JP2000329714A - X-ray fluorescence analyzer - Google Patents

X-ray fluorescence analyzer

Info

Publication number
JP2000329714A
JP2000329714A JP11142743A JP14274399A JP2000329714A JP 2000329714 A JP2000329714 A JP 2000329714A JP 11142743 A JP11142743 A JP 11142743A JP 14274399 A JP14274399 A JP 14274399A JP 2000329714 A JP2000329714 A JP 2000329714A
Authority
JP
Japan
Prior art keywords
fluorescent
rays
semiconductor detector
sample
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11142743A
Other languages
Japanese (ja)
Inventor
Tadashi Uko
忠 宇高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp filed Critical Rigaku Industrial Corp
Priority to JP11142743A priority Critical patent/JP2000329714A/en
Publication of JP2000329714A publication Critical patent/JP2000329714A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an X-ray fluorescence analyzer which uses only a semiconductor detector as a detector, whose constitution is simple, whose accuracy and sensitivity are high and which can perform a sufficiently precise analysis. SOLUTION: A sample base 2, an X-ray source 4, a slit 11 which passes fluorescent X-rays 5 generated from a sample 1 and the like are provided at this X-ray fluorescence analyzer. In addition, a spectral element exchanger 14 which comprises a plurality of kinds of spectral elements 6 so as to be selected and which spectrally diffracts fluorescent X-rays 13 is provided, and a semiconductor detector 8 which measures the intensity of spectrally diffracted fluorescent X-rays 7 is provided. In addition, an interlocking means 10 by which the spectral element exchanger 14 and the semiconductor detector 8 are interlocked in such a way that, while the wavelength of the spectrally diffracted fluorescent X-rays 7 is being changed, the spectrally diffracted fluorescent X-rays 7 are incident on the semiconductor detector 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、検出器として半導
体検出器のみを用いた蛍光X線分析装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray fluorescence analyzer using only a semiconductor detector as a detector.

【0002】[0002]

【従来の技術】従来のいわゆる波長分散型の蛍光X線分
析装置においては、検出器として、例えば、Al 程度に
軽い元素の分析用にはガスフロー型比例計数管(F−P
C)を、Fe 、Sn 等程度に重い元素の分析用にはシン
チレーション計数管(SC)を用い、各検出器に適した
分光素子等の光学系を組み合わせて分光している。
2. Description of the Related Art In a conventional so-called wavelength dispersive X-ray fluorescence spectrometer, a gas flow type proportional counter (FP) is used as a detector, for example, for the analysis of elements as light as Al.
C) is analyzed by using a scintillation counter (SC) for the analysis of elements as heavy as Fe, Sn, etc., using an optical system such as a spectroscopic element suitable for each detector.

【0003】[0003]

【発明が解決しようとする課題】しかし、このような装
置では、検出器を少なくとも2種類備えねばならないた
め構成が複雑で、しかも、エネルギー分解能が低い等の
検出器の特性から、装置の感度や精度が必ずしも十分で
ないため、今一つ正確な分析ができない。一方、従来の
いわゆるエネルギー分散型の蛍光X線分析装置では、エ
ネルギー分解能の高い半導体検出器(SSD)を用いる
が、検出器に大がかりな冷却装置が必要となることが多
く走査が困難なこともあって分光素子を用いないため、
検出器の分解能で装置の分解能が決まる。ここで、一般
に、蛍光X線分析装置における分解能は、Al やFe 程
度に軽い元素の分析では、適切な分光素子を用いた波長
分散型が優れ、Mo 程度以上に重い元素の分析では、半
導体検出器を用いたエネルギー分散型が優れる。したが
って、従来のエネルギー分散型の蛍光X線分析装置にお
いては、Al やFe 程度に軽い元素の分析では、装置の
精度が必ずしも十分でなく、やはり今一つ正確な分析が
できない。
However, in such an apparatus, since at least two types of detectors must be provided, the structure is complicated, and the sensitivity of the apparatus is low due to the characteristics of the detector such as low energy resolution. Since the accuracy is not always sufficient, accurate analysis cannot be performed. On the other hand, a conventional so-called energy dispersive X-ray fluorescence spectrometer uses a semiconductor detector (SSD) having a high energy resolution. However, a large-scale cooling device is required for the detector, which makes scanning difficult. Because there is no spectral element
The resolution of the device is determined by the resolution of the detector. Here, in general, the resolution of a fluorescent X-ray analyzer is excellent in the wavelength dispersion type using an appropriate spectroscopic element in the analysis of elements as light as Al or Fe, and in semiconductor analysis in the analysis of elements heavier than Mo or more. Energy dispersing type using a vessel is excellent. Therefore, in the conventional energy dispersive X-ray fluorescence spectrometer, the accuracy of the device is not always sufficient for the analysis of an element as light as Al or Fe, so that another accurate analysis cannot be performed.

【0004】本発明は前記従来の問題に鑑みてなされた
もので、検出器として半導体検出器のみを用いた簡単な
構成で、精度や感度が高く十分正確な分析ができる蛍光
X線分析装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and provides a fluorescent X-ray analyzer which has a simple configuration using only a semiconductor detector as a detector and has high accuracy and sensitivity and can perform sufficiently accurate analysis. The purpose is to provide.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、請求項1の蛍光X線分析装置は、まず、試料が載置
される試料台と、試料に1次X線を照射するX線源と、
試料から発生した蛍光X線を通過させるスリットとを備
えている。また、分光素子を複数種類有し、前記スリッ
トを通過する蛍光X線の光路に選択的に進出させて入射
した蛍光X線を分光させる分光素子交換器と、前記分光
素子で分光された蛍光X線の強度を測定する半導体検出
器とを備えている。さらに、前記分光素子で分光される
蛍光X線の波長を変えながら、その分光された蛍光X線
が前記半導体検出器に入射するように、前記スリット、
分光素子交換器および半導体検出器のうち少なくとも分
光素子交換器および半導体検出器を連動させる連動手段
を備えている。
In order to achieve the above object, an X-ray fluorescence spectrometer according to a first aspect of the present invention comprises a sample stage on which a sample is placed and an X-ray for irradiating the sample with primary X-rays. Source,
And a slit for passing fluorescent X-rays generated from the sample. A spectroscopic element exchanger that has a plurality of types of spectroscopic elements and selectively advances to an optical path of the fluorescent X-rays passing through the slit to split the incident fluorescent X-rays; A semiconductor detector for measuring the intensity of the line. Further, while changing the wavelength of the fluorescent X-rays split by the spectroscopic element, the slit, so that the split fluorescent X-rays are incident on the semiconductor detector.
There is provided interlocking means for interlocking at least the spectral element exchanger and the semiconductor detector among the spectral element exchanger and the semiconductor detector.

【0006】請求項1の装置によれば、まず、検出器と
して半導体検出器のみを用いるので構成が簡単である。
また、かかる連動手段により広い波長範囲の蛍光X線に
対応しつつ、Al やFe 程度に軽い元素の分析では、適
切な分光素子を選択して用いるので分解能に優れ、Mo
程度以上に重い元素の分析では、半導体検出器を用いて
いるのでやはり分解能に優れる。したがって、精度が高
く十分正確な分析ができる。
According to the first aspect of the present invention, first, only the semiconductor detector is used as the detector, so that the configuration is simple.
In addition, in the analysis of an element as light as Al or Fe while selecting an appropriate spectroscopic element and using it, it is excellent in resolution and Mo, while responding to fluorescent X-rays in a wide wavelength range by such interlocking means.
In the analysis of an element that is heavier than that, a semiconductor detector is used, so that the resolution is also excellent. Therefore, highly accurate and sufficiently accurate analysis can be performed.

【0007】請求項2の蛍光X線分析装置は、請求項1
の装置において、前記半導体検出器を、試料から発生し
た蛍光X線の強度を前記スリットおよび分光素子を介さ
ずに測定する位置に移動させる移動手段を備える。
[0007] The fluorescent X-ray analyzer according to the second aspect is the first aspect.
In the apparatus, a moving means for moving the semiconductor detector to a position where the intensity of the fluorescent X-ray generated from the sample is measured without passing through the slit and the spectral element.

【0008】請求項2の装置によれば、かかる移動手段
により、試料から発生した蛍光X線をスリットや分光素
子を介さずに直接半導体検出器に入射できるので、試料
の微小部位を分析する場合等、蛍光X線の強度が微弱な
場合でも高いS/N比で測定できる。したがって、感度
が高く十分正確な分析ができる。
According to the second aspect of the present invention, the X-rays generated from the sample can be directly incident on the semiconductor detector without passing through a slit or a spectroscopic element by the moving means. For example, even when the intensity of the fluorescent X-ray is weak, it can be measured at a high S / N ratio. Therefore, highly sensitive and sufficiently accurate analysis can be performed.

【0009】請求項3の蛍光X線分析装置は、まず、試
料が載置される試料台と、試料に1次X線を照射するX
線源と、試料から発生した蛍光X線を通過させるスリッ
トとを備えている。また、そのスリットを通過した蛍光
X線の一部を反射する全反射ミラーと、その全反射ミラ
ーで反射された蛍光X線の強度を測定する半導体検出器
とを備えている。さらに、前記全反射ミラーで反射され
る蛍光X線の波長帯域を変え、その反射された蛍光X線
が前記半導体検出器に入射するように、前記スリット、
全反射ミラーおよび半導体検出器のうち少なくとも全反
射ミラーを回動させる回動手段を備えている。
According to a third aspect of the present invention, there is provided an X-ray fluorescence spectrometer comprising: a sample stage on which a sample is placed;
It has a radiation source and a slit for passing fluorescent X-rays generated from the sample. In addition, a total reflection mirror that reflects a part of the fluorescent X-rays passing through the slit, and a semiconductor detector that measures the intensity of the fluorescent X-rays reflected by the total reflection mirror are provided. Further, changing the wavelength band of the fluorescent X-rays reflected by the total reflection mirror, the slit, so that the reflected fluorescent X-rays are incident on the semiconductor detector.
A rotation means for rotating at least the total reflection mirror among the total reflection mirror and the semiconductor detector is provided.

【0010】請求項3の装置によれば、まず、検出器と
して半導体検出器のみを用いるので構成が簡単である。
また、かかる回動手段により広い波長範囲の蛍光X線に
対応しつつ、Al やFe 程度に軽い元素の分析では、全
反射ミラーで所望の波長帯域の蛍光X線のみを反射させ
るので分解能に優れ、Mo 程度以上に重い元素の分析で
は、半導体検出器を用いているのでやはり分解能に優れ
る。さらに、分光素子に比べはるかに反射効率の高い全
反射ミラーを用いるので、装置としてもS/N比が高
い。したがって、精度や感度が高く十分正確な分析がで
きる。
According to the third aspect of the present invention, the configuration is simple because only the semiconductor detector is used as the detector.
In addition, in the analysis of elements as light as Al and Fe while reflecting the fluorescent X-rays in a wide wavelength range by such a rotating means, the total reflection mirror reflects only the fluorescent X-rays in a desired wavelength band, so that the resolution is excellent. In the analysis of elements heavier than Mo or higher, the resolution is also excellent because a semiconductor detector is used. Further, since a total reflection mirror having a much higher reflection efficiency than that of the spectral element is used, the S / N ratio is high as an apparatus. Therefore, highly accurate and sensitive analysis can be performed with sufficient accuracy.

【0011】[0011]

【発明の実施の形態】以下、本発明の第1実施形態の装
置について説明する。まず、この装置の構成について、
図1にしたがって説明する。この装置は、試料1が載置
される試料台2と、試料1に1次X線3を照射するX線
管等のX線源4と、試料1から発生した蛍光X線5を通
過させるソーラスリット11とを備えている。また、分
光素子6を例えば2種類有し、ソーラスリット11を通
過する蛍光X線13の光路に選択的に進出させて入射し
た蛍光X線13を分光させる分光素子交換器14と、分
光素子6で分光された蛍光X線7の強度を測定する半導
体検出器8とを備えている。さらに、分光素子6で分光
される蛍光X線7の波長を変えながら、その分光された
蛍光X線7が半導体検出器8に入射するように、分光素
子交換器14および半導体検出器8を連動させる連動手
段10を備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An apparatus according to a first embodiment of the present invention will be described below. First, regarding the configuration of this device,
This will be described with reference to FIG. This apparatus allows a sample table 2 on which a sample 1 is mounted, an X-ray source 4 such as an X-ray tube for irradiating the sample 1 with primary X-rays 3, and a fluorescent X-ray 5 generated from the sample 1 to pass therethrough. And a solar slit 11. Further, a spectroscopic element exchanger 14 having, for example, two types of spectroscopic elements 6, which selectively advances to the optical path of the fluorescent X-rays 13 passing through the solar slit 11 and splits the incident fluorescent X-rays 13, And a semiconductor detector 8 for measuring the intensity of the fluorescent X-rays 7 that have been spectrally separated. Further, while changing the wavelength of the fluorescent X-rays 7 separated by the spectral element 6, the spectroscopic element exchanger 14 and the semiconductor detector 8 are linked so that the separated fluorescent X-rays 7 enter the semiconductor detector 8. There is provided an interlocking means 10 for causing the operation.

【0012】ここで、2種類の分光素子6A,6Bは、
例えば、Pentaerythritol (PET)とLi Fである。
半導体検出器8としては、シリコン検出器(Si(L
i))、ゲルマニウム検出器、シリコンドリフト検出器
(SDD)、超伝導放射線検出器(STJ)等の固体素
子を用いることができる。特に、液体窒素によらずPert
ier素子による冷却を行うものが、コンパクトで本発明
の実施に適している。
Here, the two types of spectral elements 6A and 6B are:
For example, Pentaerythritol (PET) and LiF.
As the semiconductor detector 8, a silicon detector (Si (L
i)), a solid-state device such as a germanium detector, a silicon drift detector (SDD), and a superconducting radiation detector (STJ) can be used. In particular, Pert regardless of liquid nitrogen
The one that performs cooling by an ier element is compact and suitable for implementing the present invention.

【0013】連動手段10は、いわゆるゴニオメータで
ある。蛍光X線13がある入射角θで分光素子6Aへ入
射すると、その蛍光X線13の延長線9と分光素子6A
で分光(回折)された蛍光X線7は入射角θの2倍の分
光角2θをなすが、連動手段10は、分光角2θを変え
て分光される蛍光X線7の波長を変えながら、その分光
された蛍光X線7が半導体検出器8に入射するように、
分光素子6Aを、分光素子交換器14を介して、分光素
子6Aの表面の中心を通る紙面に垂直な軸Oを中心に回
転させ、その回転角の2倍だけ、半導体検出器8を、軸
Oを中心に円12に沿って回転(走査)させる。連動手
段10において、例えば、前記軸Oに取り付けたポテン
ショメータ等により、分光素子6Aおよび半導体検出器
8が回転した結果形成される入射角θ、分光角2θが確
認される。
The interlocking means 10 is a so-called goniometer. When the fluorescent X-rays 13 enter the spectroscopic element 6A at a certain incident angle θ, the extension line 9 of the fluorescent X-rays 13 and the spectroscopic element 6A
The fluorescent X-rays 7 spectrally (diffracted) at 2 form a spectral angle 2θ twice the incident angle θ, but the interlocking means 10 changes the spectral angle 2θ to change the wavelength of the fluorescent X-rays 7 In order that the separated fluorescent X-rays 7 enter the semiconductor detector 8,
The spectroscopic element 6A is rotated via the spectroscopic element exchanger 14 about an axis O perpendicular to the paper surface passing through the center of the surface of the spectroscopic element 6A, and the semiconductor detector 8 is rotated by twice the rotation angle. It is rotated (scanned) along the circle 12 around O. In the interlocking means 10, the incident angle θ and the spectral angle 2θ formed as a result of rotation of the spectroscopic element 6A and the semiconductor detector 8 are confirmed by, for example, a potentiometer attached to the axis O.

【0014】なお、連動手段10は、分光素子交換器1
4と半導体検出器8を歯車機構等の駆動機構により機械
的に連結し、その歯車機構等を単一のモータ等の駆動源
で駆動するものでもよいし、分光素子交換器14と半導
体検出器8をそれぞれ独立した駆動源および駆動機構で
駆動し、それらの駆動源を適切に制御して前記のような
動作を実現するものでもよい。
The interlocking means 10 is connected to the spectral element exchanger 1
4 and the semiconductor detector 8 may be mechanically connected by a drive mechanism such as a gear mechanism, and the gear mechanism or the like may be driven by a single drive source such as a motor, or the spectral element exchanger 14 and the semiconductor detector 8 may be driven by independent drive sources and drive mechanisms, and the above-described operation may be realized by appropriately controlling the drive sources.

【0015】さらに、この装置は、図2に示すように、
半導体検出器8を、試料1から発生した蛍光X線5の強
度をソーラスリット11および分光素子6を介さずに測
定する位置に移動させる移動手段15を備える。この移
動にあたり、ソーラスリット11や分光素子交換器14
が干渉しないよう退避させる必要があれば、移動手段1
5は、それらを退避させることも行う。なお、移動手段
15も、モータ等の駆動源および歯車機構等の駆動機構
からなるが、連動手段10と別個独立のものでもよく、
連動手段10と少なくとも一部が共通するものでもよ
い。
[0015] Further, as shown in FIG.
The semiconductor detector 8 includes a moving unit 15 for moving the intensity of the fluorescent X-rays 5 generated from the sample 1 to a position where the intensity is measured without passing through the solar slit 11 and the spectral element 6. In this movement, the solar slit 11 and the spectral element exchanger 14
If it is necessary to evacuate to avoid interference,
5 also evacuates them. The moving means 15 also includes a driving source such as a motor and a driving mechanism such as a gear mechanism, but may be independent of the interlocking means 10.
At least part of the interlocking means 10 may be common.

【0016】次に、この装置の動作について説明する。
まず、例えばAl 程度に軽い元素について分析する場合
には、図1の分光素子交換器14が紙面に垂直な中心軸
Pを中心にして回転され、適切なPETの分光素子6A
が、ソーラスリット11を通過する蛍光X線13の光路
に進出するように選択される。そして、試料台2に載置
された試料1にX線源4から1次X線3が照射される
と、試料1から発生した蛍光X線5がソーラスリット1
1を通過し、分光素子6Aで分光され、分光された蛍光
X線7の強度が半導体検出器8で測定される。ここで、
分光素子6Aと半導体検出器8を連動手段10で連動さ
せることにより、試料1から発生した蛍光X線5を、ソ
ーラスリット11を通過させてまず分光素子6Aでそれ
ぞれの波長に光学的に分光し、さらにエネルギー分解能
の高い半導体検出器8および図示しない波高分析器で電
気的に詳細に分離して検出する。
Next, the operation of this device will be described.
First, when analyzing an element as light as Al, for example, the spectroscopic element exchanger 14 of FIG. 1 is rotated about a central axis P perpendicular to the plane of the drawing, and an appropriate PET spectroscopic element 6A is analyzed.
Is selected to enter the optical path of the fluorescent X-ray 13 passing through the solar slit 11. When the primary X-ray 3 is irradiated from the X-ray source 4 to the sample 1 placed on the sample stage 2, the fluorescent X-rays 5 generated from the sample 1
1 and is separated by the spectroscopic element 6A, and the intensity of the separated fluorescent X-ray 7 is measured by the semiconductor detector 8. here,
By interlocking the spectroscopic element 6A and the semiconductor detector 8 with the interlocking means 10, the fluorescent X-rays 5 generated from the sample 1 are passed through the solar slit 11 and first optically split into the respective wavelengths by the spectroscopic element 6A. In addition, the semiconductor detector 8 having a higher energy resolution and a wave height analyzer (not shown) electrically separate and detect the electric power.

【0017】また、例えばFe 程度以上に重い元素につ
いて分析する場合には、分光素子交換器14が紙面に垂
直な中心軸Pを中心にして回転され、適切なLi Fの分
光素子6Bが、ソーラスリット11を通過する蛍光X線
13の光路に進出するように選択される。以下、前記と
同様に各波長の蛍光X線5が分光、検出される。
In the case of analyzing an element heavier than Fe, for example, the spectroscopic element exchanger 14 is rotated about a central axis P perpendicular to the plane of the drawing, and an appropriate LiF spectroscopic element 6B is It is selected so as to enter the optical path of the fluorescent X-ray 13 passing through the slit 11. Thereafter, the fluorescent X-rays 5 of each wavelength are separated and detected in the same manner as described above.

【0018】このように、第1実施形態の装置によれ
ば、まず、検出器として半導体検出器8のみを用いるの
で構成が簡単である。また、かかる連動手段10により
広い波長範囲の蛍光X線5に対応しつつ、Al やFe 程
度に軽い元素の分析では、適切な分光素子6A,6Bを
選択して用いるので分解能に優れ、Mo 程度以上に重い
元素の分析では、半導体検出器8を用いているのでやは
り分解能に優れる。したがって、精度が高く十分正確な
分析ができる。なお、Fe 程度以上に重い元素のうち、
Mo 程度以上に重い元素の分析については、半導体検出
器8および波高分析器による電気的なエネルギー分解の
みで十分で、分光素子6は必要でない。
As described above, according to the apparatus of the first embodiment, first, only the semiconductor detector 8 is used as the detector, so that the configuration is simple. In addition, in the analysis of elements as light as Al and Fe while selecting the appropriate spectroscopic elements 6A and 6B while using the interlocking means 10 to cope with the fluorescent X-rays 5 in a wide wavelength range, the resolution is excellent, and about Mo. In the analysis of heavy elements as described above, the semiconductor detector 8 is used, so that the resolution is also excellent. Therefore, highly accurate and sufficiently accurate analysis can be performed. Among the elements heavier than Fe,
For analysis of elements heavier than Mo, only electrical energy decomposition by the semiconductor detector 8 and the pulse height analyzer is sufficient, and the spectroscopic element 6 is not required.

【0019】続けて、試料1の微小部位を分析する場合
等(試料1全体が微小である場合も含む)、蛍光X線5
の強度が微弱な場合の動作について説明する。まず、図
2に示すように、移動手段15により、半導体検出器8
を、試料1から発生した蛍光X線5の強度をソーラスリ
ット11および分光素子6を介さずに測定する位置に移
動させ、試料台2に載置された試料1に近接させる。そ
して、試料1にX線源4から1次X線3が照射される
と、試料1から発生した蛍光X線5が、直接半導体検出
器8に入射して、エネルギー分解能の高い半導体検出器
8および波高分析器で電気的に分離して検出される。こ
のように、第1実施形態の装置によれば、かかる移動手
段15により、試料1から発生した蛍光X線5を、ソー
ラスリット11や分光素子6を介さずに直接半導体検出
器8に入射させることもできるので、試料1から発生す
る蛍光X線5の強度が微弱な場合でも、高いS/N比で
測定できる。したがって、感度が高く十分正確な分析が
できる。
Subsequently, when analyzing a minute portion of the sample 1 (including a case where the whole sample 1 is minute), the fluorescent X-ray 5
The operation in the case where the intensity is weak is described. First, as shown in FIG.
Is moved to a position where the intensity of the fluorescent X-rays 5 generated from the sample 1 is measured without passing through the solar slit 11 and the spectroscopic element 6, and is brought close to the sample 1 placed on the sample stage 2. When the sample 1 is irradiated with the primary X-rays 3 from the X-ray source 4, the fluorescent X-rays 5 generated from the sample 1 are directly incident on the semiconductor detector 8 and have high energy resolution. And electrically separated by a wave height analyzer. Thus, according to the apparatus of the first embodiment, the moving means 15 causes the fluorescent X-rays 5 generated from the sample 1 to directly enter the semiconductor detector 8 without passing through the solar slit 11 or the spectroscopic element 6. Therefore, even when the intensity of the fluorescent X-rays 5 generated from the sample 1 is weak, the measurement can be performed at a high S / N ratio. Therefore, highly sensitive and sufficiently accurate analysis can be performed.

【0020】次に、本発明の第2実施形態の装置につい
て説明する。まず、この装置の構成について、図3にし
たがって説明する。この装置は、試料1が載置される試
料台2と、試料1に1次X線3を照射するX線管等のX
線源4と、試料1から発生した蛍光X線5を通過させる
ソーラスリット11とを備えている。また、そのソーラ
スリット11を通過した蛍光X線13の一部を反射する
全反射ミラー16と、その全反射ミラー16で反射され
た蛍光X線17の強度を測定する半導体検出器8とを備
えている。さらに、全反射ミラー16で反射される蛍光
X線17の波長帯域を変え、その反射された蛍光X線1
7が半導体検出器8に入射するように、全反射ミラー1
6および半導体検出器8を回動させる回動手段18を備
えている。ここで、全反射ミラー16は、例えばソーダ
ライムガラス製で、半導体検出器8は、第1実施形態と
同様のものを用いることができる。
Next, an apparatus according to a second embodiment of the present invention will be described. First, the configuration of this device will be described with reference to FIG. The apparatus includes a sample table 2 on which a sample 1 is placed and an X-ray tube or the like for irradiating the sample 1 with primary X-rays 3.
The apparatus includes a radiation source 4 and a solar slit 11 through which fluorescent X-rays 5 generated from the sample 1 pass. Further, a total reflection mirror 16 that reflects a part of the fluorescent X-rays 13 passing through the solar slit 11 and a semiconductor detector 8 that measures the intensity of the fluorescent X-rays 17 reflected by the total reflection mirror 16 are provided. ing. Further, the wavelength band of the fluorescent X-rays 17 reflected by the total reflection mirror 16 is changed, and the reflected fluorescent X-rays 1 are changed.
7 so that the total reflection mirror 1 is incident on the semiconductor detector 8.
6 and a rotation means 18 for rotating the semiconductor detector 8. Here, the total reflection mirror 16 is made of, for example, soda-lime glass, and the same semiconductor detector 8 as that of the first embodiment can be used.

【0021】全反射ミラー16は、視斜角φで入射する
蛍光X線13のうち、全反射の臨界角がφよりも大きい
蛍光X線17を全反射し、それ以外の蛍光X線を吸収す
る。一般に、エネルギーの低い、すなわち波長の長い蛍
光X線ほど全反射の臨界角が大きいから、視斜角φを所
望の蛍光X線17の臨界角よりもわずかに小さく設定す
れば、所望の蛍光X線17よりもエネルギーの高い、す
なわち波長の短い蛍光X線を全反射ミラー16に吸収さ
せることにより、不要な励起線3等を除去できる。
The total reflection mirror 16 totally reflects the fluorescent X-rays 17 of which the critical angle of total reflection is larger than φ among the fluorescent X-rays 13 incident at the oblique angle φ, and absorbs the other fluorescent X-rays. I do. In general, a fluorescent X-ray having a lower energy, that is, a longer wavelength, has a larger total reflection critical angle. Therefore, if the viewing angle φ is set slightly smaller than the critical angle of the desired fluorescent X-ray 17, the desired fluorescent X-ray can be obtained. By causing the total reflection mirror 16 to absorb fluorescent X-rays having higher energy than the line 17, that is, having a shorter wavelength, unnecessary excitation lines 3 and the like can be removed.

【0022】回動手段18は、このように全反射ミラー
16で反射される蛍光X線17の波長帯域を変え、その
反射された蛍光X線17を半導体検出器8に入射させ
る。具体的には、分析しようとする元素の蛍光X線のう
ち波長が最も短いものの臨界角よりも、視斜角φがわず
かに小さくなるように、全反射ミラー16をその表面の
中心を通る紙面に垂直な軸Qを中心に回転させ、また、
半導体検出器8を軸Qを中心に円12に沿って回転さ
せ、視斜角φと同じ角度の反射角φで反射される蛍光X
線17の光路に位置させる。回動手段10において、例
えば、前記軸Qに取り付けたポテンショメータ等によ
り、全反射ミラー16および半導体検出器8が回転した
結果形成される入射角φ、反射角φが確認される。
The rotating means 18 changes the wavelength band of the fluorescent X-rays 17 reflected by the total reflection mirror 16 and makes the reflected fluorescent X-rays 17 enter the semiconductor detector 8. Specifically, the total reflection mirror 16 is placed on a paper surface passing through the center of its surface so that the viewing angle φ is slightly smaller than the critical angle of the fluorescent X-ray of the element to be analyzed having the shortest wavelength. Around an axis Q perpendicular to
The semiconductor detector 8 is rotated along the circle 12 about the axis Q, and the fluorescence X reflected at the reflection angle φ of the same angle as the viewing angle φ
It is located in the optical path of line 17. In the rotating means 10, for example, the incident angle φ and the reflection angle φ formed by rotating the total reflection mirror 16 and the semiconductor detector 8 are confirmed by a potentiometer or the like attached to the axis Q.

【0023】なお、このような視斜角φに設定した全反
射ミラー16で反射される蛍光X線17には、所望の波
長帯域の蛍光X線がすべて含まれるから、回動手段18
は、第1実施形態の連動手段10(図1)のように分光
素子6を回転させながら半導体検出器8も回転させて走
査させる必要はない。また、回動手段18は、全反射ミ
ラー16と半導体検出器8を歯車機構等の駆動機構によ
り機械的に連結し、その歯車機構等を単一のモータ等の
駆動源で駆動するものでもよいし、全反射ミラー16と
半導体検出器8をそれぞれ独立した駆動源および駆動機
構で駆動し、それらの駆動源を適切に制御して前記のよ
うな動作を実現するものでもよい。
The fluorescent X-rays 17 reflected by the total reflection mirror 16 set at such a viewing angle φ include all the fluorescent X-rays in a desired wavelength band.
It is not necessary to rotate and scan the semiconductor detector 8 while rotating the spectroscopic element 6 as in the interlocking means 10 (FIG. 1) of the first embodiment. Further, the rotating means 18 may be a means for mechanically connecting the total reflection mirror 16 and the semiconductor detector 8 by a driving mechanism such as a gear mechanism, and driving the gear mechanism or the like by a driving source such as a single motor. Then, the total reflection mirror 16 and the semiconductor detector 8 may be driven by independent drive sources and drive mechanisms, and the drive sources may be appropriately controlled to realize the above-described operation.

【0024】次に、この装置の動作について説明する。
まず、例えばAl 程度に軽い元素について分析する場合
には、分析しようとする元素の蛍光X線のうち波長が最
も短いものの臨界角よりも、視斜角φがわずかに小さく
なるように、回動手段16により、全反射ミラー16が
回動され、また、反射角φで反射される蛍光X線17の
光路に位置するように、半導体検出器8が回動される。
そして、試料台2に載置された試料1にX線源4から1
次X線3が照射されると、試料1から発生した蛍光X線
5がソーラスリット11を通過し、全反射ミラー16で
一部が反射され、反射された蛍光X線17の強度が半導
体検出器8で測定される。ここで、上述したような視斜
角φの設定により、分析しようとする元素のうち最も重
いものまたはそれよりも軽い元素の蛍光X線17のみが
全反射ミラー16で反射され、そのうち所望の元素の蛍
光X線が、エネルギー分解能の高い半導体検出器8およ
び図示しない波高分析器で電気的に分離され検出され
る。
Next, the operation of this device will be described.
First, when analyzing an element as light as Al, for example, the rotation angle is set so that the viewing angle φ is slightly smaller than the critical angle of the fluorescent X-ray of the element to be analyzed having the shortest wavelength. By means 16, the total reflection mirror 16 is rotated, and the semiconductor detector 8 is rotated so as to be located in the optical path of the fluorescent X-ray 17 reflected at the reflection angle φ.
Then, the sample 1 placed on the sample stage 2
When the next X-ray 3 is irradiated, the fluorescent X-rays 5 generated from the sample 1 pass through the solar slit 11, are partially reflected by the total reflection mirror 16, and the intensity of the reflected fluorescent X-rays 17 is detected by a semiconductor. It is measured by the measuring device 8. Here, by setting the viewing angle φ as described above, only the fluorescent X-rays 17 of the heaviest or lighter element among the elements to be analyzed are reflected by the total reflection mirror 16, and the desired element Are electrically separated and detected by the semiconductor detector 8 having a high energy resolution and a wave height analyzer (not shown).

【0025】また、例えばMo 程度以上に重い元素につ
いて分析する場合にも、同様に、分析しようとする元素
の蛍光X線のうち波長が最も短いものの臨界角よりも、
視斜角φがわずかに小さくなるように設定され、分析し
ようとする元素のうち最も重いものまたはそれよりも軽
い元素の蛍光X線17が全反射ミラー16で反射され、
そのうち所望の元素の蛍光X線が、エネルギー分解能の
高い半導体検出器8および図示しない波高分析器で電気
的に分離され検出される。なお、この場合には、全反射
ミラー16で反射される蛍光X線17の波長帯域は広く
なり全反射ミラー16による分光の効果は少なくなる
が、Mo 程度以上に重い元素の分析については、半導体
検出器8および波高分析器による電気的なエネルギー分
解のみで十分である。
Also, for example, when analyzing an element heavy as much as Mo or more, similarly, the critical angle of the fluorescent X-ray of the element to be analyzed having the shortest wavelength is determined by the critical angle.
The viewing angle φ is set to be slightly smaller, and the fluorescent X-rays 17 of the heaviest or lighter element among the elements to be analyzed are reflected by the total reflection mirror 16,
Among them, fluorescent X-rays of a desired element are electrically separated and detected by the semiconductor detector 8 having high energy resolution and a wave height analyzer (not shown). In this case, the wavelength band of the fluorescent X-rays 17 reflected by the total reflection mirror 16 is widened and the effect of the spectral reflection by the total reflection mirror 16 is reduced. Only electrical energy decomposition by the detector 8 and the pulse height analyzer is sufficient.

【0026】また、反射する蛍光X線17の波長帯域を
変えるための全反射ミラー16の回転は、前記第1実施
形態の装置において分光する蛍光X線7の波長を変える
ための分光素子6の回転に比較すると(図1)、はるか
に微小ですむので、半導体検出器8の入射口の幅が十分
大きければ、半導体検出器8は固定したままでも反射さ
れた蛍光X線17を入射させることができる。このよう
な場合には、回動手段18は、全反射ミラー16のみを
回動させればよく、半導体検出器8を回動させる必要は
ない。
The rotation of the total reflection mirror 16 for changing the wavelength band of the reflected fluorescent X-rays 17 is performed by changing the wavelength of the fluorescent X-rays 7 to be changed in the apparatus of the first embodiment. Compared to the rotation (FIG. 1), it is much smaller, so if the width of the entrance of the semiconductor detector 8 is sufficiently large, the reflected fluorescent X-rays 17 can be incident even if the semiconductor detector 8 is fixed. Can be. In such a case, the rotation means 18 need only rotate the total reflection mirror 16 and does not need to rotate the semiconductor detector 8.

【0027】このように、第2実施形態の装置によれ
ば、まず、検出器として半導体検出器8のみを用いるの
で構成が簡単である。また、かかる回動手段18により
広い波長範囲の蛍光X線5に対応しつつ、Al やFe 程
度に軽い元素の分析では、全反射ミラー16で所望の波
長帯域の蛍光X線17のみを反射させるので分解能に優
れ、Mo 程度以上に重い元素の分析では、半導体検出器
8を用いているのでやはり分解能に優れる。さらに、分
光素子に比べはるかに反射効率の高い全反射ミラー16
を用いるので、装置としてもS/N比が高い。したがっ
て、精度や感度が高く十分正確な分析ができる。
As described above, according to the device of the second embodiment, first, only the semiconductor detector 8 is used as the detector, so that the configuration is simple. Moreover, while analyzing the X-rays 5 in a wide wavelength range by the rotating means 18 and analyzing the elements as light as Al and Fe, the total reflection mirror 16 reflects only the X-rays 17 in a desired wavelength band. Therefore, in the analysis of elements heavier than Mo or so, the semiconductor detector 8 is used, so that the resolution is also excellent. Further, the total reflection mirror 16 having a much higher reflection efficiency than the spectral element
Is used, the S / N ratio is also high for the device. Therefore, highly accurate and sensitive analysis can be performed with sufficient accuracy.

【0028】なお、以上の第1、第2実施形態の装置で
は、ソーラスリット11と平板の分光素子6または全反
射ミラー16を組み合わせた平行光学系を用いたが、ピ
ンホールまたは線状孔のスリットと湾曲した分光素子ま
たは全反射ミラーを組み合わせた集中光学系を用いても
よい。集中光学系を用いる場合であって、いわゆるロー
ランド円を移動させない場合には、連動手段や回動手段
は、スリットも連動、回動させる必要がある。
In the apparatus of the first and second embodiments, a parallel optical system in which the solar slit 11 and the flat spectral element 6 or the total reflection mirror 16 are combined is used. A concentrated optical system combining a slit and a curved spectral element or a total reflection mirror may be used. When a concentrated optical system is used and the so-called Rowland circle is not moved, the interlocking means and the rotating means need to interlock and rotate the slit.

【0029】[0029]

【発明の効果】以上詳細に説明したように、本発明によ
れば、検出器として半導体検出器のみを用いた簡単な構
成で、精度や感度が高く十分正確な分析ができる。ま
た、ガスフロー型比例計数管を用いた装置のように、P
Rガス中のメタンガスが計数管の芯線に焼き付いて分解
能が低下することもないので、メンテナンスが楽で、長
期に安定して正確な分析ができる。
As described in detail above, according to the present invention, a highly accurate and highly sensitive analysis can be performed with high accuracy and sensitivity with a simple configuration using only a semiconductor detector as a detector. In addition, as in an apparatus using a gas flow type proportional counter, P
Since the methane gas in the R gas does not stick to the core wire of the counter tube and the resolution does not decrease, maintenance is easy and stable and accurate analysis can be performed for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態の蛍光X線分析装置を示
す概略図である。
FIG. 1 is a schematic diagram showing a fluorescent X-ray analyzer according to a first embodiment of the present invention.

【図2】試料の微小部位を分析する場合等の同装置を示
す概略図である。
FIG. 2 is a schematic diagram showing the same apparatus when analyzing a minute part of a sample.

【図3】本発明の第2実施形態の蛍光X線分析装置を示
す概略図である。
FIG. 3 is a schematic diagram showing a fluorescent X-ray analyzer according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…試料、2…試料台、3…1次X線、4…X線源、5
…試料から発生した蛍光X線、6…分光素子、7…分光
素子で分光された蛍光X線、8…半導体検出器、10…
連動手段、11…スリット、13…スリットを通過した
蛍光X線、14…分光素子交換器、15…移動手段、1
6…全反射ミラー、17…全反射ミラーで反射された蛍
光X線、18…回動手段。
DESCRIPTION OF SYMBOLS 1 ... sample, 2 ... sample stage, 3 ... primary X-ray, 4 ... X-ray source, 5
... X-ray fluorescence emitted from the sample, 6 ... Spectroscopy element, 7 ... X-ray fluorescence separated by the spectroscopy element, 8 ... Semiconductor detector, 10 ...
Interlocking means, 11: slit, 13: fluorescent X-rays passing through the slit, 14: spectral element exchanger, 15: moving means, 1
6: total reflection mirror; 17: fluorescent X-ray reflected by the total reflection mirror; 18: rotating means.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 試料が載置される試料台と、 試料に1次X線を照射するX線源と、 試料から発生した蛍光X線を通過させるスリットと、 分光素子を複数種類有し、前記スリットを通過する蛍光
X線の光路に選択的に進出させて入射した蛍光X線を分
光させる分光素子交換器と、 前記分光素子で分光された蛍光X線の強度を測定する半
導体検出器と、 前記分光素子で分光される蛍光X線の波長を変えなが
ら、その分光された蛍光X線が前記半導体検出器に入射
するように、前記スリット、分光素子交換器および半導
体検出器のうち少なくとも分光素子交換器および半導体
検出器を連動させる連動手段とを備えた蛍光X線分析装
置。
A sample stage on which a sample is placed; an X-ray source for irradiating the sample with primary X-rays; a slit for passing fluorescent X-rays generated from the sample; A spectroscopic element exchanger that selectively advances into the optical path of the fluorescent X-rays passing through the slit and disperses the incident fluorescent X-rays; and a semiconductor detector that measures the intensity of the fluorescent X-rays separated by the spectroscopic element. While changing the wavelength of the fluorescent X-rays split by the spectroscopic element, at least one of the slit, the spectral element exchanger, and the semiconductor detector so that the split fluorescent X-rays enter the semiconductor detector. An X-ray fluorescence analyzer comprising: an interlock for interlocking an element exchanger and a semiconductor detector.
【請求項2】 請求項1において、 前記半導体検出器を、試料から発生した蛍光X線の強度
を前記スリットおよび分光素子を介さずに測定する位置
に移動させる移動手段を備えた蛍光X線分析装置。
2. The X-ray fluorescence analyzer according to claim 1, further comprising a moving unit that moves the semiconductor detector to a position where the intensity of the X-ray fluorescence generated from the sample is measured without passing through the slit and the spectral element. apparatus.
【請求項3】 試料が載置される試料台と、 試料に1次X線を照射するX線源と、 試料から発生した蛍光X線を通過させるスリットと、 そのスリットを通過した蛍光X線の一部を反射する全反
射ミラーと、 その全反射ミラーで反射された蛍光X線の強度を測定す
る半導体検出器と、 前記全反射ミラーで反射される蛍光X線の波長帯域を変
え、その反射された蛍光X線が前記半導体検出器に入射
するように、前記スリット、全反射ミラーおよび半導体
検出器のうち少なくとも全反射ミラーを回動させる回動
手段とを備えた蛍光X線分析装置。
3. A sample stage on which a sample is placed, an X-ray source for irradiating the sample with primary X-rays, a slit for passing fluorescent X-rays generated from the sample, and a fluorescent X-ray passing through the slit A total reflection mirror that reflects a part of the light, a semiconductor detector that measures the intensity of the fluorescent X-ray reflected by the total reflection mirror, and a wavelength band of the fluorescent X-ray that is reflected by the total reflection mirror, An X-ray fluorescence analyzer, comprising: a rotating means for rotating at least the total reflection mirror of the slit, the total reflection mirror, and the semiconductor detector so that the reflected X-rays are incident on the semiconductor detector.
JP11142743A 1999-05-24 1999-05-24 X-ray fluorescence analyzer Pending JP2000329714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11142743A JP2000329714A (en) 1999-05-24 1999-05-24 X-ray fluorescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11142743A JP2000329714A (en) 1999-05-24 1999-05-24 X-ray fluorescence analyzer

Publications (1)

Publication Number Publication Date
JP2000329714A true JP2000329714A (en) 2000-11-30

Family

ID=15322552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11142743A Pending JP2000329714A (en) 1999-05-24 1999-05-24 X-ray fluorescence analyzer

Country Status (1)

Country Link
JP (1) JP2000329714A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017350A (en) * 2005-07-08 2007-01-25 Shimadzu Corp X-ray analyzer
JP2007139754A (en) * 2005-10-19 2007-06-07 Rigaku Industrial Co Fluorescence x-ray spectrometer, and program used therefor
JP2008256698A (en) * 2007-04-05 2008-10-23 Panalytical Bv Fluorescent x-ray analyzer
JP2012058148A (en) * 2010-09-10 2012-03-22 Jeol Ltd X-ray detection system
JP2012220337A (en) * 2011-04-08 2012-11-12 Hitachi Ltd Analyzer for charged particle beam and analytical method therefor
EP2685247A1 (en) * 2011-05-20 2014-01-15 Rigaku Corporation Wavelength-dispersive x-ray fluorescence analysis device
WO2018101133A1 (en) 2016-12-01 2018-06-07 株式会社リガク X-ray fluorescence analyzer
CN112292593A (en) * 2018-04-20 2021-01-29 奥图泰(芬兰)公司 X-ray fluorescence analyzer and method for performing X-ray fluorescence analysis
JPWO2021152928A1 (en) * 2020-01-27 2021-08-05

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017350A (en) * 2005-07-08 2007-01-25 Shimadzu Corp X-ray analyzer
JP4715345B2 (en) * 2005-07-08 2011-07-06 株式会社島津製作所 X-ray analyzer
JP2007139754A (en) * 2005-10-19 2007-06-07 Rigaku Industrial Co Fluorescence x-ray spectrometer, and program used therefor
JP2008256698A (en) * 2007-04-05 2008-10-23 Panalytical Bv Fluorescent x-ray analyzer
JP2012058148A (en) * 2010-09-10 2012-03-22 Jeol Ltd X-ray detection system
JP2012220337A (en) * 2011-04-08 2012-11-12 Hitachi Ltd Analyzer for charged particle beam and analytical method therefor
EP2685247A1 (en) * 2011-05-20 2014-01-15 Rigaku Corporation Wavelength-dispersive x-ray fluorescence analysis device
EP2685247A4 (en) * 2011-05-20 2014-10-08 Rigaku Denki Co Ltd Wavelength-dispersive x-ray fluorescence analysis device
WO2018101133A1 (en) 2016-12-01 2018-06-07 株式会社リガク X-ray fluorescence analyzer
JPWO2018101133A1 (en) * 2016-12-01 2018-11-29 株式会社リガク X-ray fluorescence analyzer
CN110088603A (en) * 2016-12-01 2019-08-02 株式会社理学 Fluorescent x-ray analyzer
US10514346B2 (en) 2016-12-01 2019-12-24 Rigaku Corporation X-ray fluorescence spectrometer
CN112292593A (en) * 2018-04-20 2021-01-29 奥图泰(芬兰)公司 X-ray fluorescence analyzer and method for performing X-ray fluorescence analysis
JPWO2021152928A1 (en) * 2020-01-27 2021-08-05
JP7287507B2 (en) 2020-01-27 2023-06-06 株式会社島津製作所 X-ray fluorescence analyzer

Similar Documents

Publication Publication Date Title
US6292532B1 (en) Fluorescent X-ray analyzer useable as wavelength dispersive type and energy dispersive type
US2823577A (en) Multiple slit spectrograph for direct reading spectrographic analysis
US4326802A (en) Dual monochromator type of spectroanalysis system
JPS61134635A (en) Method and device for classifying spectral energy
CN105628720B (en) Continuous diffraction light splitting and detection device and sequential Xray fluorescence spectrometer
JP3511826B2 (en) X-ray fluorescence analyzer
JPH01320440A (en) Intensity variation analyzer
JPS6315793Y2 (en)
JP2000329714A (en) X-ray fluorescence analyzer
JP2720131B2 (en) X-ray reflection profile measuring method and apparatus
CN110491755A (en) Cathodoluminescence optical hub
US4254335A (en) Spectrograph-monochromator of grazing incidence type
US20120292508A1 (en) X-Ray Detection System
JP2001124711A (en) Fluorescence x-ray analysis method and evaluation method of sample structure
JPH08136479A (en) Total reflection-type fluorescent x-ray analyzing apparatus
JP7477072B2 (en) Light source for variable optical path length systems
WO2019069526A1 (en) Spectrometer
JP3531098B2 (en) X-ray fluorescence analyzer
JP2000206061A (en) Fluorescent x-ray measuring device
US4346998A (en) Background corrector for spectrochemical analyses of biological samples
JP3126718B2 (en) Multi-channel fluorescence spectrometer
JP2000009666A (en) X-ray analyzer
JP3498689B2 (en) Monochromator for monochrome source excitation and X-ray fluorescence analyzer
JP3098806B2 (en) X-ray spectrometer and EXAFS measurement device
JP3222720B2 (en) Wavelength dispersion type X-ray detector