JP2664632B2 - Total reflection X-ray fluorescence analyzer - Google Patents

Total reflection X-ray fluorescence analyzer

Info

Publication number
JP2664632B2
JP2664632B2 JP6023187A JP2318794A JP2664632B2 JP 2664632 B2 JP2664632 B2 JP 2664632B2 JP 6023187 A JP6023187 A JP 6023187A JP 2318794 A JP2318794 A JP 2318794A JP 2664632 B2 JP2664632 B2 JP 2664632B2
Authority
JP
Japan
Prior art keywords
ray
rays
primary
sample
total reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6023187A
Other languages
Japanese (ja)
Other versions
JPH07209216A (en
Inventor
忠 宇高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Rigaku Corp
Original Assignee
Toshiba Corp
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Rigaku Industrial Corp filed Critical Toshiba Corp
Priority to JP6023187A priority Critical patent/JP2664632B2/en
Publication of JPH07209216A publication Critical patent/JPH07209216A/en
Application granted granted Critical
Publication of JP2664632B2 publication Critical patent/JP2664632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、試料表面に一次X線
を微小な入射角で照射して、試料の表面層からの蛍光X
線を分析する全反射蛍光X線分析装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for irradiating a sample surface with primary X-rays at a very small incident angle to obtain a fluorescent X-ray from a surface layer of the sample.
The present invention relates to a total reflection X-ray fluorescence analyzer for analyzing rays.

【0002】[0002]

【従来の技術】一般に、全反射蛍光X線分析装置は、試
料の表面層に含まれた不純物を検出する装置として知ら
れている。図8に、従来の全反射蛍光X線分析装置の一
例(例えば、特開昭63-78056号公報)を示す。
2. Description of the Related Art Generally, a total reflection X-ray fluorescence spectrometer is known as a device for detecting impurities contained in a surface layer of a sample. FIG. 8 shows an example of a conventional total reflection X-ray fluorescence spectrometer (for example, JP-A-63-78056).

【0003】図において、X線源5のタ−ゲット材51
から出たX線B1は、湾曲型の分光素子(分光結晶)1
Aに向かう。上記X線B1のうち所定の波長の特性X線
は、分光素子1Aで回折されて単色化され、その回折X
線(一次X線)B2が、シリコンウェハのような試料2
の表面2aに微小な入射角α(例えば、0.05°〜0.20°
程度)で照射される。
In FIG. 1, a target material 51 of an X-ray source 5 is shown.
X-rays B1 emitted from the light source are curved-type spectroscopic elements (spectral crystals) 1
Head to A. Among the X-rays B1, characteristic X-rays having a predetermined wavelength are diffracted by the spectral element 1A to be monochromatic, and the diffracted X-rays are obtained.
The line (primary X-ray) B2 is a sample 2 such as a silicon wafer.
Incident angle α (eg, 0.05 ° to 0.20 °) on the surface 2a of
Degree).

【0004】試料2に入射した回折X線B2は、その一
部が全反射されて反射光線B4となり、他の一部が一次
X線として試料2を励起して、試料2を構成する元素固
有の蛍光X線B5を発生させる。蛍光X線B5は、試料
表面2aに対向して配置したX線検出器3に入射する。
この入射した蛍光X線B5は、X線検出器3において、
そのX線強度が検出された後、X線検出器3からの検出
信号aに基づき、多重波高分析器4によって目的とする
X線スペクトルが得られる。
A part of the diffracted X-ray B2 incident on the sample 2 is totally reflected and becomes a reflected light beam B4, and the other part excites the sample 2 as a primary X-ray and is unique to the element constituting the sample 2. Of the fluorescent X-ray B5 is generated. The fluorescent X-ray B5 is incident on the X-ray detector 3 arranged opposite to the sample surface 2a.
The incident fluorescent X-ray B5 is detected by the X-ray detector 3.
After the X-ray intensity is detected, the target X-ray spectrum is obtained by the multiplex height analyzer 4 based on the detection signal a from the X-ray detector 3.

【0005】この種の全反射蛍光X線分析装置は、回折
X線(一次X線)B2の試料2への入射角αが微小であ
り、反射光線B4および散乱X線がX線検出器3に入射
しにくい。このため、X線検出器3により検出される蛍
光X線B5の出力レベルに比べてノイズが小さい、つま
り、大きなS/N 比が得られ、そのため、分析感度がよ
く、例えば微量の不純物が含まれていても検出できる。
In this type of total reflection X-ray fluorescence spectrometer, the angle of incidence α of the diffracted X-rays (primary X-rays) B2 on the sample 2 is small, and the reflected light B4 and the scattered X-rays Difficult to enter. For this reason, noise is smaller than the output level of the fluorescent X-ray B5 detected by the X-ray detector 3, that is, a large S / N ratio is obtained, so that the analysis sensitivity is good and, for example, a small amount of impurities is contained. It can be detected even if it is.

【0006】ところで、分光素子1Aは、特性X線の波
長(λ)と素子の格子面間隔(2d)とで定まる一定の
角度(θ)で特性X線が入射したときだけ回折を生じる
(周知のブラッグの式:2d・sinθ=nλ)。他
方、元素は、その吸収端波長よりも短い波長をもつ特性
X線によってのみ励起される。
Incidentally, the spectroscopic element 1A generates diffraction only when the characteristic X-ray enters at a fixed angle (θ) determined by the wavelength (λ) of the characteristic X-ray and the lattice spacing (2d) of the element (known). Brad's equation: 2d · sin θ = nλ). On the other hand, an element is only excited by characteristic X-rays having a wavelength shorter than its absorption edge wavelength.

【0007】従って、同一試料2について、吸収端波長
が大きく異なる種々の元素を計測する場合、異なる波長
の特性X線を用いる必要があり、このような異なる特性
X線を回折させるために、分光素子を交換する必要があ
る。例えば、X線源5にAuを用いた場合、特性X線L
αにおいては2d=94.2Å、Lβにおいては2d=80
Å、Lγにおいては2d=68.4Åの格子面間隔をもつ分
光素子で回折される。
Accordingly, when measuring various elements having significantly different absorption edge wavelengths for the same sample 2, it is necessary to use characteristic X-rays having different wavelengths. The element needs to be replaced. For example, when Au is used for the X-ray source 5, the characteristic X-ray L
2d = 94.2 ° for α, 2d = 80 for Lβ
Å and Lγ are diffracted by a spectroscopic element having a lattice spacing of 2d = 68.4 °.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来装
置には次のような問題点があった。上記のように、同一
試料2について多くの元素を計測する場合に分光素子を
交換しなければならないが、この際に、全反射の必要性
から試料2への入射角が微小かつ許容範囲が狭いため、
分光素子の交換ごとにその位置や角度、または試料台7
の位置や角度を上記許容範囲内となるように調整する作
業が困難で、試料分析に時間がかかる。
However, the conventional apparatus has the following problems. As described above, the spectroscopic element must be replaced when many elements are measured for the same sample 2. At this time, the angle of incidence on the sample 2 is small and the allowable range is narrow due to the necessity of total reflection. For,
Each time the spectroscopic element is replaced, its position or angle, or the sample stage 7
It is difficult to adjust the position and angle of the sample so as to be within the allowable range, and it takes time to analyze the sample.

【0009】この発明は上記の問題点を解決して、同一
試料について多くの元素を容易かつ迅速に分析すること
ができる全反射蛍光X線分析装置を提供することを目的
としている。
An object of the present invention is to solve the above problems and to provide a total reflection X-ray fluorescence spectrometer capable of easily and quickly analyzing many elements in the same sample.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、この発明の請求項1の全反射蛍光X線分析装置は、
格子面間隔が互いに異なり、X線源から分光器を経て試
料に至る一次X線の経路を含む平面上における位置が、
X線源および試料に対して固定された複数の分光素子
と、これら分光素子を上記平面と直交する方向へ移動さ
せることにより一次X線を所望の分光素子で分光させ
て、すべての分光素子について試料への一定の入射角を
得る移動手段とを有する分光器を備えている。
In order to achieve the above object, a total reflection X-ray fluorescence analyzer according to claim 1 of the present invention comprises:
The lattice spacings are different from each other.
Position on the plane containing the path of the primary X-rays leading to the
A plurality of spectroscopic elements fixed to the X-ray source and the sample, and by moving these spectroscopic elements in a direction orthogonal to the plane, the primary X-rays are separated by a desired spectroscopic element.
And a moving means for obtaining a constant angle of incidence on the sample for all the spectroscopic elements .

【0011】また、請求項2の全反射蛍光X線分析装置
は、分光器が、回転体の円周上に固定された格子面間隔
が互いに異なる複数の分光素子と、上記回転体を回転さ
せることによりいずれか1つの分光素子を上記一次X線
の経路上に位置させて一次X線を所望の分光素子で分光
させ、すべての分光素子について試料への一定の入射角
を得る移動手段とを備え、上記回転体の軸心は、X線源
から分光器を経て試料に至る一次X線の経路を含む平面
上における位置が、X線源および試料に対して固定され
ている。
According to a second aspect of the present invention, there is provided a total reflection X-ray fluorescence spectrometer , wherein the spectroscope has a lattice spacing fixed on the circumference of the rotating body.
Rotating the rotating body with a plurality of spectral elements different from each other
By causing any one of the spectroscopic elements to emit the primary X-ray.
Primary X-rays with the desired spectral element
Moving means for obtaining a constant angle of incidence on the sample for all the spectroscopic elements, wherein the axis of the rotating body is an X-ray source
Plane containing the path of primary X-rays from the instrument to the sample through the spectrometer
Position above is fixed relative to the x-ray source and the sample
ing.

【0012】請求項3の全反射蛍光X線分析装置は、分
光器が、格子面間隔の周期が連続的に分光面に沿って異
なるように設定された単一の分光素子と、この分光素子
をX線源から分光器を経て試料に至る一次X線の経路を
含む平面上で平行移動させることにより所望の一次X線
に対して一定の入射角を得る移動手段とを備えている。
[0012] The total reflection X-ray fluorescence spectrometer according to the third aspect is characterized in that:
When the optical device continuously changes the period of the lattice spacing along the spectral surface,
And a single spectroscopic element set to
The primary X-ray path from the X-ray source through the spectrometer to the sample
Desired primary X-rays by translating on the plane containing
Moving means for obtaining a constant incident angle with respect to

【0013】[0013]

【作用】請求項1の全反射蛍光X線分析装置によれば、
格子面間隔の異なる複数の分光素子を、一次X線の経路
を含む平面上における位置がX線源および試料に対して
固定された状態で、移動手段によって上記平面と直交す
る方向へ移動させることにより、一次X線を所望の分光
素子で分光させるので、所望の一次X線に対して試料へ
の一定の入射角を得ることができる。
According to the total reflection X-ray fluorescence analyzer of the first aspect,
A plurality of spectroscopic elements having different lattice spacings are connected to a primary X-ray path.
Position on the plane containing the X-ray source and the sample
In a fixed state, the plane is perpendicular to the plane by the moving means .
By moving the that direction, desired spectral primary X-rays
Since the light is split by the element, it is possible to target the primary X-ray to the sample.
It is possible to obtain a constant angle of incidence.

【0014】また、請求項2の全反射蛍光X線分析装置
によれば、円周上に格子面間隔が互いに異なる複数の分
光素子を固定した回転体を移動手段によって回転させ、
いずれか1つの分光素子を一次X線の経路上に位置させ
ることにより、一次X線を所望の分光素子で分光させる
とともに、上記回転体の軸心は、上記一次X線の経路を
含む平面上における位置が、X線源および試料に対して
固定されているので、所望の一次X線に対して試料への
一定の入射角を得ることができる。
Further, according to the total reflection X-ray fluorescence spectrometer of the present invention, a plurality of components having different lattice spacings on the circumference are different.
The rotating body to which the optical element is fixed is rotated by the moving means,
Position one of the spectral elements on the path of the primary X-ray
By doing so, the primary X-rays are dispersed by a desired spectral element.
At the same time, the axis of the rotating body moves along the path of the primary X-ray.
Position on the plane including the X-ray source and the sample
Because it is fixed , the sample
A constant angle of incidence can be obtained.

【0015】請求項3の全反射蛍光X線分析装置によれ
ば、格子面間隔の周期が連続的に分光面に沿って異なる
ように設定された単一の分光素子を、一次X線の経路を
含む平面上で移動手段によって平行移動させることによ
り、一次X線を所望の分光素子で分光させるので、所望
の一次X線の試料への一定の入射角を得ることができ
る。
According to the total reflection X-ray fluorescence analyzer of claim 3,
If the period of the lattice spacing varies continuously along the spectral plane
To the primary X-ray path
By moving it in parallel on the plane
Primary X-rays are separated by a desired spectroscopic element.
Constant angle of incidence of primary X-rays on the sample
You.

【0016】[0016]

【実施例】以下、この発明の実施例を図面に基づいて説
明する。図1に、この発明の一実施例による全反射蛍光
X線分析装置の概略側面図を示す。この装置は、格子面
間隔が互いに異なる分光素子である人工多層膜格子を複
数(この例では1A,1B,1Cの3個)設けるととも
に、これら人工多層膜格子1A〜1Cを紙面と垂直方向
に移動させる移動手段10と移動手段10を制御する制
御部14とを備えている。人工多層膜格子1A〜1Cと
移動手段10とで分光器8を構成する。上記人工多層膜
格子1A〜1Cは、X線源5から分光器8を経て試料2
に至る一次X線B2の経路を含む平面H(図2)上にお
ける位置が、X線源5および試料2に対して固定されて
いる。なお、その他の構成は図7の従来例と同様であ
り、同一部分または相当部分に同一符号を付して、その
詳しい説明を省略する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic side view of a total reflection X-ray fluorescence spectrometer according to an embodiment of the present invention. This device, the grating surface
A plurality of (three in this example, 1A, 1B, and 1C) artificial multilayer gratings, which are dispersive elements having different intervals, are provided, and a moving unit 10 that moves these artificial multilayer gratings 1A to 1C in a direction perpendicular to the paper surface. And a control unit 14 for controlling the moving means 10. Artificial multilayer gratings 1A-1C and
The spectroscope 8 is constituted by the moving means 10. The above artificial multilayer film
The gratings 1A to 1C are connected to the sample 2 from the X-ray source 5 via the spectroscope 8.
On the plane H (FIG. 2) including the path of the primary X-ray B2 leading to
The position of the sample 2 is fixed with respect to the X-ray source 5 and the sample 2 . The other configuration is the same as that of the conventional example shown in FIG. 7, and the same or corresponding portions are denoted by the same reference characters and detailed description thereof will not be repeated.

【0017】図2に移動手段10の概略正面図を、図3
にその概略側面図を示す。図2において、移動手段10
は固定されたフレーム12と移動部20を備えており、
人工多層膜格子1A〜1Cを平面Hと直交する方向へ移
動させる。移動部20は、下方に突出した4つの格子支
持部22を備えており、隣接する格子支持部22間に人
工多層膜格子1A〜1Cが取り付けられている。図3に
おいて、格子支持部22の下面には取付溝30が形成さ
れ、人工多層膜格子1A〜1Cに固定されたピン31が
取付溝30に嵌め込まれ、当て板33を介してボルト3
2で締め付けて固定されている。また、移動部20に装
着された駆動用モータ24の駆動軸26の突出端26a
にピニオン27が固定されており、このピニオン27が
本体12側に設けられたラック28と係合する。
FIG. 2 is a schematic front view of the moving means 10, and FIG.
Figure 2 shows a schematic side view. In FIG. 2, the moving means 10
Has a fixed frame 12 and a moving part 20 ,
The artificial multilayer gratings 1A to 1C are moved in a direction orthogonal to the plane H.
Move. The moving unit 20 includes four lattice support parts 22 protruding downward, and the artificial multilayer film lattices 1 </ b> A to 1 </ b> C are attached between adjacent lattice support parts 22. In FIG. 3, a mounting groove 30 is formed on the lower surface of the lattice support portion 22, and a pin 31 fixed to the artificial multilayer film lattices 1 </ b> A to 1 </ b> C is fitted into the mounting groove 30, and
It is tightened and fixed at 2. Further, a protruding end 26 a of the drive shaft 26 of the drive motor 24 mounted on the moving portion 20 is provided.
, A pinion 27 is fixed, and this pinion 27 is engaged with a rack 28 provided on the main body 12 side.

【0018】従って、移動部20は、駆動用モータ24
の回転に伴いピニオン27が回転して、ラック28上を
直線移動し、フレーム12に固定されたガイド34,3
6に沿ってフレーム12上を紙面に垂直方向(図2のX
1−X2方向)に移動する。なお、人工多層膜格子1A
は特性X線Lα用、1BはLβ用、1CはLγ用であ
る。
Therefore, the moving unit 20 is provided with a driving motor 24
As the pinion 27 rotates, the pinion 27 linearly moves on the rack 28, and the guides 34, 3 fixed to the frame 12 are rotated.
6 along the frame 12 in a direction perpendicular to the paper surface (X in FIG. 2).
1-X2 direction). In addition, artificial multilayer film lattice 1A
Is for characteristic X-ray Lα, 1B is for Lβ, and 1C is for Lγ.

【0019】図2において、制御部14(図1参照)
は、駆動用モータ24を制御して、移動部20をラック
28に沿って所定距離移動させ、人工多層膜格子1A〜
1Cのいずれかを入射点INに停止させる。
In FIG. 2, a control unit 14 (see FIG. 1)
Controls the driving motor 24 to move the moving unit 20 a predetermined distance along the rack 28, and
1C is stopped at the incident point IN.

【0020】上述したように、図1において、一次X線
B2の試料2への入射角αが微小かつ許容範囲が狭いた
め、人工多層膜格子1A〜1Cのピン31回りの角度、
つまり、入射X線B1に対する角度を微小に調整する必
要がある。このため、図3において、移動部20には角
度調整手段の一例である調整ネジ40が設けられてい
る。
As described above, in FIG. 1, since the angle of incidence α of the primary X-ray B2 on the sample 2 is very small and the allowable range is narrow, the angle around the pin 31 of the artificial multilayer gratings 1A to 1C,
That is, it is necessary to finely adjust the angle with respect to the incident X-ray B1. For this reason, in FIG. 3, the moving part 20 is provided with an adjusting screw 40 which is an example of an angle adjusting means.

【0021】調整ネジ40は、移動部20の突起部21
に設けられ、その先端40aが人工多層膜格子1A〜1
Cの一方端(左端)に設けられた取付けブラケット42
に当接している。また、格子支持部22,22間の凹部
23には、弾性部材の一例である板バネ44の一端部が
固定されており、他端部が人工多層膜格子1A〜1Cの
他方端(右端)に当接している。従って、人工多層膜格
子1A〜1Cは、調整ネジ40が締められるとZ2方向
に傾き、緩められるとZ1方向に傾いて、その角度が調
整される。
The adjusting screw 40 is connected to the projection 21 of the moving unit 20.
, And the tip 40a of the artificial multilayered lattice 1A-1
Mounting bracket 42 provided at one end (left end) of C
Is in contact with One end of a leaf spring 44, which is an example of an elastic member, is fixed to the concave portion 23 between the lattice support portions 22, 22, and the other end is the other end (right end) of the artificial multilayer lattices 1A to 1C. Is in contact with Therefore, the artificial multilayer lattices 1A to 1C are inclined in the Z2 direction when the adjusting screw 40 is tightened, and inclined in the Z1 direction when the adjusting screw 40 is loosened, and the angles thereof are adjusted.

【0022】例えば、図2において、移動部20がX1
−X2方向に移動され入射点INに人工多層膜格子1A
が停止されると、人工多層膜格子1Aによって、51か
らのAuのX線B1のうち特性X線Lαが回折されて、
一次X線B2となる。このとき、図4(A)に示すよう
に、X線B1の人工多層膜格子1Aへの入射角,回折角
はθ1である。この回折角θ1のとき、一次X線B2
は、試料2への入射角がαであり、試料2の表面2aで
全反射される。
For example, in FIG.
The artificial multilayer grating 1A is moved in the -X2 direction to the incident point IN.
Is stopped, the characteristic X-ray Lα out of the Au X-ray B1 from 51 is diffracted by the artificial multilayer lattice 1A,
It becomes the primary X-ray B2. At this time, as shown in FIG. 4A, the incident angle and the diffraction angle of the X-ray B1 on the artificial multilayer grating 1A are θ1. At this diffraction angle θ1, the primary X-ray B2
Has an incident angle α on the sample 2 and is totally reflected on the surface 2 a of the sample 2.

【0023】また、入射点INに人工多層膜格子1Bが
移動されると特性X線Lβが回折され、図4(B)に示
すように、X線B1の人工多層膜格子1Bへの入射角,
回折角はθ2である。このとき、同様に一次X線B2の
試料2への入射角はαである。さらに、図4(C)に示
すように、人工多層膜格子1Cが移動されると、特性X
線Lγが回折され、人工多層膜格子1Cへの入射角,回
折角はθ3である。このときも、一次X線B2の試料2
への入射角は同様にαであり、試料2の表面2aで全反
射される。
When the artificial multilayer grating 1B is moved to the incident point IN, the characteristic X-ray Lβ is diffracted, and as shown in FIG. 4B, the angle of incidence of the X-ray B1 on the artificial multilayer grating 1B. ,
The diffraction angle is θ2. At this time, similarly, the incident angle of the primary X-ray B2 on the sample 2 is α. Further, as shown in FIG. 4C, when the artificial multilayer lattice 1C is moved, the characteristic X
The line Lγ is diffracted, and the incident angle and the diffraction angle on the artificial multilayer grating 1C are θ3. Also at this time, the sample 2 of the primary X-ray B2
Is similarly α, and is totally reflected by the surface 2 a of the sample 2.

【0024】なお、図4(A)〜(C)のそれぞれにお
いて、X線B1の人工多層膜格子1A〜1Cへの入射点
INは、前後方向(図の左右方向)にずれている。
In each of FIGS. 4A to 4C, the incident point IN of the X-ray B1 on the artificial multilayer gratings 1A to 1C is shifted in the front-back direction (the left-right direction in the drawing).

【0025】このように、本装置は、移動手段10によ
って人工多層膜格子1A〜1Cを移動させるだけで、X
線源5および試料台7を動かすことなく、同一試料につ
いて複数の元素の計測を行うことができる。
As described above, the present apparatus moves the artificial multilayered gratings 1A to 1C by the moving means 10, and
A plurality of elements can be measured for the same sample without moving the radiation source 5 and the sample stage 7.

【0026】図5は、第2実施例を示す。この分光器4
8は、回転体52の円周上に固定された図1〜図4に示
したのと同様な複数の人工多層膜格子(分光素子)1A
〜1 Cと、上記回転体52を回転させることによりいず
れか1つの人工多層膜格子1A〜1Cを一次X線B2の
経路上に位置させて一次X線B2を所望の人工多層膜格
子1A〜1Cで分光させ、すべての人工多層膜格子1A
〜1Cについて試料2への一定の入射角αを得る移動手
段50とを備えている。これとともに、上記回転体52
の回転軸54の軸心54aは、X線源5から分光器48
を経て試料2に至る一次X線B2の経路を含む平面H上
における位置が、X線源5および試料2に対して固定さ
れている。この回転体52の回転軸54が駆動用モータ
(図示せず)で所定角度回転され、回折位置Oに人工多
層膜格子(この図では1C)が移動されて、各特性X線
が回折される。
FIG. 5 shows a second embodiment. This spectroscope 4
Reference numeral 8 denotes a plurality of artificial multilayer film gratings (spectral elements) 1A similar to those shown in FIGS. 1 to 4 fixed on the circumference of the rotating body 52 .
~ 1 C, by rotating the rotating body 52
One of the artificial multilayer gratings 1A to 1C is converted to a primary X-ray B2.
The primary X-ray B2 is located on the path and
Spectroscopy with all the artificial multilayer gratings 1A
A moving hand that obtains a constant angle of incidence α on sample 2 for ~ 1C
And a step 50. At the same time, the rotating body 52
The axis 54a of the rotating shaft 54 is connected to the spectroscope 48 from the X-ray source 5.
On the plane H including the path of the primary X-ray B2 reaching the sample 2 via
Is fixed with respect to the X-ray source 5 and the sample 2.
Have been. The rotating shaft 54 of the rotating body 52 is rotated by a predetermined angle by a driving motor (not shown), the artificial multilayer grating (1C in this figure) is moved to the diffraction position O, and each characteristic X-ray is diffracted. .

【0027】次に、図6は第3実施例を示す。図6
(A)において、この分光器58は、格子面間隔の周期
が連続的に分光面に沿って異なるように設定された単一
不等間隔素子(分光素子)62と、この不等間隔素子
62を格子支持部64間に取り付けてX線源5から分光
器48を経て試料2に至る一次X線B2の経路を含む平
面H(同図(B))上で平行移動させることにより所望
の一次X線B2に対して一定の入射角αを得る移動手段
60とを備えている。
FIG. 6 shows a third embodiment. FIG.
In (A), the spectroscope 58 has a period of the lattice spacing.
Single set to be continuously different along the spectral plane
The irregularly-spaced element (spectral element) 62 and the irregularly-spaced element 62 are attached between the lattice support portions 64 to separate the light from the X-ray source 5.
Including the path of the primary X-ray B2 to the sample 2 via the detector 48
Desired by parallel movement on plane H (FIG. 2B)
Means for obtaining a constant incident angle α with respect to the primary X-ray B2
60.

【0028】上記不等間隔素子62は、図2の移動手段
10と同様に、駆動用モータ24により前後方向(Y1
−Y2方向)に移動される。図6(B)において、格子
支持部65に軸孔66が形成され、不等間隔素子62に
固定されたピン67が軸孔66に回転自在に嵌め込まれ
ている。一方のピン67には従動ギヤ76が取り付けら
れている。制御部70によって角度調整用モータ68の
回転が制御され、角度調整用モータ68回転軸に固定さ
れた駆動ギヤ72が移動部63に支持された中間ギヤ7
4を介して上記従動ギヤ76を回転させることにより、
不等間隔素子62はR1−R2方向に角度調整されて、
各特性X線Lα、Lβ、Lγが回折される。
The unequally-spaced element 62 is a moving means of FIG.
10, the drive motor 24 causes the front-rear direction (Y1
−Y2 direction). In FIG. 6B, a shaft hole 66 is formed in the lattice support portion 65, and a pin 67 fixed to the unequally spaced element 62 is rotatably fitted into the shaft hole 66. A driven gear 76 is attached to one of the pins 67. The rotation of the angle adjustment motor 68 is controlled by the control unit 70, and the drive gear 72 fixed to the rotation shaft of the angle adjustment motor 68 is connected to the intermediate gear 7 supported by the moving unit 63.
By rotating the driven gear 76 through 4,
The unequally spaced elements 62 are angle adjusted in the R1-R2 directions,
Each characteristic X-ray Lα, Lβ, Lγ is diffracted.

【0029】なお、この実施例では、ターゲット材51
にAuを用いているが、白金(Pt)のような他のター
ゲット材51を用いてもよい。
In this embodiment, the target material 51
Is used, but another target material 51 such as platinum (Pt) may be used.

【0030】以上のような特性X線を用いた分析の結
果、図7に示すような元素について分析が可能となる。
As a result of the analysis using the characteristic X-rays as described above, it becomes possible to analyze the elements as shown in FIG.

【0031】また、第1および第2実施例では、人工多
層膜格子が3個のものを用いているが、これに限定する
ものではなく、2個または4個以上用いることもでき
る。
In the first and second embodiments, three artificial multilayer lattices are used. However, the present invention is not limited to this, and two or more artificial lattices may be used.

【0032】なお、この実施例では、特性X線Lα、L
β、Lγを用いているが、これに限るものではなく、例
えば、Kα、Kβ、Kγなども用いることができる。
In this embodiment, the characteristic X-rays Lα and Lα
Although β and Lγ are used, the present invention is not limited thereto, and for example, Kα, Kβ, Kγ, etc. can be used.

【0033】[0033]

【発明の効果】以上のように、請求項1の発明によれ
ば、格子面間隔の異なる複数の分光素子を、一次X線の
経路を含む平面上における位置がX線源および試料に対
して固定された状態で、移動手段によって上記平面と直
交する方向へ移動させることにより、一次X線を所望の
分光素子で分光させるので、所望の一次X線に対して
料への一定の入射角を得ることができる。これにより、
同一試料について多くの元素を容易かつ迅速に分析する
全反射蛍光X線分析装置を提供することができる。
As described above, according to the first aspect of the present invention, a plurality of spectroscopic elements having different lattice spacings can be used for the primary X-rays.
The position on the plane containing the path is relative to the X-ray source and the sample.
While being fixed with said plane and straight by moving means
The primary X-rays are moved to the desired
Since the dispersed by the spectroscopic element, trial for the desired primary X-rays
A constant angle of incidence on the material can be obtained. This allows
A total reflection X-ray fluorescence spectrometer capable of easily and quickly analyzing many elements in the same sample can be provided.

【0034】また、請求項2の発明によれば、円周上に
格子面間隔が互いに異なる複数の分光素子を固定した回
転体を移動手段によって回転させ、いずれか1つの分光
素子を一次X線の経路上に位置させることにより、一次
X線を所望の分光素子で分光させるとともに、上記回転
体の軸心は、上記一次X線の経路を含む平面上における
位置が、X線源および試料に対して固定されているの
で、所望の一次X線に対して試料への一定の入射角を得
ることができる。
According to the second aspect of the present invention ,
Fixing multiple spectroscopy elements with different lattice spacings
The rotating body is rotated by the moving means, and any one of
By placing the element on the path of the primary X-ray, the primary
X-rays are dispersed by a desired spectral element, and
The axis of the body is on a plane including the path of the primary X-ray.
The position is fixed relative to the X-ray source and the sample
Thus, it is possible to obtain a constant incident angle on the sample with respect to a desired primary X-ray.

【0035】請求項3の発明によれば、格子面間隔の周
期が連続的に分光面に沿って異なるように設定された単
一の分光素子を、X線源から分光器を経て試料に至る一
次X線の経路を含む平面上で移動手段によって平行移動
させることにより、一次X線を所望の分光素子で分光さ
せるので、所望の一次X線に対して試料への一定の入
角を得ることができる。
According to the third aspect of the present invention, the circumference of the lattice spacing is
The periods are set so that they differ continuously along the spectral plane.
One spectroscopic element is connected to the sample from the X-ray source through the spectrometer.
Translate by the moving means on the plane including the path of the next X-ray
This allows the primary X-rays to be separated by the desired spectral element.
Since the morphism constant input to the sample relative to the desired primary X-rays
You can get the corner.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例に係る全反射蛍光X線分析
装置を示す概略側面図である。
FIG. 1 is a schematic side view showing a total reflection X-ray fluorescence spectrometer according to one embodiment of the present invention.

【図2】上記の全反射蛍光X線分析装置の移動手段を示
す概略面図である。
Figure 2 is a schematic positive elevation view showing a moving means of total reflection X-ray fluorescence spectrometer described above.

【図3】上記の移動手段を示す概略側面図である。FIG. 3 is a schematic side view showing the moving means.

【図4】人工多層膜格子の回折の状態を示す側面図であ
る。
FIG. 4 is a side view showing a state of diffraction of the artificial multilayer grating.

【図5】他の実施例に係る移動手段を示す側面図であ
る。
FIG. 5 is a side view showing a moving unit according to another embodiment.

【図6】他の実施例に係る移動手段を示す側面図であ
る。
FIG. 6 is a side view showing a moving unit according to another embodiment.

【図7】分析可能な元素を示す図である。FIG. 7 is a diagram showing elements that can be analyzed.

【図8】従来の全反射蛍光X線分析装置の概略側面図を
示す図である。
FIG. 8 is a schematic side view of a conventional total reflection X-ray fluorescence spectrometer.

【符号の説明】[Explanation of symbols]

1A,1B,1C…分光素子(人工多層膜格子)、2…
試料、 3…X線検出器、4…多重波高分析器、5…X
線源、7…試料台、8,48,58…分光器、10,5
0,60…移動手段、14…制御部、B1…特性X線、
B2…一次X線、B5…蛍光X線。
1A, 1B, 1C ... Spectroscopy element (artificial multilayer grating), 2 ...
Sample, 3 ... X-ray detector, 4 ... Multiple height analyzer, 5 ... X
Source: 7, Sample table, 8 , 48 , 58 Spectroscope, 10 , 5
0,60 : moving means, 14: control unit, B1: characteristic X-ray,
B2: primary X-ray, B5: fluorescent X-ray.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭54−7991(JP,A) 特開 平3−209156(JP,A) 特開 昭63−167250(JP,A) 特開 平3−111799(JP,A) 特開 昭63−61200(JP,A) 実開 平2−33399(JP,U) 実公 昭47−25594(JP,Y2) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-54-7991 (JP, A) JP-A-3-209156 (JP, A) JP-A-63-167250 (JP, A) 111799 (JP, A) JP-A-63-61200 (JP, A) JP-A-2-33399 (JP, U) JP-A-47-25594 (JP, Y2)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 X線を発生するX線源と、上記X線を回
折させて単色化した一次X線を試料表面に向かって微小
一定の入射角で入射させる分光器と、上記試料表面に
対向し上記一次X線を受けた試料からの蛍光X線を検出
するX線検出器とを備え、このX線検出器での検出結果
に基づいて上記蛍光X線を分析する全反射蛍光X線分析
装置において、 上記分光器は、格子面間隔が互いに異なり、X線源から
分光器を経て試料に至る一次X線の経路を含む平面上に
おける位置が、X線源および試料に対して固定された
数の分光素子と、これら分光素子を上記平面と直交する
方向へ移動させることにより一次X線を所望の分光素子
で分光させて、すべての分光素子について試料への上記
一定の入射角を得る移動手段とを備えていることを特徴
とする全反射蛍光X線分析装置。
1. An X-ray source for generating X-rays, a spectroscope for diffracting the X-rays to make monochromatic primary X-rays incident on a sample surface at a small, constant incident angle, and the sample surface An X-ray detector that detects fluorescent X-rays from a sample that has received the primary X-rays, and that analyzes the fluorescent X-rays based on the detection result of the X-ray detector. In the X-ray spectrometer, the spectroscopes have different lattice spacings, and are separated from an X-ray source.
On the plane containing the path of primary X-rays to the sample via the spectrometer
A plurality of spectral elements fixed with respect to the X-ray source and the sample, and these spectral elements are orthogonal to the plane.
Primary X-ray by moving it in the desired direction
Spectroscopy with all spectroscopic elements
A total reflection X-ray fluorescence spectrometer, comprising: moving means for obtaining a constant angle of incidence.
【請求項2】 X線を発生するX線源と、上記X線を回
折させて単色化した一次X線を試料表面に向かって微小
な一定の入射角で入射させる分光器と、上記試料表面に
対向し上記一次X線を受けた試料からの蛍光X線を検出
するX線検出器とを備え、このX線検出器での検出結果
に基づいて上記蛍光X線を分析する全反射蛍光X線分析
装置において、 上記分光器は、回転体の円周上に固定された格子面間隔
が互いに異なる複数の分光素子と、上記回転体を回転さ
せることによりいずれか1つの分光素子を上記一次X線
の経路上に位置させて一次X線を所望の分光素子で分光
させ、すべての分光素子について試料への上記一定 の入
射角を得る移動手段とを備え 上記回転体の軸心は、X線源から分光器を経て試料に至
る一次X線の経路を含む平面上における位置が、X線源
および試料に対して固定されている ことを特徴とする全
反射蛍光X線分析装置。
2. An X-ray source for generating X-rays, and the X-ray source
The primary X-ray that has been folded and converted to monochromatic
A spectroscope for incidence at a constant angle of incidence and the sample surface
Detects fluorescent X-rays from the sample facing and receiving the primary X-rays
And an X-ray detector for detecting the detection result of the X-ray detector.
Total reflection X-ray fluorescence analysis for analyzing the above-mentioned X-ray fluorescence based on
In the apparatus, the spectroscope has a lattice spacing fixed on the circumference of the rotating body.
Rotating the rotating body with a plurality of spectral elements different from each other
By causing any one of the spectroscopic elements to emit the primary X-ray.
Primary X-rays with the desired spectral element
It is allowed, and a moving means for obtaining said constant angle of incidence to all the spectral element samples, the axis of the rotating body reaches the sample through a spectroscope from the X-ray source
The position on the plane containing the path of the primary X-ray
And a total reflection X-ray fluorescence analyzer fixed to the sample .
【請求項3】 X線を発生するX線源と、上記X線を回
折させて単色化した一次X線を試料表面に向かって微小
な一定の入射角で入射させる分光器と、上記試料表面に
対向し上記一次X線を受けた試料からの蛍光X線を検出
するX線検出 器とを備え、このX線検出器での検出結果
に基づいて上記蛍光X線を分析する全反射蛍光X線分析
装置において、 上記分光器は、格子面間隔の周期が連続的に分光面に沿
って異なるように設定された単一の分光素子と、この分
光素子をX線源から分光器を経て試料に至る一次X線の
経路を含む平面上で平行移動させることにより所望の一
次X線に対して上記一定の入射角を得る移動手段とを備
えたことを特徴とする全反射蛍光X線分析装置。
3. An X-ray source for generating X-rays, and the X-ray source
The primary X-ray that has been folded and converted to monochromatic
A spectroscope for incidence at a constant angle of incidence and the sample surface
Detects fluorescent X-rays from the sample facing and receiving the primary X-rays
And an X-ray detector for detecting the detection result of the X-ray detector.
Total reflection X-ray fluorescence analysis for analyzing the above-mentioned X-ray fluorescence based on
In the apparatus, in the spectroscope, the period of the lattice plane interval is continuously along the spectral plane.
And a single spectroscopic element set differently
The optical element is used to convert the primary X-rays from the X-ray source through the spectrometer to the sample.
By moving in parallel on the plane containing the path,
Moving means for obtaining the above-mentioned constant incident angle with respect to the next X-ray.
A total reflection X-ray fluorescence analyzer.
JP6023187A 1994-01-24 1994-01-24 Total reflection X-ray fluorescence analyzer Expired - Fee Related JP2664632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6023187A JP2664632B2 (en) 1994-01-24 1994-01-24 Total reflection X-ray fluorescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6023187A JP2664632B2 (en) 1994-01-24 1994-01-24 Total reflection X-ray fluorescence analyzer

Publications (2)

Publication Number Publication Date
JPH07209216A JPH07209216A (en) 1995-08-11
JP2664632B2 true JP2664632B2 (en) 1997-10-15

Family

ID=12103661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6023187A Expired - Fee Related JP2664632B2 (en) 1994-01-24 1994-01-24 Total reflection X-ray fluorescence analyzer

Country Status (1)

Country Link
JP (1) JP2664632B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036677A1 (en) * 2001-10-24 2003-05-01 Jeol Ltd. Electron microscope having x-ray spectrometer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515592Y2 (en) * 1971-04-13 1976-02-16
DE2727505A1 (en) * 1977-06-18 1979-01-04 Ibm Deutschland ROENTGEN FLUORESCENT ANALYSIS FOR THE EXAMINATION OF LAYERS NEAR THE SURFACE
JPH03209156A (en) * 1990-01-12 1991-09-12 Toshiba Corp Fluorescent x-ray analysis apparatus and composite artificial multilayered film body

Also Published As

Publication number Publication date
JPH07209216A (en) 1995-08-11

Similar Documents

Publication Publication Date Title
US5132997A (en) X-ray spectroscopic analyzing apparatus
US7796252B2 (en) Scanning monochromator with direct drive grating
JP2008046132A (en) Spectroscopy system
JP2006194812A (en) Spectrofluorometer
JP2664632B2 (en) Total reflection X-ray fluorescence analyzer
JP2000504422A (en) X-ray analyzer having two collimator masks
US9551612B2 (en) Tandem dispersive range monochromator
JPH08128971A (en) Exafs measuring device
JP2006337284A (en) Method and device for measuring stray light of grating
JP4476883B2 (en) X-ray beam processing apparatus, X-ray light receiving system, and X-ray analyzer
JP2922758B2 (en) X-ray spectrometer
JP3531098B2 (en) X-ray fluorescence analyzer
US5442440A (en) Spectroscope
JP2000329714A (en) X-ray fluorescence analyzer
JP3126718B2 (en) Multi-channel fluorescence spectrometer
JPH0833359B2 (en) Total reflection X-ray fluorescence analyzer
US20050128478A1 (en) Optical unit and measuring apparatus having the same
JP2951687B2 (en) Exafus equipment
JPH1151883A (en) Method and equipment for fluorescent x-ray analysis
JP2000009666A (en) X-ray analyzer
JP3098806B2 (en) X-ray spectrometer and EXAFS measurement device
JP2002168694A (en) Spectrometer
WO2021215034A1 (en) Spectrometry device
JPH06308293A (en) Solar slit
JP3262877B2 (en) Spectroscope

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees