JPH07209216A - Total reflection fluorescent x-ray analyzer - Google Patents

Total reflection fluorescent x-ray analyzer

Info

Publication number
JPH07209216A
JPH07209216A JP2318794A JP2318794A JPH07209216A JP H07209216 A JPH07209216 A JP H07209216A JP 2318794 A JP2318794 A JP 2318794A JP 2318794 A JP2318794 A JP 2318794A JP H07209216 A JPH07209216 A JP H07209216A
Authority
JP
Japan
Prior art keywords
ray
rays
sample
elements
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2318794A
Other languages
Japanese (ja)
Other versions
JP2664632B2 (en
Inventor
Tadashi Uko
忠 宇高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Rigaku Corp
Original Assignee
Toshiba Corp
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Rigaku Industrial Corp filed Critical Toshiba Corp
Priority to JP6023187A priority Critical patent/JP2664632B2/en
Publication of JPH07209216A publication Critical patent/JPH07209216A/en
Application granted granted Critical
Publication of JP2664632B2 publication Critical patent/JP2664632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To analyze a large number of elements in one sample easily and quickly by a structure wherein a plurality of polarization elements having different lattice plane interval are shifted through a shifting means. CONSTITUTION:A control section controls a drive motor 24 to shift a shifting part 20 by a predetermined distance along a rack 28 and stop any one of polarization elements 1A-1C at an incident point IN. Since the incident angle alpha of first-order X-rays B2 to a sample is very small and the allowance is limited severely, the angles of the elements 1A-1C around a pin 31, i.e., the angles with respect to incident X-rays B1, are adjusted finely by means of an adjusting screw. When the moving part 20 is moved and the element 1A is stopped at the incident point IN, only the characteristic X-rays among the incident X-rays B1 from a target material are diffracted by the element 1A to produce first- order X-rays B2 which impinge on a sample 2 at an incident angle a and reflected totally thereon. Consequently, a plurality of elements can be measured for one sample without shifting an X-ray source or a sample stage by simply shifting the elements 1A-1C through the shifting means 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、試料表面に一次X線
を微小な入射角で照射して、試料の表面層からの蛍光X
線を分析する全反射蛍光X線分析装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention irradiates a surface of a sample with a primary X-ray at a minute incident angle to cause fluorescence X from a surface layer of the sample.
The present invention relates to a total reflection X-ray fluorescence analyzer for analyzing rays.

【0002】[0002]

【従来の技術】一般に、全反射蛍光X線分析装置は、試
料の表面層に含まれた不純物を検出する装置として知ら
れている。図8に、従来の全反射蛍光X線分析装置の一
例(例えば、特開昭63-78056号公報)を示す。
2. Description of the Related Art Generally, a total reflection X-ray fluorescence analyzer is known as an apparatus for detecting impurities contained in a surface layer of a sample. FIG. 8 shows an example of a conventional total reflection X-ray fluorescence analyzer (for example, JP-A-63-78056).

【0003】図において、X線源5のタ−ゲット材51
から出たX線B1は、湾曲型の分光素子(分光結晶)1
Aに向かう。上記X線B1のうち所定の波長の特性X線
は、分光素子1Aで回折されて単色化され、その回折X
線(一次X線)B2が、シリコンウェハのような試料2
の表面2aに微小な入射角α(例えば、0.05°〜0.20°
程度)で照射される。
In the figure, the target material 51 of the X-ray source 5 is shown.
An X-ray B1 emitted from the curved spectroscopic element (dispersive crystal) 1
Head to A. Characteristic X-rays of a predetermined wavelength among the X-rays B1 are diffracted by the spectroscopic element 1A to be monochromatic, and the diffraction X
Line (primary X-ray) B2 is sample 2 such as a silicon wafer
Incident angle α (for example, 0.05 ° to 0.20 ° on the surface 2a of the
Is irradiated.

【0004】試料2に入射した回折X線B2は、その一
部が全反射されて反射光線B4となり、他の一部が一次
X線として試料2を励起して、試料2を構成する元素固
有の蛍光X線B5を発生させる。蛍光X線B5は、試料
表面2aに対向して配置したX線検出器3に入射する。
この入射した蛍光X線B5は、X線検出器3において、
そのX線強度が検出された後、X線検出器3からの検出
信号aに基づき、多重波高分析器4によって目的とする
X線スペクトルが得られる。
A part of the diffracted X-ray B2 incident on the sample 2 is totally reflected to become a reflected light beam B4, and the other part excites the sample 2 as a primary X-ray, and is unique to the elements constituting the sample 2. The fluorescent X-ray B5 is generated. The fluorescent X-ray B5 is incident on the X-ray detector 3 arranged so as to face the sample surface 2a.
This incident fluorescent X-ray B5 is, in the X-ray detector 3,
After the X-ray intensity is detected, the target X-ray spectrum is obtained by the multiple wave height analyzer 4 based on the detection signal a from the X-ray detector 3.

【0005】この種の全反射蛍光X線分析装置は、回折
X線(一次X線)B2の試料2への入射角αが微小であ
り、反射光線B4および散乱X線がX線検出器3に入射
しにくい。このため、X線検出器3により検出される蛍
光X線B5の出力レベルに比べてノイズが小さい、つま
り、大きなS/N 比が得られ、そのため、分析感度がよ
く、例えば微量の不純物が含まれていても検出できる。
In this type of total reflection X-ray fluorescence analyzer, the incident angle α of the diffracted X-rays (primary X-rays) B2 to the sample 2 is small, and the reflected light beam B4 and the scattered X-rays are the X-ray detector 3. Hard to enter. Therefore, the noise is smaller than the output level of the fluorescent X-ray B5 detected by the X-ray detector 3, that is, a large S / N ratio is obtained, and therefore the analysis sensitivity is good and, for example, a small amount of impurities are contained. Even if it is detected, it can be detected.

【0006】ところで、分光素子1Aは、特性X線の波
長(λ)と素子の格子面間隔(2d)とで定まる一定の
角度(θ)で特性X線が入射したときだけ回折を生じる
(周知のブラッグの式:2d・sinθ=nλ)。他
方、元素は、その吸収端波長よりも短い波長をもつ特性
X線によってのみ励起される。
By the way, the spectroscopic element 1A produces diffraction only when a characteristic X-ray is incident at a constant angle (θ) determined by the wavelength (λ) of the characteristic X-ray and the lattice spacing (2d) of the element (well known). Bragg's equation: 2d · sin θ = nλ). On the other hand, the element is excited only by characteristic X-rays having a wavelength shorter than its absorption edge wavelength.

【0007】従って、同一試料2について、吸収端波長
が大きく異なる種々の元素を計測する場合、異なる波長
の特性X線を用いる必要があり、このような異なる特性
X線を回折させるために、分光素子を交換する必要があ
る。例えば、X線源5にAuを用いた場合、特性X線L
αにおいては2d=94.2Å、Lβにおいては2d=80
Å、Lγにおいては2d=68.4Åの格子面間隔をもつ分
光素子で回折される。
Therefore, when measuring various elements having greatly different absorption edge wavelengths for the same sample 2, it is necessary to use characteristic X-rays of different wavelengths. The element needs to be replaced. For example, when Au is used for the X-ray source 5, the characteristic X-ray L
2d = 94.2Å for α and 2d = 80 for Lβ
Å and Lγ are diffracted by a spectroscopic element having a lattice plane spacing of 2d = 68.4Å.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来装
置には次のような問題点があった。上記のように、同一
試料2について多くの元素を計測する場合に分光素子を
交換しなければならないが、この際に、全反射の必要性
から試料2への入射角が微小かつ許容範囲が狭いため、
分光素子の交換ごとにその位置や角度、または試料台7
の位置や角度を上記許容範囲内となるように調整する作
業が困難で、試料分析に時間がかかる。
However, the conventional device has the following problems. As described above, when many elements are measured for the same sample 2, the spectroscopic element must be replaced, but at this time, the incident angle to the sample 2 is small and the allowable range is narrow due to the necessity of total reflection. For,
Each time the spectroscopic element is replaced, its position and angle, or the sample table 7
It is difficult to adjust the position and angle of the so as to be within the above allowable range, and it takes time to analyze the sample.

【0009】この発明は上記の問題点を解決して、同一
試料について多くの元素を容易かつ迅速に分析すること
ができる全反射蛍光X線分析装置を提供することを目的
としている。
An object of the present invention is to solve the above problems and to provide a total reflection X-ray fluorescence analyzer capable of easily and quickly analyzing many elements in the same sample.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、この発明の請求項1の全反射蛍光X線分析装置は、
格子面間隔の異なる複数の分光素子と、これら分光素子
を移動させることにより所望の一次X線に対して上記所
定の入射角を得る移動手段とを有する分光器を備えてい
る。
In order to achieve the above object, a total reflection X-ray fluorescence analyzer according to claim 1 of the present invention comprises:
The spectroscope includes a plurality of spectroscopic elements having different lattice plane intervals, and a moving unit that moves the spectroscopic elements to obtain the predetermined incident angle with respect to a desired primary X-ray.

【0011】また、請求項2の全反射蛍光X線分析装置
は、上記分光器が、格子面間隔の周期が分光面に沿って
異なるように設定された分光素子と、この分光素子を移
動させることにより所望の一次X線に対して上記所定の
入射角を得る移動手段とを備えている。
Further, in the total reflection X-ray fluorescence analyzer according to a second aspect, the spectroscope moves the spectroscopic element and the spectroscopic element in which the intervals of the lattice plane intervals are set different along the spectral plane. Therefore, a moving means for obtaining the above-mentioned predetermined incident angle with respect to a desired primary X-ray is provided.

【0012】[0012]

【作用】請求項1の全反射蛍光X線分析装置によれば、
格子面間隔の異なる複数の分光素子を移動手段によって
移動させるだけで、X線源と試料台の位置を移動させる
ことなく、所望の一次X線に対して所定の入射角を得る
ことができる。
According to the total reflection X-ray fluorescence analyzer of claim 1,
A predetermined incident angle with respect to a desired primary X-ray can be obtained without moving the positions of the X-ray source and the sample stage by simply moving the plurality of spectroscopic elements having different lattice plane intervals by the moving means.

【0013】また、請求項2の全反射蛍光X線分析装置
によれば、格子面間隔の周期が分光面に沿って異なるよ
うに設定された分光素子を、移動手段によって移動させ
るだけで、X線源と試料台の位置を移動させることな
く、所望の一次X線に対して所定の入射角を得ることが
できる。
Further, according to the total reflection X-ray fluorescence analyzer of the second aspect, the X-axis can be moved only by moving the spectroscopic element in which the period of the lattice plane interval is set to be different along the spectral plane by the moving means. It is possible to obtain a predetermined incident angle with respect to a desired primary X-ray without moving the positions of the radiation source and the sample stage.

【0014】[0014]

【実施例】以下、この発明の実施例を図面に基づいて説
明する。図1に、この発明の一実施例による全反射蛍光
X線分析装置の概略側面図を示す。この装置は、分光素
子である人工多層膜格子を複数(この例では1A,1
B,1Cの3個)設けるとともに、これら人工多層膜格
子1A〜1Cを紙面と垂直方向に移動させる移動手段1
0と移動手段10を制御する制御部14とを備えてい
る。試料2とX線源5はその位置および取付角度が固定
されている。なお、その他の構成は図7の従来例と同様
であり、同一部分または相当部分に同一符号を付して、
その詳しい説明を省略する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic side view of a total reflection X-ray fluorescence analyzer according to an embodiment of the present invention. This device has a plurality of artificial multilayer gratings (1A, 1
B, 1C), and a moving means 1 for moving these artificial multilayer film lattices 1A to 1C in a direction perpendicular to the plane of the drawing.
0 and a control unit 14 that controls the moving means 10. The position and mounting angle of the sample 2 and the X-ray source 5 are fixed. The other configurations are the same as those of the conventional example of FIG. 7, and the same portions or corresponding portions are denoted by the same reference numerals,
The detailed description is omitted.

【0015】図2に移動手段10の概略正面図を、図3
にその概略側面図を示す。図2において、移動手段10
は固定されたフレーム12と移動部20を備えている。
移動部20は、下方に突出した4つの格子支持部22を
備えており、隣接する格子支持部22間に人工多層膜格
子1A〜1Cが取り付けられている。図3において、格
子支持部22の下面には取付溝30が形成され、人工多
層膜格子1A〜1Cに固定されたピン31が取付溝30
に嵌め込まれ、当て板33を介してボルト32で締め付
けて固定されている。また、移動部20に装着された駆
動用モータ24の駆動軸26の突出端26aにピニオン
27が固定されており、このピニオン27が本体12側
に設けられたラック28と係合する。
FIG. 2 is a schematic front view of the moving means 10, and FIG.
The schematic side view is shown in FIG. In FIG. 2, the moving means 10
Has a fixed frame 12 and a moving part 20.
The moving part 20 is provided with four lattice support parts 22 protruding downward, and the artificial multilayer film lattices 1A to 1C are attached between the adjacent lattice support parts 22. In FIG. 3, an attachment groove 30 is formed on the lower surface of the lattice support portion 22, and the pin 31 fixed to the artificial multilayer film lattices 1A to 1C is attached to the attachment groove 30.
And is fixed by being tightened with bolts 32 via a contact plate 33. Further, a pinion 27 is fixed to a projecting end 26a of a drive shaft 26 of a drive motor 24 mounted on the moving unit 20, and the pinion 27 engages with a rack 28 provided on the main body 12 side.

【0016】従って、移動部20は、駆動用モータ24
の回転に伴いピニオン27が回転して、ラック28上を
直線移動し、フレーム12に固定されたガイド34,3
6に沿ってフレーム12上を紙面に垂直方向(図2のX
1−X2方向)に移動する。なお、人工多層膜格子1A
は特性X線Lα用、1BはLβ用、1CはLγ用であ
る。
Therefore, the moving unit 20 includes the drive motor 24.
The pinion 27 rotates along with the rotation of the rack, and moves linearly on the rack 28, and the guides 34, 3 fixed to the frame 12
6 along the frame 12 in the direction perpendicular to the paper surface (X in FIG. 2).
1-X2 direction). In addition, the artificial multilayer film lattice 1A
Is for the characteristic X-ray Lα, 1B is for Lβ, and 1C is for Lγ.

【0017】図2において、制御部14(図1参照)
は、駆動用モータ24を制御して、移動部20をラック
28に沿って所定距離移動させ、人工多層膜格子1A〜
1Cのいずれかを入射点INに停止させる。
In FIG. 2, the control unit 14 (see FIG. 1)
Controls the drive motor 24 to move the moving unit 20 along the rack 28 by a predetermined distance, and the artificial multilayer film lattices 1A to
Any one of 1C is stopped at the incident point IN.

【0018】上述したように、図1において、一次X線
B2の試料2への入射角αが微小かつ許容範囲が狭いた
め、人工多層膜格子1A〜1Cのピン31回りの角度、
つまり、入射X線B1に対する角度を微小に調整する必
要がある。このため、図3において、移動部20には角
度調整手段の一例である調整ネジ40が設けられてい
る。
As described above, in FIG. 1, since the incident angle α of the primary X-ray B2 to the sample 2 is minute and the permissible range is narrow, the angle around the pin 31 of the artificial multilayer lattices 1A to 1C,
That is, it is necessary to finely adjust the angle with respect to the incident X-ray B1. Therefore, in FIG. 3, the moving unit 20 is provided with an adjusting screw 40 which is an example of an angle adjusting unit.

【0019】調整ネジ40は、移動部20の突起部21
に設けられ、その先端40aが人工多層膜格子1A〜1
Cの一方端(左端)に設けられた取付けブラケット42
に当接している。また、格子支持部22,22間の凹部
23には、弾性部材の一例である板バネ44の一端部が
固定されており、他端部が人工多層膜格子1A〜1Cの
他方端(右端)に当接している。従って、人工多層膜格
子1A〜1Cは、調整ネジ40が締められるとZ2方向
に傾き、緩められるとZ1方向に傾いて、その角度が調
整される。
The adjusting screw 40 is a protrusion 21 of the moving part 20.
And the tip 40a thereof is provided on the artificial multilayered film lattices 1A to 1A.
Mounting bracket 42 provided at one end (left end) of C
Is in contact with. In addition, one end of a leaf spring 44, which is an example of an elastic member, is fixed to the recess 23 between the lattice support portions 22, 22, and the other end is the other end (right end) of the artificial multilayer film lattices 1A to 1C. Is in contact with. Therefore, the artificial multilayer film lattices 1A to 1C are tilted in the Z2 direction when the adjustment screw 40 is tightened, and tilted in the Z1 direction when loosened, and the angles thereof are adjusted.

【0020】例えば、図2において、移動部20がX1
−X2方向に移動され入射点INに人工多層膜格子1A
が停止されると、人工多層膜格子1Aによって、51か
らのAuのX線B1のうち特性X線Lαが回折されて、
一次X線B2となる。このとき、図4(A)に示すよう
に、X線B1の人工多層膜格子1Aへの入射角,回折角
はθ1である。この回折角θ1のとき、一次X線B2
は、試料2への入射角がαであり、試料2の表面2aで
全反射される。
For example, in FIG. 2, the moving unit 20 is X1.
Moved in the -X2 direction and moved to the incident point IN at the artificial multilayer film grating 1A.
When is stopped, the artificial X-ray lattice 1A diffracts the characteristic X-ray Lα of the X-ray B1 of Au from 51,
It becomes the primary X-ray B2. At this time, as shown in FIG. 4A, the incident angle and the diffraction angle of the X-ray B1 on the artificial multilayer film grating 1A are θ1. At this diffraction angle θ1, the primary X-ray B2
Has an incident angle of α on the sample 2 and is totally reflected on the surface 2 a of the sample 2.

【0021】また、入射点INに人工多層膜格子1Bが
移動されると特性X線Lβが回折され、図4(B)に示
すように、X線B1の人工多層膜格子1Bへの入射角,
回折角はθ2である。このとき、同様に一次X線B2の
試料2への入射角はαである。さらに、図4(C)に示
すように、人工多層膜格子1Cが移動されると、特性X
線Lγが回折され、人工多層膜格子1Cへの入射角,回
折角はθ3である。このときも、一次X線B2の試料2
への入射角は同様にαであり、試料2の表面2aで全反
射される。
When the artificial multilayer film grating 1B is moved to the incident point IN, the characteristic X-ray Lβ is diffracted, and as shown in FIG. 4B, the incident angle of the X-ray B1 to the artificial multilayer film grating 1B. ,
The diffraction angle is θ2. At this time, similarly, the incident angle of the primary X-ray B2 to the sample 2 is α. Further, as shown in FIG. 4C, when the artificial multilayer film lattice 1C is moved, the characteristic X
The line Lγ is diffracted, and the incident angle and the diffraction angle on the artificial multilayer film grating 1C are θ3. Also at this time, the sample 2 of the primary X-ray B2
Similarly, the angle of incidence on is 2 and is totally reflected by the surface 2a of the sample 2.

【0022】なお、図4(A)〜(C)のそれぞれにお
いて、X線B1の人工多層膜格子1A〜1Cへの入射点
INは、前後方向(図の左右方向)にずれている。
In each of FIGS. 4A to 4C, the incident point IN of the X-ray B1 to the artificial multilayer film lattices 1A to 1C is deviated in the front-rear direction (left-right direction in the drawing).

【0023】このように、本装置は、移動手段10によ
って人工多層膜格子1A〜1Cを移動させるだけで、X
線源5および試料台7を動かすことなく、同一試料につ
いて複数の元素の計測を行うことができる。
As described above, the present apparatus can move the artificial multilayered film lattices 1A to 1C by the moving means 10 and the X
It is possible to measure a plurality of elements for the same sample without moving the radiation source 5 and the sample table 7.

【0024】図5は、第2実施例を示す。この移動手段
50は、図1〜図4に示したのと同様な複数の人工多層
膜格子(この例では1A,1B,1Cの3個)を円周上
に配置した回転体52を備えている。この回転体52の
回転軸54が駆動用モータ(図示せず)で所定角度回転
され、回折位置Oに人工多層膜格子(この図では1C)
が移動されて、各特性X線が回折される。
FIG. 5 shows a second embodiment. This moving means 50 is provided with a rotating body 52 in which a plurality of artificial multilayer film lattices (three in this example, 1A, 1B and 1C) similar to those shown in FIGS. 1 to 4 are arranged on the circumference. There is. The rotating shaft 54 of the rotating body 52 is rotated by a predetermined angle by a drive motor (not shown), and an artificial multilayer film lattice (1C in this figure) is placed at the diffraction position O.
Are moved and each characteristic X-ray is diffracted.

【0025】次に、図6は第3実施例を示す。図6
(A)において、移動手段60の格子支持部64間に前
後方向に連続的に格子面間隔が変化する不等間隔素子6
2が取り付けられ、図2の移動手段10と同様に、不等
間隔素子62は、駆動用モータ24により前後方向(Y
1−Y2方向)に移動される。図6(B)において、格
子支持部65に軸孔66が形成され、不等間隔素子62
に固定されたピン67が軸孔66に回転自在に嵌め込ま
れている。一方のピン67には従動ギヤ76が取り付け
られている。制御部70によって角度調整用モータ68
の回転が制御され、角度調整用モータ68回転軸に固定
された駆動ギヤ72が移動部63に支持された中間ギヤ
74を介して上記従動ギヤ76を回転させることによ
り、不等間隔素子62はR1−R2方向に角度調整され
て、各特性X線Lα、Lβ、Lγが回折される。
Next, FIG. 6 shows a third embodiment. Figure 6
In (A), the non-equidistant elements 6 in which the lattice plane spacing continuously changes in the front-back direction between the lattice support portions 64 of the moving means 60.
2, the unequal spacing element 62 is moved by the drive motor 24 in the front-back direction (Y
1-Y2 direction). In FIG. 6B, the lattice support portion 65 is formed with the shaft holes 66, and the non-equidistant elements 62 are formed.
A pin 67 fixed to the shaft is rotatably fitted in the shaft hole 66. A driven gear 76 is attached to one of the pins 67. The angle adjusting motor 68 is controlled by the control unit 70.
Is controlled, and the drive gear 72 fixed to the rotation shaft of the angle adjusting motor 68 rotates the driven gear 76 via the intermediate gear 74 supported by the moving portion 63. The characteristic X-rays Lα, Lβ, and Lγ are diffracted by adjusting the angle in the R1-R2 direction.

【0026】なお、この実施例では、ターゲット材51
にAuを用いているが、白金(Pt)のような他のター
ゲット材51を用いてもよい。
In this embodiment, the target material 51
Although Au is used for the above, other target material 51 such as platinum (Pt) may be used.

【0027】以上のような特性X線を用いた分析の結
果、図7に示すような元素について分析が可能となる。
As a result of the analysis using the characteristic X-rays as described above, it becomes possible to analyze the elements shown in FIG.

【0028】また、第1および第2実施例では、人工多
層膜格子が3個のものを用いているが、これに限定する
ものではなく、2個または4個以上用いることもでき
る。
In the first and second embodiments, three artificial multilayer lattices are used, but the number is not limited to this, and two or four or more may be used.

【0029】なお、この実施例では、特性X線Lα、L
β、Lγを用いているが、これに限るものではなく、例
えば、Kα、Kβ、Kγなども用いることができる。
In this embodiment, the characteristic X-rays Lα, L
Although β and Lγ are used, the present invention is not limited to this and, for example, Kα, Kβ, and Kγ can also be used.

【0030】[0030]

【発明の効果】以上のように、請求項1の発明によれ
ば、格子面間隔の異なる複数の分光素子を移動手段によ
って移動させるだけで、X線源と試料台の位置を移動さ
せることなく、所望の一次X線に対して所定の入射角を
得ることができる。これにより、同一試料について多く
の元素を容易かつ迅速に分析する全反射蛍光X線分析装
置を提供することができる。
As described above, according to the first aspect of the present invention, the plurality of spectroscopic elements having different lattice plane intervals are moved by the moving means without moving the positions of the X-ray source and the sample stage. Therefore, it is possible to obtain a predetermined incident angle with respect to a desired primary X-ray. As a result, it is possible to provide a total reflection X-ray fluorescence analyzer that easily and quickly analyzes many elements in the same sample.

【0031】また、請求項2の発明によれば、格子面間
隔の周期が分光面に沿って異なるように設定された分光
素子を、移動手段によって移動させるだけで、X線源と
試料台の位置を移動させることなく、所望の一次X線に
対して所定の入射角を得ることができる。
According to the second aspect of the invention, the spectroscopic elements, which are set such that the periods of the lattice plane intervals are different along the spectral plane, are moved by the moving means to move the X-ray source and the sample stage. It is possible to obtain a predetermined incident angle with respect to a desired primary X-ray without moving the position.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係る全反射蛍光X線分析
装置を示す概略側面図である。
FIG. 1 is a schematic side view showing a total reflection X-ray fluorescence analyzer according to an embodiment of the present invention.

【図2】上記の全反射蛍光X線分析装置の移動手段を示
す概略平面図である。
FIG. 2 is a schematic plan view showing a moving means of the above-mentioned total reflection X-ray fluorescence analyzer.

【図3】上記の移動手段を示す概略側面図である。FIG. 3 is a schematic side view showing the moving means.

【図4】人工多層膜格子の回折の状態を示す側面図であ
る。
FIG. 4 is a side view showing a diffraction state of the artificial multilayer grating.

【図5】他の実施例に係る移動手段を示す側面図であ
る。
FIG. 5 is a side view showing a moving means according to another embodiment.

【図6】他の実施例に係る移動手段を示す側面図であ
る。
FIG. 6 is a side view showing a moving means according to another embodiment.

【図7】分析可能な元素を示す図である。FIG. 7 is a diagram showing elements that can be analyzed.

【図8】従来の全反射蛍光X線分析装置の概略側面図を
示す図である。
FIG. 8 is a diagram showing a schematic side view of a conventional total reflection X-ray fluorescence analyzer.

【符号の説明】[Explanation of symbols]

1A,1B,1C…分光素子(人工多層膜格子)、2…
試料、 3…X線検出器、4…多重波高分析器、5…X
線源、7…試料台、10…移動手段、14…制御部、B
1…特性X線、B2…一次X線、B5…蛍光X線。
1A, 1B, 1C ... Spectroscopic element (artificial multilayer film grating), 2 ...
Sample, 3 ... X-ray detector, 4 ... Multiple wave height analyzer, 5 ... X
Radiation source, 7 ... Sample stage, 10 ... Moving means, 14 ... Control unit, B
1 ... Characteristic X-ray, B2 ... Primary X-ray, B5 ... Fluorescent X-ray.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 X線を発生するX線源と、上記X線を回
折させて単色化した一次X線を試料表面に向かって微小
な所定の入射角で入射させる分光器と、上記試料表面に
対向し上記一次X線を受けた試料からの蛍光X線を検出
するX線検出器とを備え、このX線検出器での検出結果
に基づいて上記蛍光X線を分析する全反射蛍光X線分析
装置において、 上記分光器は、格子面間隔の異なる複数の分光素子と、
これら分光素子を移動させることにより所望の一次X線
に対して上記所定の入射角を得る移動手段とを備えたこ
とを特徴とする全反射蛍光X線分析装置。
1. An X-ray source for generating X-rays, a spectroscope for injecting primary X-rays diffracted from the X-rays and monochromated toward the sample surface at a minute predetermined incident angle, and the sample surface. An X-ray detector for detecting fluorescent X-rays from the sample that has received the above-mentioned primary X-rays, and total reflection fluorescence X for analyzing the fluorescent X-rays based on the detection result of this X-ray detector. In the line analysis device, the spectroscope includes a plurality of spectroscopic elements having different lattice plane intervals,
A total reflection fluorescent X-ray analysis apparatus comprising: a moving unit that obtains the predetermined incident angle with respect to a desired primary X-ray by moving these spectroscopic elements.
【請求項2】 請求項1の全反射蛍光X線分析装置にお
いて、分光器は、格子面間隔の周期が分光面に沿って異
なるように設定された分光素子と、この分光素子を移動
させることにより所望の一次X線に対して上記所定の入
射角を得る移動手段とを備えたことを特徴とする全反射
蛍光X線分析装置。
2. The total reflection X-ray fluorescence analyzer according to claim 1, wherein the spectroscope is configured to move the spectroscopic element and the spectroscopic element in which the intervals of the lattice plane intervals are set different along the spectroscopic plane. And a moving means for obtaining the above-mentioned predetermined incident angle with respect to a desired primary X-ray.
JP6023187A 1994-01-24 1994-01-24 Total reflection X-ray fluorescence analyzer Expired - Fee Related JP2664632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6023187A JP2664632B2 (en) 1994-01-24 1994-01-24 Total reflection X-ray fluorescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6023187A JP2664632B2 (en) 1994-01-24 1994-01-24 Total reflection X-ray fluorescence analyzer

Publications (2)

Publication Number Publication Date
JPH07209216A true JPH07209216A (en) 1995-08-11
JP2664632B2 JP2664632B2 (en) 1997-10-15

Family

ID=12103661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6023187A Expired - Fee Related JP2664632B2 (en) 1994-01-24 1994-01-24 Total reflection X-ray fluorescence analyzer

Country Status (1)

Country Link
JP (1) JP2664632B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036677A1 (en) * 2001-10-24 2003-05-01 Jeol Ltd. Electron microscope having x-ray spectrometer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4725594U (en) * 1971-04-13 1972-11-22
JPS547991A (en) * 1977-06-18 1979-01-20 Ibm Fluorescent xxray analyzer
JPH03209156A (en) * 1990-01-12 1991-09-12 Toshiba Corp Fluorescent x-ray analysis apparatus and composite artificial multilayered film body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4725594U (en) * 1971-04-13 1972-11-22
JPS547991A (en) * 1977-06-18 1979-01-20 Ibm Fluorescent xxray analyzer
JPH03209156A (en) * 1990-01-12 1991-09-12 Toshiba Corp Fluorescent x-ray analysis apparatus and composite artificial multilayered film body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036677A1 (en) * 2001-10-24 2003-05-01 Jeol Ltd. Electron microscope having x-ray spectrometer

Also Published As

Publication number Publication date
JP2664632B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
US5132997A (en) X-ray spectroscopic analyzing apparatus
US7076024B2 (en) X-ray apparatus with dual monochromators
US6041098A (en) X-ray reflectometer
JP3519203B2 (en) X-ray equipment
US6307917B1 (en) Soller slit and X-ray apparatus
JP2001021507A (en) Xafs measuring apparatus
JP3968350B2 (en) X-ray diffraction apparatus and method
JPH08128971A (en) Exafs measuring device
JP2000504422A (en) X-ray analyzer having two collimator masks
JPH07209216A (en) Total reflection fluorescent x-ray analyzer
KR101211647B1 (en) Variable slit apparatus for x-ray analysis device
JPH0833359B2 (en) Total reflection X-ray fluorescence analyzer
JP3531098B2 (en) X-ray fluorescence analyzer
US6650728B2 (en) Apparatus and method for the analysis of atomic and molecular elements by wavelength dispersive X-ray spectrometric devices
JP3673849B2 (en) Total reflection X-ray fluorescence analyzer
JP3593412B2 (en) X-ray analyzer and attachment for X-ray fluorescence analysis
JPH1151883A (en) Method and equipment for fluorescent x-ray analysis
JP3722455B2 (en) Monochromator device and X-ray device
JP2002333409A (en) X-ray stress measuring device
JP2921597B2 (en) Total reflection spectrum measurement device
JPH04329347A (en) Thin film sample x-ray diffracting device
JP2000214107A (en) X-ray fluorescence analyzer
JP2952284B2 (en) X-ray optical system evaluation method
SU1087853A1 (en) Surface machining quality control method
RU2216010C2 (en) Multichannel x-ray diffractometer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090620

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090620

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100620

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110620

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110620

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20120620

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20130620

LAPS Cancellation because of no payment of annual fees