する光が前記検出部に向かわないように、所定の位置まで該回折格子又は該保持部を回動させる回動部と、
 を備えるものである。
(Item 1) One aspect of the spectroscopic measuring apparatus according to the present invention is
A diffraction grating that disperses the incident light in wavelength,
A detection unit that detects light wavelength-dispersed by the diffraction grating directly or via one or more optical elements.
The diffraction grating or the holding portion holding the diffraction grating is rotated so that the wavelength or wavelength range of the light reaching the detection unit changes, and the light traveling toward the diffraction grating during dark measurement is detected. A rotating part that rotates the diffraction grating or the holding part to a predetermined position so as not to face the part.
Is provided.
 本発明に係る上記態様の分光測定装置では、波長走査のための回折格子の回動機構や回路を利用して、ダーク測定時の遮光の機能を実現することができる。したがって、本発明に係る上記態様の分光測定装置によれば、ダーク測定のために検出部に到達する光を遮断するためのシャッタ、それを動作させるモータ等の駆動機構、ドライブ回路などの電気回路などを、ダーク測定専用に設ける必要がない。そのため、従来の分光測定装置から、こうした部材や電気回路などを取り除くことができ、装置のコスト削減や、装置の小形・軽量化を図ることができる。 In the spectroscopic measuring apparatus of the above aspect according to the present invention, the function of shading at the time of dark measurement can be realized by utilizing the rotation mechanism and the circuit of the diffraction grating for wavelength scanning. Therefore, according to the spectroscopic measuring apparatus of the above aspect according to the present invention, a shutter for blocking light reaching the detection unit for dark measurement, a drive mechanism such as a motor for operating the shutter, and an electric circuit such as a drive circuit. It is not necessary to provide such as exclusively for dark measurement. Therefore, such members and electric circuits can be removed from the conventional spectroscopic measurement device, and the cost of the device can be reduced and the size and weight of the device can be reduced.
 (第2項)第1項に記載の分光測定装は、前記回折格子又は前記保持部にあって前記所定の位置まで前記回折格子又は前記保持部が回動されたときに光が到達する位置に、反射防止部が設けられるものとすることができる。 (Item 2) The spectroscopic measurement device according to the first item is a position in the diffraction grating or the holding portion where light reaches when the diffraction grating or the holding portion is rotated to the predetermined position. , An antireflection portion may be provided.
 第2項に記載の分光測定装置では、ダーク測定時に回動部が回折格子(又は保持部)を所定の位置まで回動させると、被測定光が到達する位置に反射防止部が来る。この反射防止部によって被測定光は遮断され、検出部に被測定光が入射しない。第2項に記載の分光測定装置によれば、回折格子に向かって進行してくる被測定光の反射をなくす又は小さくすることができるので、迷光をなくす又は抑えることができる。それによって、ダーク測定時に検出部に入射する光を減らし、暗電流信号を低下させることができる。 In the spectroscopic measuring device described in item 2, when the rotating portion rotates the diffraction grating (or the holding portion) to a predetermined position during dark measurement, the antireflection portion comes to the position where the light to be measured reaches. The light to be measured is blocked by this antireflection unit, and the light to be measured does not enter the detection unit. According to the spectroscopic measuring apparatus according to the second item, the reflection of the light to be measured traveling toward the diffraction grating can be eliminated or reduced, so that the stray light can be eliminated or suppressed. Thereby, the light incident on the detection unit at the time of dark measurement can be reduced, and the dark current signal can be lowered.
 (第3項)第1項又は第2項に記載の分光測定装置において、前記回折格子又は前記保持部にあって前記所定の位置まで前記回折格子又は前記保持部が回動されたときに光が到達する領域は、前記回折格子に向かって進行してくる光に対してその経路を逆行するように反射させる角度の面であるものとすることができる。 (Item 3) In the spectroscopic measuring apparatus according to the first or second paragraph, light is emitted when the diffraction grating or the holding portion is rotated to the predetermined position in the diffraction grating or the holding portion. The region reached by may be a surface having an angle that reflects the light traveling toward the diffraction grating so as to reverse its path.
 第3項に記載の分光測定装置によれば、回折格子に向かって進行してくる被測定光の反射がある場合でも、その反射光は入射光の光路を逆行して戻るので、それ以外の方向に光を反射させる場合に比べて、迷光として検出部に到達する可能性を低くすることができる。 According to the spectroscopic measuring apparatus according to the third item, even if there is reflection of the light to be measured traveling toward the diffraction grating, the reflected light returns in the reverse direction of the light path of the incident light, so that other than that. Compared with the case where the light is reflected in the direction, the possibility of reaching the detection unit as stray light can be reduced.
 (第4項)第3項に記載の分光測定装置は、前記所定の位置まで前記回折格子又は前記保持部が回動された状態で前記回折格子又は前記保持部で反射され戻ってきた光が到達し得る位置の少なくとも一部に、反射防止部が設けられているものとすることができる。 (Item 4) In the spectroscopic measuring apparatus according to the third item, the light reflected by the diffraction grating or the holding portion and returned in a state where the diffraction grating or the holding portion is rotated to the predetermined position is emitted. Antireflections may be provided at least in part of the reachable positions.
 第4項に記載の分光測定装置によれば、回折格子への入射光の光路を概ね逆行して戻ってきた光を、反射防止部で吸収することができる。それによって、そうした戻り光が迷光として検出部に到達する可能性をさらに一層低くすることができる。 According to the spectroscopic measuring apparatus according to the fourth item, the antireflection unit can absorb the light that has returned by substantially reversing the optical path of the incident light to the diffraction grating. Thereby, the possibility that such return light reaches the detection unit as stray light can be further reduced.
 (第5項)また第1項~第4項のいずれか一項に記載の分光測定装置は、前記回折格子の前段及び後段にそれぞれミラーが配置されたツェルニターナー型の分光器を有するものとすることができる。 (Item 5) Further, the spectroscopic measuring apparatus according to any one of the items 1 to 4 has a Zellnitner type spectroscope in which mirrors are arranged in the front stage and the rear stage of the diffraction grating, respectively. can do.
 (第6項)また第5項に記載の分光測定装置において、前記検出部は所定の波長範囲の光を一斉に検出するアレイ型の検出器であり、通常の測定時に前記回動部は、前記回折格子又は前記保持部を回動させることで、前記検出部で検出される光の波長範囲を走査するものとすることができる。 (Item 6) Further, in the spectroscopic measuring apparatus according to the item 5, the detection unit is an array-type detector that simultaneously detects light in a predetermined wavelength range, and the rotating unit is a rotating unit during normal measurement. By rotating the diffraction grating or the holding unit, it is possible to scan the wavelength range of light detected by the detecting unit.
 第5項及び第6項に記載の分光測定装置によれば、幅広い波長範囲の光のスペクトルをリアルタイムで取得することができるとともに、精度の高い暗電流信号を用いてスペクトルの精度を向上させることができる。 According to the spectroscopic measuring apparatus according to the fifth and sixth paragraphs, the spectrum of light in a wide wavelength range can be acquired in real time, and the accuracy of the spectrum can be improved by using a highly accurate dark current signal. Can be done.
1…光入力コネクタ
2…入射光学系
3…分光部
 30…入射スリット
 31…第1凹面鏡
 32…回折格子
 33…第2凹面鏡
 34…反射防止部
 300…回転台
 301…ホルダ
 302…反射防止部
 303…モータ
 304…モータ駆動部
 305…制御部
4…検出部
50…入射スリット
51…反射防止部
52…凹面回折格子
53…ホルダ
54…反射防止部
55…出射スリット
56…検出部
1 ... Optical input connector 2 ... Incident optical system 3 ... Spectral part 30 ... Incident slit 31 ... First concave mirror 32 ... Diffraction grating 33 ... Second concave mirror 34 ... Antireflection part 300 ... Rotating table 301 ... Holder 302 ... Antireflection part 303 ... Motor 304 ... Motor drive unit 305 ... Control unit 4 ... Detection unit 50 ... Incident slit 51 ... Antireflection unit 52 ... Concave diffraction grating 53 ... Holder 54 ... Antireflection unit 55 ... Exit slit 56 ... Detection unit

Claims (6)

  1.  入射光を波長分散する回折格子と、
     前記回折格子で波長分散された光を直接又は一若しくは複数の光学要素を介して検出する検出部と、
     前記検出部に到達する光の波長又は波長範囲が変化するように前記回折格子又は該回折格子を保持する保持部を回動させるとともに、ダーク測定時に前記回折格子に向かって進行する光が前記検出部に向かわないように、所定の位置まで前記回折格子又は前記保持部を回動させる回動部と、
     を備える分光測定装置。
    A diffraction grating that disperses the incident light in wavelength,
    A detection unit that detects light wavelength-dispersed by the diffraction grating directly or via one or more optical elements.
    The diffraction grating or the holding portion holding the diffraction grating is rotated so that the wavelength or wavelength range of the light reaching the detection unit changes, and the light traveling toward the diffraction grating during dark measurement is detected. A rotating portion that rotates the diffraction grating or the holding portion to a predetermined position so as not to face the portion.
    A spectroscopic measuring device comprising.
  2.  前記回折格子又は前記保持部にあって前記所定の位置まで前記回折格子又は前記保持部が回動されたときに光が到達する位置に、反射防止部が設けられている、請求項1に記載の分光測定装置。 The first aspect of the present invention, wherein the antireflection portion is provided at a position on the diffraction grating or the holding portion where light reaches when the diffraction grating or the holding portion is rotated to the predetermined position. Spectral measuring device.
  3.  前記回折格子又は前記保持部にあって前記所定の位置まで前記回折格子又は前記保持部が回動されたときに光が到達する領域は、前記回折格子に向かって進行してくる光に対してその経路を逆行するように反射させる角度の面である、請求項1に記載の分光測定装置。 The region of the diffraction grating or the holding portion where the light reaches when the diffraction grating or the holding portion is rotated to the predetermined position is relative to the light traveling toward the diffraction grating. The spectroscopic measuring apparatus according to claim 1, which is a surface having an angle that reflects the path in a retrograde manner.
  4.  前記所定の位置まで前記回折格子又は前記保持部が回動された状態で、前記回折格子又は前記保持部で反射され戻ってきた光が到達し得る位置の少なくとも一部に、反射防止部が設けられている、請求項3に記載の分光測定装置。 With the diffraction grating or the holding portion rotated to the predetermined position, the antireflection portion is provided at least at a part of the positions where the light reflected and returned by the diffraction grating or the holding portion can reach. The spectroscopic measuring apparatus according to claim 3.
  5.  前記回折格子の前段及び後段にそれぞれミラーが配置されたツェルニターナー型の分光器を有する、請求項1に記載の分光測定装置。 The spectroscopic measuring apparatus according to claim 1, further comprising a Zellnitner-type spectroscope in which mirrors are arranged in the front stage and the rear stage of the diffraction grating, respectively.
  6.  前記検出部は所定の波長範囲の光を一斉に検出するアレイ型の検出器であり、通常の測定時に前記回動部は、前記回折格子又は前記保持部を回動させることで、前記検出部で検出される光の波長範囲を走査する、請求項5に記載の分光測定装置。 The detection unit is an array-type detector that simultaneously detects light in a predetermined wavelength range, and the rotating unit rotates the diffraction grating or the holding unit during normal measurement to detect the detection unit. The spectroscopic measuring apparatus according to claim 5, which scans the wavelength range of light detected in.
PCT/JP2020/041172 2020-04-23 2020-11-04 Spectrometry device WO2021215034A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020076736 2020-04-23
JP2020-076736 2020-04-23

Publications (1)

Publication Number Publication Date
WO2021215034A1 true WO2021215034A1 (en) 2021-10-28

Family

ID=78270453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041172 WO2021215034A1 (en) 2020-04-23 2020-11-04 Spectrometry device

Country Status (1)

Country Link
WO (1) WO2021215034A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642117A (en) * 1979-09-17 1981-04-20 Hitachi Ltd Spectrophotometer for wide range of wavelength
JPS6179229U (en) * 1984-10-29 1986-05-27
JPS63273023A (en) * 1987-04-30 1988-11-10 Matsushita Electric Ind Co Ltd Spectrophotometer
JPS63295934A (en) * 1987-01-29 1988-12-02 バースペック リミテッド Fast scan spectrophotometer
JP2005164255A (en) * 2003-11-28 2005-06-23 Horiba Ltd Spectroscopic analysis apparatus
JP2006201127A (en) * 2005-01-24 2006-08-03 Maki Mfg Co Ltd Spectral device
JP2017167022A (en) * 2016-03-17 2017-09-21 株式会社島津製作所 Spectrometer and 0-order light attenuation mechanism used for the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642117A (en) * 1979-09-17 1981-04-20 Hitachi Ltd Spectrophotometer for wide range of wavelength
JPS6179229U (en) * 1984-10-29 1986-05-27
JPS63295934A (en) * 1987-01-29 1988-12-02 バースペック リミテッド Fast scan spectrophotometer
JPS63273023A (en) * 1987-04-30 1988-11-10 Matsushita Electric Ind Co Ltd Spectrophotometer
JP2005164255A (en) * 2003-11-28 2005-06-23 Horiba Ltd Spectroscopic analysis apparatus
JP2006201127A (en) * 2005-01-24 2006-08-03 Maki Mfg Co Ltd Spectral device
JP2017167022A (en) * 2016-03-17 2017-09-21 株式会社島津製作所 Spectrometer and 0-order light attenuation mechanism used for the same

Similar Documents

Publication Publication Date Title
US7397561B2 (en) Spectroscopy system
US7564547B2 (en) Spectroscopy system
JP4804727B2 (en) Optical scanning confocal microscope
US7189984B2 (en) Object data input apparatus and object reconstruction apparatus
US4966458A (en) Optical system for a multidetector array spectrograph
JP2008501966A (en) An echelle spectrometer with improved detector capacity utilization by using two spectrometer configurations
US4540281A (en) Double-beam spectrophotometer
US4875773A (en) Optical system for a multidetector array spectrograph
US9546903B2 (en) Data knitting tandem dispersive range monochromator
CA2070330C (en) High resolution spectroscopy system
JPH0584451B2 (en)
JP2006194812A (en) Spectrofluorometer
WO2021215034A1 (en) Spectrometry device
US9551612B2 (en) Tandem dispersive range monochromator
KR20190104298A (en) Breast milk analyzer
WO2021261035A1 (en) Raman microspectroscopic measurement device, and method for calibrating raman microspectroscopic measurement device
JP2009244156A (en) Spectroscopic device and spectral confocal microscope
US5442440A (en) Spectroscope
US10215635B2 (en) Data blending multiple dispersive range monochromator
KR100961138B1 (en) Beam Spectrometer
JP2004117362A (en) Device for determining spectral reflectance of measured object
JP2914122B2 (en) Multi-spectrometer and measuring method using the spectrometer
JP2001296181A (en) Spectrograph
JP6662244B2 (en) Spectroscopic analyzer and chromatograph equipped with the same
JP2664632B2 (en) Total reflection X-ray fluorescence analyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP