JP4697764B2 - Method for judging the quality of gel-forming foods - Google Patents

Method for judging the quality of gel-forming foods Download PDF

Info

Publication number
JP4697764B2
JP4697764B2 JP2001301653A JP2001301653A JP4697764B2 JP 4697764 B2 JP4697764 B2 JP 4697764B2 JP 2001301653 A JP2001301653 A JP 2001301653A JP 2001301653 A JP2001301653 A JP 2001301653A JP 4697764 B2 JP4697764 B2 JP 4697764B2
Authority
JP
Japan
Prior art keywords
light
gel
quality
absorbance
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001301653A
Other languages
Japanese (ja)
Other versions
JP2003106995A (en
Inventor
東一郎 高井
英明 河原
一男 細谷
郁夫 富樫
正人 西
原成 天野
隆弘 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takai Tofu and Soymilk Equipment Co
Original Assignee
Takai Tofu and Soymilk Equipment Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takai Tofu and Soymilk Equipment Co filed Critical Takai Tofu and Soymilk Equipment Co
Priority to JP2001301653A priority Critical patent/JP4697764B2/en
Publication of JP2003106995A publication Critical patent/JP2003106995A/en
Application granted granted Critical
Publication of JP4697764B2 publication Critical patent/JP4697764B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は例えば、豆腐をはじめ、卵豆腐、蒲鉾、チーズ等のゲル状食品や、加工や保存中に凝固又はゲル化する性質を有する豆乳、生卵、すり身、牛乳等の液体又はゾル状の食品ゲル形成性食品について、分光分析的な計測によって製品内部の品質を非破壊的又は被接触的に判定する方法および二次元又は三次元位置における品質判定を行う装置に関するものである。
【0002】
【従来の技術】
食品製造工場の品質管理では、一般に、中間製品又は最終製品の品質について品質管理担当者が生産ロット毎や定期的に行う抜き取り検査では試験装置や化学分析法を用いて客観的な判断を下せるが、検査結果が得られるまで時間がかかる問題や検査漏れの問題がある。また、生産中は作業者が全品について注意を払い、目視や手触りによって良否を判断しているが、不注意や判断ミスは払拭できない。
【0003】
ゲル形成性食品は、例えば豆乳に凝固剤を加え凝固させて豆腐にするように、加熱・冷却・凝固剤添加・発酵・酵素反応等の処理によって液状又はゾル状から固体状又はゲル状に変化させる食品である。一般食品と同様に、製品の抜き取り検査によって、一角の製品を開封してレオメーター等の物性試験機を用いてゲル強度などを評価している。破壊試験であるためその分がロスとなる。さらに万一不良品が検出されれば、たとえ不良品が一部分であっても、該当ロット全てを廃棄しなければならない。ゲル化のように、物性の変化を伴う加工作業や品質判断は作業者の主観、経験と勘に大きく依存している。ゲル状になった中間状態や中間製品は包装前に不良品を見分けることは容易であるが、自動化されたラインでは何らかの原因でムラや欠損等のある不良製品が出荷されてしまう場合がある。プリンやヨーグルト等の市販製品では、カップ上部に空間を設けてゲル化した状態を目視判断しやすくするようにしているが、空気による酸化や微生物の発生や型崩れ等の問題もある。また充填豆腐や卵豆腐のように、包装後にゲル化する場合、一見、そのゲル化の良否を判別しにくく、手触り等の感覚しか頼りにならない場合がある。外観上の異常はないが、内部に異常がある場合、不良品を見落としてしまうこともある。希に凝固不十分の製品が出荷され、販売先や消費者からの苦情処理や商品回収、さらには損害賠償責任問題まで発生し、その食品製造者にとって多大な負担を強いられることになる。
【0004】
ゲル形成性食品の品質は、一般に形状(大きさ、欠損、重量等)、外観(色彩、重量、光沢、きめ等)、食感(硬さ、弾力、保水性)、味などの品質項目が挙げられる。一部は測定機器を用いて客観的に測定されるが、味や食感などは人が味わって判断しているのが現状である。
【0005】
また、豆乳や牛乳等の液状又はゾル状食品(飲料)の場合、製品は液体又はゾル状態が正常であるが、何らかの原因で、凝集物や沈殿物・浮遊物、粘性増加やゲル化など、不良品となる場合がある。
【0006】
製品の表面形状検査の目的では、例えば、包装された豆腐の欠損等について、蛍光灯を用いたスリット光の照射とCCDカメラで画像処理によって判定する方法(特開平08―217029)や、スポット投光器および受光センサーを多数配置することによって判定する方法(特開平10−62132)が開示されている。これらの方法では、単に外形の形状のみを計測する方法であるが、容器の色やフィルム上の印字の影響を受けるため、十分ではない。
【0007】
包装前の豆腐等に関しては、一般的な光切断法を用いて、欠損を判定する方法(特開2001−133233)が開示されているが、包装された製品では適用できない。
【0008】
液状薬品又は食品の凝固判定装置としてX線を用いる画像解析装置の開示(登録第2931838号や特開2001−242100)がある。これらの装置は被対象物に気泡を含んでいる必要があり、前者では被対象物を振動させて、分散した気泡の状態を測定する方法である。いずれも液状の食品には適用できるが、ゲル状食品には適用できない。また放射線を扱うため、安全管理が必要になる。
【0009】
可視光の分光分析法を用いて被対象物の成分を評価する方法として、例えば、果実等の被対象物の透過又は反射光を分割し、複数の特定波長フィルターを通過させ、それら吸光度の差から内部品質、例えば熟度を評価する方法(特開昭52−83274)が開示されている。
【0010】
近赤外線分光分析法による有機物の品質評価方法(近赤外分析法)は非破壊測定方法として注目され、過去20年間に数多くの研究がなされ、実用化が進められている。例えば、食品業界ではアミロース等の含有量を測定する米食味計(特公平1−49890)や糖質を測定する果物糖度計(特許2517858、特開平1−301147)等が実用化されている。また、ココア含有食品のpH(水素イオンの含量)を評価する方法(特開2001−17084)、食品の加工前後における成分の違いを測定し、加工状態を評価する方法(特開平7−12722、特開平7−107925)が開示されている。ただし、豆腐類をはじめ、ゲル形成性食品に、可視光や近赤外線・赤外線による分光分析法を適用した例はない。
【0011】
また、青果物では近赤外線領域の波長の吸収を利用して、硬さ(熟度)を予測するシステムも考案されている(特開平1−301147)が、青果物の熟成は一般に多くの化学成分の変化を伴っている。炊飯処理後の米飯を直接測定し、外観、食味の他、硬さ、粘りという物性値を評価する方法(特開平7−270312)が開示されているが、炊飯条件や米の性質によって吸収水分が異なり、一部の成分変化を伴っている。
【0012】
いずれの方法も、アミロースや水素イオン濃度等の成分含量の変化に基づいた分析手法である。硬さや粘りという物性値は成分値との間接的相関に基づいて評価されている。そのため、成分が同一かつ変化がなく、物性が異なる場合は品質の判別が難しい面があった。これまでは、近赤外分光分析法は被測定物の化学成分量の違いを非破壊計測する目的に研究・実用化されてきた経緯がある。しかし、ゲル形成性食品について可視光や近赤外線等を使った分光分析法を適用し、その内部品質を判定した事例は未だ開示されていない。また、物体の三次元測定方法として、光切断法を用いる方法や特定波長域の光を用いる光切断法は物体の外形を画像で捉える場合に使われる公知の技術で、物体の表面的な欠陥、欠損、歪みの検出や外形測定に専ら用いられていた。被対象物内部の二次元又は三次元部位における性状判定に光切断法を応用した例はない。
【0013】
【発明が解決しようとする課題】
食品製造工場の製品管理において、前記のような、抜き取り検査及び破壊計測の欠点(検査漏れ、製品ロス、タイムラグ)を改善することを目的に、分光分析法を利用して、内部に浸透性のある特定波長(400nmから50,000nmの範囲)の光を用いて、ゲル形成性食品の中間製品又は包装された製品の品質、特に成分含量変化を伴わない物性変化について非破壊式又は非接触式全数検査システムを確立し、また光切断法と画像解析手法と併用してゲル形成性食品内部の二次元又は三次元位置における品質、均一性を評価することが本発明の課題である。
【0014】
【課題を解決するための手段】
本発明者らは、実際に、同一成分でありながら物性がゾルからゲル(または液体から固体)に変化する食品、例えばタンパク質の変性や多糖類等の相互作用(一般に高分子の高次構造の変化や、高分子間のイオン結合、水素結合、疎水結合、SS結合等の形成によるゲル化)が起こる豆腐、卵豆腐、蒲鉾、チーズ等の品質判定や、豆乳や牛乳の粘性や凝固変質等の品質判定に可視光から近赤外線、赤外線の分光分析法の応用を検討した結果、特定波長領域の光の吸光度又はその演算値が、特定の品質を反映していることを見出し、本発明に至った。
【0015】
またレーザー光線を照射光源とし、CCDカメラを受光装置として、製品コンベア上にそれらを設置した、いわゆる光切断法による三次元計測システムを構成し、特定波長領域の光を用いて、ゲル形成性食品内部の二次元又は三次元位置における品質を判定する、実用上安価な非接触・非破壊自動計測システムを実現し、本発明を完成させた。
【0016】
【発明の実施の形態】
本発明請求項1記載の実施形態は、可視光から赤外線領域(400〜50,000nm)、特に400〜1,000nmの可視光から近赤外線領域の、単一又は複数の特定波長領域の光を用いる、分光分析計測システム方法であって、対象がゲル形成性食品の物性、特に成分含量変化を伴わない物性変化であることを特徴とする、ゲル形成性食品の品質判定方法である。
【0017】
本発明で用いる分光分析計測システムは、図1(a)に示すように、光を被対象物1に投光する光源2と、その反射又は透過光5を受光し吸光度を測定する受光装置3を備え、必要に応じて、投光された光4又は受光された光5の特定波長領域を分離する分光装置6を付設するか、又は光路調整器7を付設するか、又はその吸光度を数学的前処理してあらかじめ作成された回帰式を用いて被対象物の特性関連値を出力する演算装置(コンピューター、シーケンサー等)を付設する、いわゆる分光分析計測システムである。図1(b)は透過照射の場合の概略図である。なお、図示はしないが、側面方向でも同様に、透過反射照射や透過照射のシステムを適用できる。
【0018】
特定波長領域は、製品種類や目的の品質項目毎に、その評価値と各波長領域の吸光度やその演算値との相関分析や重回帰分析、判別分析等の統計解析を行って選択される。400〜50,000nmまでの範囲には、可視光、近赤外線、(中)赤外線が含まれ、有機化合物やその官能基に由来する結合音やその倍音による吸収が存在する波長領域であるので、各種化合物に特有の吸収スペクトルが得られ、成分濃度との相関が得られやすい。特に400〜1,000nmの、短波長の近赤外領域から可視光は、水による吸収が少なく、高水分(60%wt以上)の食品には浸透性が高く、食品内部の情報を得る目的では好ましい。
【0019】
可視光領域では色の三刺激値(例えばRGB表色法によるRGB値、CIEハンター表色法によるLab値等)等を用いてもよい。
【0020】
近赤外線領域は、一般に波長域1(結合音域)1,800〜2,500nm、波長域2(1次倍音域)1,400〜1,800nm、波長域3(2次倍音域)700〜1,100nmと3区分に細かく分けられる。特に80%wt以上の高水分食品に適し、透過性の高い波長域3を用いることが好ましい、とされている(佐藤哲生、第5回非破壊計測シンポジウム講演要旨集p8〜14;岩元・魚住、日本食品工業学会第32巻第9号p685〜695)。
【0021】
包装された製品の場合、包材の吸収波長を避けた波長領域を選択することによって、内部の食品の情報を得ることができる。また、包材の色や材質、印字の影響や、表面の付着水やパック水等の水の影響、食品の表面の焼き目や揚げ皮、着色等の影響も、同様にそれらの吸収波長領域を避けることで、的確に内部情報を得ることができる。
【0022】
包材は特定波長領域の光を一部透過できるものであれば、基本的にどのような材質、厚みでも適用できる。肉眼では透けて見えなくても、強力な可視光線や赤外線を透過すれば、利用できる。ただし、アルミ蒸着された包材など、全く光を透過しない包材には適用できない。また、フィルム面以外に、容器側(底面や側面)からでも、投光又は受光が可能である。容器の形状は四角、丸形、チューブ状等、特に制約はない。
【0023】
被対象物に照射する光源は、太陽光(自然光)や人工光源である蛍光灯、レーザー、ハロゲンランプ、白熱電球、単色ランプ、高圧放電ランプ(水銀灯、メタルハライドランプ)、キセノンランプ、発光ダイオード(LED)などである。また、フィルター、プリズム、回折格子等によって、特定の波長領域に制限した光を用いてもよい。また光源の点灯時間は高周波点灯等の常時点灯又はパルス点灯などが用いられる。被対象物の厚みがある場合や包材が光不透過性である場合等は高出力の光源を用いる。またリング状の光ファイバー灯や蛍光灯や白熱球や棒状蛍光灯など市販のあらゆる形態を用いることができる。また投光はスポット状、スリット状等の光路調整器や偏光フィルター、バンドパスフィルター等の光学フィルターによって制限するか、レンズによって集光、拡散させてもよい。受光装置に係わる投光照明は反射照明、透過照明、同軸照明、拡散照明等のいずれの形でも適用可能である。
【0024】
光の照射を受けた被対象物からは、表面で跳ね返る反射光、被測定物を透過または散乱し貫通する透過光、照射光の一部が内部を透過・散乱して放射される透過反射光、色素などの励起によって起こる遅延光(蛍光)などがあり、少なくともその1つを利用する。また、その測定光もバンドパスフィルター等の光学フィルターや回折格子等の分光器によって、特定の波長領域に制限(分光)して用いてもよい。予め、投光の波長領域を制限する場合は、受光側の波長制限は不要である。
【0025】
受光は光電管やダイオード素子により構成された受光装置、又は市販のCCDカメラ、MOS型カメラ等のエリアセンサー、リニアセンサー、赤外線カメラ、分光光度計、色彩色差計、果物糖度計、米食味計等を利用することによって、電気信号に変換される。あらかじめ標準白色板や比較対照試料で得ている基準値と相対的な比較によって、特定波長領域の相対的な吸光度として測定される。
【0026】
被対象物は、静止状態でもよいが、工程上、コンベア搬送、シュートなどの搬送装置によって連続又は間欠移動してもよい。小規模であれば、樹脂コンテナ等に整列されて納められた状態でも構わない。また液体又はゾル状であればポンプ等によってパイプライン中を移動している場合やタンク中に滞留している場合も含まれる。
【0027】
本発明の適用できるゲル形成性食品とは最終状態が固体又はゲル状である食品や、最終状態は液体又はゾル状であって、何らかの原因で、粘性増加や固体又はゲル状に変化する食品を指す。最終製品又は中間製品のどちらでも良い。形状も立方体、直方体、円柱、カップ状、球状など特に限定されない。包装の有無も限定しないが、少なくとも、特定波長領域の光が通過できる部分を有する包装材料で包装された場合に限られる。
【0028】
本発明の適用できるゲル形成性食品のうち、最終状態がゲル状の食品は下記に示すような食品である。
【0029】
タンパク質性ゲル形成性食品では、絹ごし豆腐・充填豆腐・木綿豆腐・寄せ豆腐(おぼろ豆腐)等の豆腐類、厚揚げ・生揚げ・薄揚げ・薄揚げ・寿司揚げ・がんもどき等の油揚生地、凍り豆腐やその凍結前後の生地、すし揚げ・厚揚げ・生揚げ・薄揚げ・すし揚げ・がんもどき等の油揚類、湯葉や湯葉豆腐、大豆タンパク質ゲル・豆乳ヨーグルト等の大豆加工食品、蒲鉾・竹輪・揚げ蒲鉾、魚肉ソーセージ等の水産練り製品、卵豆腐、ゆで卵、プリン、茶碗蒸し等の卵製品、チーズ・ヨーグルト等の牛乳加工製品、ゼラチンを用いたゲル状食品、うどん・素麺・ラーメン・パスタ・生麩・パン生地・ビスケット等の菓子生地等の小麦加工食品、蕎麦などである。
【0030】
デンプン・多糖類性ゲル形成性食品ではコンニャクやコンニャクゼリー、ところてん、ういろう、煎餅やかきやま等の菓子生地、餅、胡麻豆腐、杏仁豆腐や豆花等のゲル化剤を使用したゼリー状食品である。ゲル化剤とはゼラチン、寒天、カードラン、カラギーナン、デンプン等の食品添加物である。
【0031】
また、本発明に適用される液体又はゾル状の食品は、加工や保存中に凝固又はゲル化する性質を有する、例えば豆乳飲料、生卵、すり身、牛乳や牛乳加工飲料、寒天飲料等である。
【0032】
本発明において対象となるゲル形成性食品の品質は個々に様々であるが、一般に豆腐や卵豆腐のようなゲル状食品の場合、一般に物性(硬さ・弾力・保水性等)、外観(色調、重量、光沢、きめ等)、味などが挙げられる。これらの品質は、同一成分でも、加熱、攪拌、時間などの微妙な加工条件によって影響が現れる。なお、形状(大きさ、欠損等)、タンパク質、脂肪、糖質、繊維質等の栄養成分、アミノ酸や核酸等の旨味成分、ビタミン類、一般細菌数や大腸菌群数、異物混入なども本発明の対象となる品質項目である。
豆乳飲料のような液状食品の場合も、上記以外に、物性(粘度・流動性・凝固や沈殿物等の有無)などの項目が挙げられる。
【0033】
分光分析法の常套手段に従って、未知試料を測る前に、あらかじめ品質の異なる製品試料を複数測定し、回帰式を求めておく必要がある。先ず、品質の異なる良品から不良品までの製品に関して、一定条件において各波長領域の吸光度値を測定する。その製品品質(客観的・主観的に測定される評価値)と、各波長領域の吸光度又はその吸光度の多次微分値(例えば2次微分)やそれらの四則演算値、対数値、他の特定波長領域の吸光度との演算値等の数値と、その吸光度との相関分析、判別分析、重回帰分析などの統計解析又はニューロコンピューターの学習を行い、回帰式又はニューロコンピューター学習構造を求める。なお、本発明では特に製品の大きさ、形状、水分等の成分値の条件はほぼ固定条件にして、回帰式を用意した。なお、実用上は、各製品によって個別の回帰式を求める必要があり、面倒ではある。ニューロコンピューターの学習機能や認識を利用することによって、ユーザー側で現場レベルでのチューニングが容易になる。ニューロコンピューターを利用する利点は、非線形な因果関係に適していて、煩雑な統計計算が不要であり、複雑な自然現象に対して、比較的精度の高い判定を行うことも可能である。なお、選択された特定波長領域は、一般に特定の化学的構造(官能基)や特定の化合物に帰属されるが、学術的な説明ができなくても、実用上、因果関係が成立すれば問題ない。
【0034】
外乱(例えば、特に温度や食品の大きさ等)による補正を行う必要がある場合、その外乱に影響の少ない特定波長領域の吸光度を選択し、その吸光度を差し引くこともある。ただし、加工食品の場合、形状や大きさや製品温度は、その製品の特定の工程では一定であるので、それぞれの製品によって判別式を決定しおけば、相対的な比較によって、判別が可能である。また吸光度の2次微分値等を用いれば、その外乱の影響を少なくできる。逆に、本発明によって、そのような温度変動や量目の変化も検知することも可能である。
【0035】
図2は本発明請求項2記載のゲル形成性食品の品質判定装置についての概要図である。請求項1記載のゲル形成性食品の品質判定方法において、被対象物1が移動装置9によって直線的に、連続又は間欠移動する工程を設けて、移動方向に対して直角方向に直線状に投光される光4(レーザー光等)を用いて、被対象物に対して垂直方向より斜めに投光(入射角θ;−90°<θ<90°、図3(a)参照)し、その投光角度θより垂直方向、好ましくは垂直に受光するように配設(反射角η;θ>0の時は0<η≦90°、θ<0の時は90°<η<180°、図3(a)参照)した受光装置3(CCDカメラ等のエリアセンサー)を備えた、いわゆる光切断法による三次元形状測定システムを応用する。
【0036】
その直線状光線が被対象物表面と底面を横切る位置の間における、特定波長に限定された透過光又は反射光の吸光度の二次元分布を画像として取り込み、各画素の吸光度を深さにおける吸光度に換算することを、被対象物が移動する間に連続的に行い、得られた平面又は断面画像を合成し、被対象物の内部全体の二次元又は三次元位置における性状判定を行うものである。画像の取り込みは演算処理能力によるが、極短時間で繰り返し、各画像データから二次元又は三次元の各位置において積算、平均、深度による補正など演算処理を行い、二次元又は三次元の吸光度パターンを得る。または複数のスリット光を一度に照射し、一度に画像を取り込んでもよい。また移動方法は直線的移動、回転的移動等の一定した移動方法であれば特に限定しない。
入射角θや反射角ηは、包装された製品中や外表面に水が存在する場合、表面の全反射を避けるよう、両角度を異なる角度に配置にすることが望ましい。
【0037】
特定波長領域の光は、1領域だけでなく、複数の領域の光を必要とする場合、分光器6を短時間に調節する(回折格子の角度を機械的に変更する、光学フィルターを回転式に切り替える、等)ことによって、数種の領域の吸光度を測定することが可能である。また、コスト的に若干高くなるが、分光器6や受光装置3を複数設けることによって、さらに高速処理が可能になる。なお、本発明では直線状の投光照明は被対象物の底面から行ってもよく、その透過光について同様な画像測定と判定を行うことができる。
【0038】
モデル的には表面の線状反射光から距離Lだけずれた位置における線状反射光は被対象物中に散乱又は吸収されながら、一部の光は距離L÷cos(θ)だけ進んだ位置、即ち被対象物中の深さL×tan(θ)の位置から、更に一部の光が垂直方向に向い、散乱又は吸収されながら距離L×tan(η)だけ進んで、被対象物表面から放射され、透過反射光として受光装置に取り込まれる。見かけの光路長はL×(1÷cos(θ)+tan(η))
【0039】
実際に、不透明ゲル形成性食品や乳濁液では、入射光の直進方向の周辺への散乱が大きく影響するので複雑ではあるが、光の強度の増加や被対象物の厚みを薄くすることや、水やタンパク質等の大きな吸収のない、透過しやすい特定波長を選択することによって、その影響を最小限にできる。なお、被対象物の厚みは包材や内部食品の光透過性にもよるが、20cm以下、好ましくは5cm以下であれば十分適用できる。また透過性の高い波長領域は500〜1,000nmの範囲である。
【0040】
同一製品において、その入射から透過反射までの光路上、内部組織が均一であれば、どこの測定画像もその製品特有の同じ吸光度パターンを示すが、もし一部分に不均一な部分不具合があれば、二次元又は三次元吸光度パターンの一部分の吸光度が増減するので、不良品を判別できる。また木綿豆腐のように内部に「す」(水や空気が詰まった空隙)の状態やゲル形成性食品特有の気泡の抱き込み状態も、吸光度パターンに斑点状に強弱が表れるので判別できる。充填豆腐のパック内の離水状態も、水の吸収がある波長の吸光度パターンを撮れば、その離水状態を判別できる。これら吸光度パターンのそれぞれの位置について回帰式を用いて、三次元位置における硬さ(破断力)を求めることができる。またパイプライン中で豆乳を凝固させ、豆腐を連続的に製造するシステムにおいては、配管状に窓を設けて、本発明を適用した場合、パイプ中を移動する豆腐の断面における吸光度パターンをモニターでき、万一の凝固不良を検知することができる。なお、目的の品質が比較的単純な回帰式で表せる場合、単に、回帰式まで用いなくても、生産ライン上、相対的な吸光度パターンの変化をモニター(パターン認識)し、一般的な画像処理で閾値を越える、異常と疑われる製品があればシーケンサーに信号を出力し、搬送コンベア9から排出装置によって不良品を排除する。
【0041】
エリアセンサーのうち、特にCCDカメラは市販の安価なタイプで十分であり加工食品工場に導入しやすい。同時に二次元のデータを扱えるため、個々の被測定物の全体(全面)を評価でき、食品の状態が不均一である場合や、ムラのある場合にも適用しやすい。また、被対象物との距離をおいて非接触測定できるため、既存ラインに設置しやすく、機械動作機構を省いて高速で処理できる。データを2値化処理し、既存の画像解析技術を利用できる。それによって、均一性、異物混入、欠け、割れなどその他の情報を得ることができる。成分(タンパク質、脂質、水分等)の測定も合わせて行う場合、1,000nm以上の近赤外線領域を用いることが好ましい。
【0042】
【実施例】
ゲル形成性食品の一例として、豆腐について、図1(a)に示すような分光分析計測システムを用いた実施例を以下に述べる。
【0043】
(実施例1)
大豆および浸漬条件は平成12年度米国産IOMで14時間、平成12年度国産大豆タチナガハとエンレイ1:1混合したもので20時間、井戸水流水下、15℃で浸漬した。
【0044】
生大豆8kg分の漬大豆を豆乳製造プラント(NS2000S、高井製作所製)で5分103℃まで蒸気煮沸を行い、直ちに豆乳絞り機(シリウス1連、高井製作所製)にて、豆乳とオカラに分離した。得られた豆乳は約13%brix(固形分濃度約11%wt)であった。豆乳は10℃になるまで急速に冷却し、所定量の凝固剤を混合し、PP製白色パック(2B)に充填し、PP製フィルムで溶着シールした。所定温度に合わせた湯浴中で、所定時間静置して充填豆腐を試作した。
【0045】
上記と同様に分離直後の温豆乳(約80℃)と乳化凝固剤(マグネスファインTG、花王製)を使用して、ホット充填豆腐製造装置(高井製作所製)によって、PP製白色パック(京型)に充填し、PP製フィルムで溶着シールした。
【0046】
凝固剤種類は塩化マグネシウム(ホワイトニガリ、ナイカイ塩業製)、硫酸カルシウム(すまし粉、ニットー製)、グルコノデルタラクトン(GDL、藤沢薬品製)をそれぞれ豆乳重量に対して、0.05、0.1、0.15、0.2、0.25、0.3、0.4、0.5%を添加した。また塩化マグネシウムとGDLを1:1にブレンドした場合も同様に調製した。
【0047】
加熱凝固条件は、未加熱、40、50、60、70、80℃の湯浴温度にて、10、60分間加熱し、凝固した。
これらの条件の組み合わせによって、約100個の豆腐を試作した。
【0048】
それぞれの豆腐の品質測定は、レオメーター(不動工業製NRM−2002J)によって破断力等の測定(充填豆腐の包装フィルムを剥がした状態で、23mmφのプランジャーを6cm/分の速度で侵入させ、破断した時点の応力を測定)、パネラー数名による試食評価(外観、色、臭い、味、テクスチャーについて10段階の採点し、合計を100点満点として換算)、2時間放置前後の重量差から離水率の測定を行った。
【0049】
分光光度測定機は市販のクボタ製フルーツセレクターを使用し、室温にて充填豆腐の包装フィルムの上面中央部に測光センサーを接触させて、波長500〜1,008nmの間で2nm毎の吸光度を測定した。また、波長400〜700nmの間で、約450nm、約560nm、約610nmに分光感度を有するセンサーを内蔵した色彩色差計(ミノルタ製CR−300、拡散照明垂直受光式)によってL値、a値、b値(ハンター表色法)の測定も行った。
【0050】
得られたデータについて市販の統計解析ソフト(マイクロソフト製EXCEL2000等)を用いて、相関分析、重回帰分析、分散分析を行い、重回帰式を求めた。
【0051】
結果の一例として、塩化マグネシウム100%充填豆腐の典型的な結果を表1、その吸光度スペクトルを図4、吸光度の2次微分スペクトルを図5に示した。図4から680〜950nmにおける大きな吸収が存在することが分かった。特に800〜840nm付近が特徴的で、最も大きな吸収を示している波長820nmに関して、吸光度と破断力との関係を図6に示した。両者の間には高い負の相関(相関係数0.99、n=6)が認められた。
【0052】
【表1】

Figure 0004697764
【0053】
全データ(n=100)について、重回帰分析を行った結果について表2に示した。破断力、離水率、試食評価共に吸光度の2次微分値との相関が高かった。
【0054】
【表2】
Figure 0004697764
【0055】
塩化マグネシウム100%の充填豆腐(n=22)に限定した場合の結果を表3に示した。破断力ではLab値との相関が高く、図7に示すとおり、重相関係数0.963であった。離水率や試食評価も図8、図9に示すとおり、全データよりも高い相関を示した。
【0056】
【表3】
Figure 0004697764
【0057】
マグネスファイン100%のホット充填豆腐(n=22)についても、破断力はLab値、吸光度やその2次微分値と高い相関(各重相関係数0.970、0.714、0.844)を示した。
【0058】
以上からそれぞれの製品種類毎に作成した回帰式や判別式を用いることによって、柔らか過ぎ、離水が多過ぎ、試食評価が低い、というような不良品を明確に判別できることを確認した。
【0059】
(実施例2)
図2に示した三次元測定システムを利用して、前記実施例1で得られた820nm吸光度を変数とした回帰式を用いて、充填豆腐内部の品質評価、特に破断力の予測を試みた。図3(a)に示したように均一な製品であれば、直線状のレーザー光の入射位置から入射光が底面に当たる位置の範囲で、CCDカメラによって画像を測定すると、光路長に応じた減衰した分布が得られる。しかし、図3(b)に示したように外観上は正常であるが、内部に未凝固の部分(豆乳状)が存在する豆腐の場合、その未凝固部分を通過した光はより吸収され、その部分だけ暗い画像となるので、容易に不良品であることを判別できた。
【0060】
【発明の効果】
本発明の請求項1記載の食品品質判別方法によれば、ゲル形成性食品において、その反射光又は透過光を受光し、特定波長領域(400nmから50,000nmの範囲)の光について吸光度を測定し、ゲル状食品の品質を客観的に判定し、半凝固や未凝固などの不良品を判別することができる。また、一部分が光透過性であれば、その包材越しに中身の品質を評価することができる。その結果、ゲル形成性食品の自動製造ラインで、客観的な全数検査が容易になり、不良品を確実に除去でき、ロスやPL問題等のトラブルを未然に防ぐことが可能になる。
【0061】
本発明請求項2記載のゲル形成性食品の品質判別装置によれば、可視光領域から近赤外光領域に感度のある安価な市販CCDカメラ等のエリアセンサーで安価に構成し、遠隔測定(非破壊かつ非接触測定)し、汎用の画像解析処理を活用しながら、受光の特定波長領域の光を用いた光切断法を利用して、外観や成分だけでなく、ゲル形成性食品の内部品質(物性等)の二次元又は三次元位置に関する情報を得て、一層精度の高い迅速な製品の合否判定をすることができる。
【図面の簡単な説明】
【図1】(a)本発明請求項1および実施例1記載のゲル形成性食品の分光分析計測システム(透過反射型)の説明図
(b)本発明請求項1および実施例1記載のゲル形成性食品の分光分析計測システム(透過型)の説明図
【図2】本発明請求項2記載のゲル形成性食品の三次元分光分析計測装置の説明図
【図3】(a)本発明実施例2記載の均一なゲル形成性食品の三次元分光分析計測の説明図
(b)本発明実施例2記載の不均一なゲル形成性食品の三次元分光分析計測の説明図
【図4】本発明実施例1のニガリ100%充填豆腐の透過反射光による吸光度スペクトルの説明図
【図5】本発明実施例1のニガリ100%充填豆腐の透過反射光による吸光度2次スペクトルの説明図
【図6】本発明実施例1のニガリ100%充填豆腐の透過反射光による吸光度と破断力の関係の説明図
【図7】本発明実施例1のLab値を用いた重回帰式による予測破断力と実測破断力との相関関係の説明図
【図8】本発明実施例1の吸光度2次微分値を用いた重回帰式による予測破断力と実測破断力との相関関係の説明図
【図9】本発明実施例1の吸光度を用いた重回帰式による予測破断力と実測破断力との相関関係の説明図
【符号の説明】
1 被対象物
2 光源
3 受光装置
4 照射光(投光)
5 反射又は透過光
6 分光器
7 光路調整器
8 スリット光用光路調整器
9 搬送コンベア[0001]
BACKGROUND OF THE INVENTION
The present invention includes, for example, gelled foods such as tofu, egg tofu, rice cake, and cheese, and soy milk, raw eggs, surimi, and milk that have the property of solidifying or gelling during processing and storage. The present invention relates to a method for determining the quality inside a product in a non-destructive or contacted manner by spectroscopic measurement for a food-gel-forming food and an apparatus for determining quality at a two-dimensional or three-dimensional position.
[0002]
[Prior art]
In quality control at food manufacturing plants, in general, quality control personnel can make objective judgments on the quality of intermediate products or final products by using test equipment or chemical analysis methods for sampling inspections that are conducted at each production lot or periodically. There is a problem that it takes time until an inspection result is obtained and an inspection omission. In addition, during production, the operator pays attention to all products and judges the quality by visual inspection or touch, but carelessness and misjudgment cannot be eliminated.
[0003]
Gel-forming foods change from liquid or sol form to solid or gel form by heating, cooling, addition of coagulant, fermentation, enzyme reaction, etc. It is food to let you. As with general foods, a single product is unsealed by a product sampling test, and the gel strength is evaluated using a physical property tester such as a rheometer. Because it is a destructive test, that part is lost. Furthermore, if a defective product is detected, all the corresponding lots must be discarded even if the defective product is a part. Like gelation, processing operations and quality judgments that involve changes in physical properties greatly depend on the subjectivity, experience, and intuition of workers. Although it is easy to identify defective products before packaging in an intermediate state or intermediate product in a gel state, a defective product with unevenness or defects may be shipped for some reason on an automated line. In commercial products such as pudding and yogurt, a space is provided at the top of the cup to make it easy to visually determine the gelled state. However, there are problems such as oxidation by air, generation of microorganisms and loss of shape. Moreover, when it gelatinizes after packaging like filling tofu and egg tofu, it may be difficult to distinguish the quality of the gelation at first glance, and only a feeling such as touch may be relied upon. There is no abnormality in appearance, but if there is an abnormality inside, the defective product may be overlooked. In rare cases, incompletely solidified products are shipped, complaints from customers and consumers, product collection, and even liability issues arise, which puts a heavy burden on the food manufacturer.
[0004]
The quality of gel-forming foods generally includes quality items such as shape (size, defect, weight, etc.), appearance (color, weight, gloss, texture, etc.), texture (hardness, elasticity, water retention), and taste. Can be mentioned. Some are measured objectively using measuring equipment, but the taste and texture are currently judged by human taste.
[0005]
In addition, in the case of liquid or sol foods (drinks) such as soy milk and milk, the product is normally in a liquid or sol state, but for some reason, aggregates, precipitates / floats, increased viscosity, gelation, etc. It may be a defective product.
[0006]
For the purpose of inspection of the surface shape of the product, for example, a method of determining defects in packaged tofu by irradiation with slit light using a fluorescent lamp and image processing with a CCD camera (Japanese Patent Laid-Open No. 08-217029), spot projector And a method of determining by arranging a large number of light receiving sensors (Japanese Patent Laid-Open No. 10-62132) is disclosed. These methods simply measure the shape of the outer shape, but are not sufficient because they are affected by the color of the container and printing on the film.
[0007]
Regarding tofu before packaging, etc., a method (Japanese Patent Laid-Open No. 2001-133233) for determining a defect using a general light cutting method is disclosed, but it cannot be applied to a packaged product.
[0008]
There are disclosures (Registered No. 2931838 and Japanese Patent Application Laid-Open No. 2001-242100) of an image analysis apparatus using X-rays as a liquid medicine or food coagulation determination apparatus. These devices need to contain bubbles in the object, and the former is a method of measuring the state of dispersed bubbles by vibrating the object. Both can be applied to liquid foods, but not to gel foods. In addition, safety management is necessary to handle radiation.
[0009]
As a method for evaluating the component of the object using visible light spectroscopy, for example, the transmitted or reflected light of the object such as fruit is divided, passed through a plurality of specific wavelength filters, and the difference in absorbance is determined. Discloses a method for evaluating internal quality, for example, maturity (Japanese Patent Laid-Open No. 52-83274).
[0010]
An organic substance quality evaluation method (near infrared analysis method) by near infrared spectroscopy has attracted attention as a nondestructive measurement method, and many studies have been made in the past 20 years, and its practical application has been promoted. For example, in the food industry, a rice taste meter (Japanese Patent Publication No. 1-49890) for measuring the content of amylose and the like, a fruit sugar content meter (Japanese Patent No. 2517858, JP-A-1-301147) for measuring sugar and the like are put into practical use. In addition, a method for evaluating the pH (hydrogen ion content) of a cocoa-containing food (Japanese Patent Laid-Open No. 2001-17084), a method for measuring differences in ingredients before and after the processing of food, and evaluating a processing state (Japanese Patent Laid-Open No. 7-12722, JP-A-7-107925) is disclosed. However, there are no examples of applying spectroscopic analysis with visible light, near infrared rays, or infrared rays to tofu and other gel-forming foods.
[0011]
In addition, in fruits and vegetables, a system for predicting hardness (maturity) using absorption in the near-infrared region has been devised (JP-A-1-301147). However, ripening of fruits and vegetables generally involves many chemical components. With change. A method (JP-A-7-270312) for directly measuring cooked rice after rice cooking treatment and evaluating physical properties such as hardness and stickiness in addition to appearance and taste has been disclosed. Is different, with some component changes.
[0012]
Both methods are analytical techniques based on changes in component content such as amylose and hydrogen ion concentrations. Physical property values such as hardness and stickiness are evaluated based on an indirect correlation with component values. Therefore, it is difficult to distinguish the quality when the components are the same and do not change and the physical properties are different. Until now, near-infrared spectroscopy has been researched and put to practical use for the purpose of nondestructive measurement of the difference in the amount of chemical components in a measured object. However, no case has yet been disclosed in which the internal quality of a gel-forming food is determined by applying a spectroscopic analysis method using visible light, near infrared light, or the like. In addition, as a three-dimensional measurement method of an object, a method using a light cutting method or a light cutting method using light in a specific wavelength range is a well-known technique used to capture the outline of an object with an image, and is a surface defect of the object. It was used exclusively for defect detection, distortion detection and external shape measurement. There is no example in which the light cutting method is applied to property determination in a two-dimensional or three-dimensional region inside the object.
[0013]
[Problems to be solved by the invention]
In the product management of food manufacturing plants, the use of spectroscopic analysis to improve the above-mentioned shortcomings of sampling inspection and destructive measurement (inspection omission, product loss, time lag). Non-destructive or non-contact method for the quality of intermediate products or packaged products of gel-forming foods, especially for physical property changes without changing the content of ingredients, using light of a specific wavelength (ranging from 400 nm to 50,000 nm) It is an object of the present invention to establish an all-inspection system and to evaluate the quality and uniformity at a two-dimensional or three-dimensional position inside a gel-forming food in combination with a light cutting method and an image analysis method.
[0014]
[Means for Solving the Problems]
The inventors of the present invention actually have the same component but the physical properties change from sol to gel (or liquid to solid), such as protein denaturation and interaction with polysaccharides (generally higher order structure of polymer). Such as tofu, egg tofu, rice cake, cheese, etc. that undergo changes, gelation due to the formation of ionic bonds, hydrogen bonds, hydrophobic bonds, SS bonds between polymers, etc., and the viscosity and coagulation alteration of soy milk and milk As a result of investigating the application of spectroscopic methods from visible light to near-infrared and infrared in the quality determination of light, it has been found that the absorbance of light in a specific wavelength region or its calculated value reflects the specific quality. It came.
[0015]
In addition, a laser beam is used as an irradiation light source, a CCD camera is used as a light receiving device, and they are placed on a product conveyor to form a three-dimensional measurement system using a so-called light cutting method. A non-contact, non-destructive automatic measurement system that determines the quality at the two-dimensional or three-dimensional position of the device is realized, and the present invention has been completed.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The embodiment according to claim 1 of the present invention is capable of emitting light in a single or plural specific wavelength regions from visible light to infrared region (400 to 50,000 nm), particularly from visible light to near infrared region of 400 to 1,000 nm. A spectroscopic measurement system method to be used, wherein the target is a gel-forming food Physical properties, In particular, the present invention relates to a method for judging the quality of a gel-forming food, characterized in that it is a change in physical properties not accompanied by a change in component content.
[0017]
As shown in FIG. 1A, a spectroscopic measurement system used in the present invention includes a light source 2 that projects light onto an object 1 and a light receiving device 3 that receives the reflected or transmitted light 5 and measures the absorbance. If necessary, a spectroscopic device 6 that separates a specific wavelength region of the projected light 4 or the received light 5 is attached, or an optical path adjuster 7 is attached, or its absorbance is calculated mathematically. This is a so-called spectroscopic measurement system equipped with a calculation device (computer, sequencer, etc.) that outputs a characteristic-related value of an object using a regression equation created in advance by target preprocessing. FIG.1 (b) is the schematic in the case of transmission irradiation. Although not shown in the figure, a transmission / reflection irradiation system or a transmission irradiation system can be applied in the same manner in the lateral direction.
[0018]
The specific wavelength region is selected for each product type and target quality item by performing statistical analysis such as correlation analysis, multiple regression analysis, discriminant analysis between the evaluation value and the absorbance of each wavelength region and the calculated value. The range from 400 to 50,000 nm includes visible light, near-infrared light, and (medium) infrared light, and is a wavelength region where there is absorption due to the combined sound derived from the organic compound and its functional group and its overtone, Absorption spectra peculiar to various compounds are obtained, and correlation with component concentrations is easily obtained. In particular, visible light from the near-infrared region of a short wavelength of 400 to 1,000 nm is less absorbed by water, has high permeability to foods with high moisture (60% wt or more), and obtains information inside the food. Then, it is preferable.
[0019]
In the visible light region, color tristimulus values (for example, RGB values by the RGB colorimetric method, Lab values by the CIE Hunter colorimetric method, etc.) may be used.
[0020]
The near-infrared region generally has a wavelength region 1 (combined sound region) 1,800 to 2,500 nm, a wavelength region 2 (primary overtone region) 1,400 to 1,800 nm, and a wavelength region 3 (second overtone region) 700 to 1. , 100 nm and can be divided into 3 sections. It is said that it is particularly suitable for high-moisture foods of 80% wt or more, and that it is preferable to use a highly transparent wavelength region 3 (Tetsuo Sato, 5th Non-Destructive Measurement Symposium Abstracts p8-14; Iwamoto and Uozumi , Japan Food Industry Association Vol. 32, No. 9, p685-695).
[0021]
In the case of a packaged product, information on the internal food can be obtained by selecting a wavelength region that avoids the absorption wavelength of the packaging material. In addition, the influence of the color and material of the packaging material, the printing, the influence of water such as surface adhering water and pack water, and the influence of baking, fried skin, coloring, etc. on the surface of the food are also affected. By avoiding, internal information can be obtained accurately.
[0022]
As long as the packaging material can partially transmit light in a specific wavelength region, basically any material and thickness can be applied. Even if it cannot be seen through with the naked eye, it can be used if it transmits strong visible light or infrared light. However, it is not applicable to packaging materials that do not transmit light at all, such as aluminum-deposited packaging materials. In addition to the film surface, light can be projected or received from the container side (bottom surface or side surface). The shape of the container is not particularly limited, such as a square shape, a round shape, and a tube shape.
[0023]
Light sources to irradiate objects are sunlight (natural light) and artificial light sources such as fluorescent lamps, lasers, halogen lamps, incandescent lamps, monochromatic lamps, high-pressure discharge lamps (mercury lamps, metal halide lamps), xenon lamps, light-emitting diodes (LEDs) ) Etc. Further, light limited to a specific wavelength region by a filter, a prism, a diffraction grating, or the like may be used. As the lighting time of the light source, constant lighting such as high frequency lighting or pulse lighting is used. A high output light source is used when the object is thick or the packaging material is light-impermeable. In addition, all commercially available forms such as a ring-shaped optical fiber lamp, a fluorescent lamp, an incandescent bulb, and a rod-shaped fluorescent lamp can be used. The light projection may be limited by an optical path adjuster such as a spot shape or a slit shape, or an optical filter such as a polarizing filter or a bandpass filter, or may be condensed and diffused by a lens. The floodlight illumination related to the light receiving device can be applied in any form such as reflection illumination, transmission illumination, coaxial illumination, and diffuse illumination.
[0024]
Reflected light that bounces off the surface from the object irradiated with light, transmitted light that penetrates or scatters through the object to be measured, and transmitted reflected light that is radiated through a part of the irradiated light transmitted or scattered inside There is delayed light (fluorescence) caused by excitation of a dye or the like, and at least one of them is used. The measurement light may also be used after being limited (spectroscopic) to a specific wavelength region by an optical filter such as a bandpass filter or a spectroscope such as a diffraction grating. When the wavelength range of light projection is limited in advance, wavelength limitation on the light receiving side is not necessary.
[0025]
For light reception, a light receiving device composed of a phototube or a diode element, or an area sensor such as a commercially available CCD camera or MOS camera, a linear sensor, an infrared camera, a spectrophotometer, a color difference meter, a fruit sugar meter, a rice taste meter, etc. By using it, it is converted into an electric signal. The relative absorbance in a specific wavelength region is measured by a relative comparison with a reference value obtained in advance with a standard white plate or a comparative control sample.
[0026]
The object may be in a stationary state, but may be continuously or intermittently moved by a conveying device such as a conveyor conveyance or a chute in the process. If it is a small scale, it may be arranged in a resin container or the like. In addition, in the case of liquid or sol form, the case where it is moved in the pipeline by a pump or the like or the case where it is staying in the tank is also included.
[0027]
The gel-forming food to which the present invention can be applied is a food whose final state is solid or gel, or a food whose final state is liquid or sol, and for some reason increases in viscosity or changes to solid or gel. Point to. Either a final product or an intermediate product may be used. The shape is not particularly limited, such as a cube, a rectangular parallelepiped, a cylinder, a cup, or a sphere. Although the presence or absence of packaging is not limited, it is limited to at least a case of packaging with a packaging material having a portion through which light in a specific wavelength region can pass.
[0028]
Among the gel-forming foods to which the present invention can be applied, the foods in the final state of gel are foods as shown below.
[0029]
In protein gel-forming foods, tofu such as silken tofu, filled tofu, cotton tofu, jelly tofu, deep-fried, fresh-fried, thin-fried, thin-fried, deep-fried sushi, fried cancer, etc. Frozen tofu and dough before and after freezing, deep-fried sushi, deep-fried, freshly-fried, lightly-fried, sushi-fried, squirted, etc., processed soybean foods such as yuba, yuba tofu, soy protein gel, soy milk yogurt, strawberries, bamboo rings・ Fried crab, marine products such as fish sausages, egg tofu, boiled eggs, egg products such as pudding, steamed rice bowl, processed milk products such as cheese and yogurt, gelatinous foods using gelatin, udon, raw noodles, ramen, pasta, Wheat processed foods such as ginger, bread dough, confectionery such as biscuits, and soba.
[0030]
Starch / polysaccharide gel-forming foods are jelly-like foods that use konjac and konjac jelly, confectionery such as Toroten, Uiro, rice crackers and kakiyama, and gelling agents such as koji, sesame tofu, apricot tofu and bean flowers. . Gelling agents are food additives such as gelatin, agar, curdlan, carrageenan and starch.
[0031]
The liquid or sol food applied to the present invention has a property of solidifying or gelling during processing or storage, for example, soy milk drink, raw egg, surimi, milk or milk processed drink, agar drink, etc. .
[0032]
The quality of gel-forming foods that are the subject of the present invention varies individually. Generally, gel-like foods such as tofu and egg tofu generally have physical properties (hardness, elasticity, water retention, etc.) and appearance (color tone). , Weight, gloss, texture, etc.) and taste. These qualities are affected by subtle processing conditions such as heating, stirring and time even for the same components. In addition, the present invention includes shapes (sizes, defects, etc.), nutritional components such as proteins, fats, sugars and fibers, umami components such as amino acids and nucleic acids, vitamins, general bacterial counts, coliform counts, foreign matter contamination, etc. It is a quality item subject to
In the case of liquid foods such as soy milk beverages, in addition to the above, items such as physical properties (viscosity / fluidity / presence / absence of coagulation, precipitates, etc.) can be mentioned.
[0033]
Before measuring an unknown sample in accordance with conventional means of spectroscopic analysis, it is necessary to measure a plurality of product samples having different qualities in advance and obtain a regression equation. First, with respect to products from non-defective products with different qualities to defective products, the absorbance value in each wavelength region is measured under a certain condition. Product quality (evaluation value measured objectively and subjectively), absorbance in each wavelength region or multi-order differential value (for example, second derivative) of the absorbance, their four arithmetic operations, logarithmic value, other identification Statistical analysis such as correlation analysis, discriminant analysis, multiple regression analysis, etc. with a numerical value such as a calculated value of the absorbance in the wavelength region and the absorbance, or neurocomputer learning is performed to obtain a regression equation or a neurocomputer learning structure. In the present invention, the regression equation was prepared with the conditions of the component values such as the size, shape and moisture of the product being substantially fixed. In practice, it is necessary to obtain an individual regression equation for each product, which is troublesome. By using the learning function and recognition of the neurocomputer, tuning at the field level becomes easy on the user side. The advantage of using a neurocomputer is suitable for non-linear causal relationships, does not require complicated statistical calculations, and can make relatively high-precision judgments for complex natural phenomena. The selected specific wavelength region is generally attributed to a specific chemical structure (functional group) or a specific compound. However, even if scientific explanation is not possible, there is a problem if a causal relationship is established in practice. Absent.
[0034]
When it is necessary to perform correction due to disturbance (for example, temperature, food size, etc.), the absorbance in a specific wavelength region that hardly affects the disturbance may be selected and the absorbance may be subtracted. However, in the case of processed foods, the shape, size, and product temperature are constant in the specific process of the product, so if a discriminant is determined for each product, it can be discriminated by relative comparison. . If the second derivative value of absorbance or the like is used, the influence of the disturbance can be reduced. On the contrary, according to the present invention, it is also possible to detect such a temperature change and a change in quantity.
[0035]
FIG. 2 is a schematic diagram of the quality determination device for gel-forming food according to claim 2 of the present invention. The method for judging the quality of a gel-forming food according to claim 1, wherein a step is provided in which the object 1 is linearly moved continuously or intermittently by the moving device 9 and is linearly projected in a direction perpendicular to the moving direction. Using the emitted light 4 (laser light or the like), light is projected obliquely from the vertical direction with respect to the object (incident angle θ; −90 ° <θ <90 °, see FIG. 3A), It is arranged so as to receive light vertically from the projection angle θ, preferably vertically (reflection angle η; 0 <η ≦ 90 ° when θ> 0, 90 ° <η <180 ° when θ <0. A three-dimensional shape measuring system using a so-called light cutting method, which includes the light receiving device 3 (an area sensor such as a CCD camera) shown in FIG.
[0036]
A two-dimensional distribution of the absorbance of the transmitted or reflected light limited to a specific wavelength between the positions where the linear ray crosses the surface of the object and the bottom is captured as an image, and the absorbance of each pixel is converted to the absorbance at the depth. Conversion is performed continuously while the object is moving, and the obtained plane or cross-sectional image is synthesized, and the property is determined at the two-dimensional or three-dimensional position of the entire interior of the object. . Image acquisition depends on the calculation processing capability, but it is repeated in a very short time, and calculation processing such as integration, averaging, and depth correction is performed at each two-dimensional or three-dimensional position from each image data to obtain a two-dimensional or three-dimensional absorbance pattern. Get. Alternatively, a plurality of slit lights may be irradiated at a time to capture an image at a time. The moving method is not particularly limited as long as it is a constant moving method such as linear movement or rotational movement.
The incident angle θ and the reflection angle η are preferably arranged at different angles so as to avoid total reflection of the surface when water is present in the packaged product or on the outer surface.
[0037]
If the light of a specific wavelength region requires light of not only one region but also a plurality of regions, the spectroscope 6 is adjusted in a short time (mechanically changing the angle of the diffraction grating, rotating the optical filter It is possible to measure the absorbance of several regions. Further, although the cost is slightly increased, by providing a plurality of spectroscopes 6 and light receiving devices 3, higher speed processing can be performed. In the present invention, the linear floodlighting may be performed from the bottom surface of the object, and the same image measurement and determination can be performed for the transmitted light.
[0038]
As a model, the linear reflected light at a position shifted by a distance L from the linear reflected light on the surface is scattered or absorbed in the object, and a part of the light has advanced by a distance L ÷ cos (θ). That is, from the position of the depth L × tan (θ) in the object, a part of the light is further directed in the vertical direction and traveled by the distance L × tan (η) while being scattered or absorbed, and the object surface And is taken into the light receiving device as transmitted reflected light. Apparent optical path length is L × (1 ÷ cos (θ) + tan (η))
[0039]
Actually, opaque gel-forming foods and emulsions are complicated because the scattering of incident light to the periphery in the straight direction is greatly affected, but increasing the light intensity and reducing the thickness of the object By selecting a specific wavelength that does not absorb a large amount of water or protein and is easy to transmit, the influence can be minimized. In addition, although the thickness of a target object is based also on the light transmittance of a packaging material or an internal foodstuff, if it is 20 cm or less, Preferably it is 5 cm or less, and it can apply sufficiently. The wavelength region with high transparency is in the range of 500 to 1,000 nm.
[0040]
In the same product, if the internal tissue is uniform on the optical path from the incident to the transmission reflection, every measurement image shows the same absorbance pattern peculiar to the product, but if there is a non-uniform partial defect in a part, Since the absorbance of a part of the two-dimensional or three-dimensional absorbance pattern increases or decreases, a defective product can be identified. In addition, the state of “so” (voids clogged with water and air) as in the case of cotton tofu and the embedding state of air bubbles peculiar to gel-forming foods can be discriminated because they appear as spots in the absorbance pattern. The water separation state in the packed tofu pack can also be determined by taking an absorbance pattern at a wavelength where water is absorbed. The hardness (breaking force) at the three-dimensional position can be obtained by using a regression equation for each position of the absorbance pattern. In addition, in a system that coagulates soymilk in a pipeline and continuously produces tofu, when the present invention is applied with a pipe-like window, the absorbance pattern in the cross-section of tofu moving through the pipe can be monitored. In the unlikely event of coagulation failure, it can be detected. If the target quality can be expressed by a relatively simple regression equation, the change in relative absorbance pattern on the production line can be monitored (pattern recognition) without using the regression equation. If there is a product suspected of being abnormal in which the threshold is exceeded, a signal is output to the sequencer, and the defective product is removed from the conveyor 9 by the discharge device.
[0041]
Of the area sensors, in particular, a commercially available inexpensive camera is sufficient, and it is easy to introduce it into a processed food factory. Since two-dimensional data can be handled at the same time, the whole (entire surface) of each object to be measured can be evaluated, and it is easy to apply even when the state of food is uneven or uneven. In addition, since non-contact measurement can be performed at a distance from the object, it can be easily installed on an existing line, and can be processed at high speed without a mechanical operation mechanism. Data can be binarized and existing image analysis techniques can be used. Thereby, other information such as uniformity, contamination, chipping and cracking can be obtained. When measurement of components (protein, lipid, moisture, etc.) is also performed, it is preferable to use a near infrared region of 1,000 nm or more.
[0042]
【Example】
As an example of the gel-forming food, an example using a spectroscopic measurement system as shown in FIG.
[0043]
Example 1
Soybeans and soaking conditions were as follows: US-made IOM in 2000 for 14 hours, 2000 domestic soybean Tachinagaha and Enray 1: 1 mixed, and soaked at 15 ° C. under running well water for 20 hours.
[0044]
Steamed boiled soybeans for 8 kg of raw soybeans at a soymilk production plant (NS2000S, manufactured by Takai Seisakusho) for 5 minutes to 103 ° C, and immediately separated into soymilk and okara using a soymilk squeezer (Sirius 1 series, manufactured by Takai Seisakusho). did. The obtained soymilk was about 13% brix (solid content concentration about 11% wt). The soy milk was rapidly cooled to 10 ° C., a predetermined amount of a coagulant was mixed, filled into a PP white pack (2B), and sealed with a PP film. Filled tofu was made as a prototype by allowing it to stand for a predetermined time in a hot water bath adjusted to a predetermined temperature.
[0045]
A white pack made of PP (Kyoto) using hot-filled tofu production equipment (manufactured by Takai Seisakusho) using warm soy milk (about 80 ° C.) immediately after separation and an emulsifying coagulant (Magnesfine TG, manufactured by Kao Corporation) as described above. And welded and sealed with a PP film.
[0046]
The type of coagulant is magnesium chloride (white bittern, manufactured by Naikai Shigyo Co., Ltd.), calcium sulfate (summer powder, manufactured by Nitto), glucono delta lactone (GDL, manufactured by Fujisawa Pharmaceutical Co., Ltd.) 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5% were added. Also, when magnesium chloride and GDL were blended 1: 1, the same preparation was performed.
[0047]
The heating and solidification conditions were as follows: unheated, heated at 40, 50, 60, 70, and 80 ° C. bath temperature for 10 to 60 minutes to solidify.
About 100 pieces of tofu were made as a trial by combining these conditions.
[0048]
The quality of each tofu was measured with a rheometer (NRM-2002J, manufactured by Fudo Kogyo Co., Ltd.) and the like (with a 23 mmφ plunger invaded at a rate of 6 cm / min with the packaging film of the tofu peeled off) Measure the stress at the time of rupture), taste evaluation by several panelists (score in 10 levels for appearance, color, odor, taste and texture, and convert the total to 100 points) The rate was measured.
[0049]
The spectrophotometer uses a commercially available KUBOTA fruit selector, and a photometric sensor is brought into contact with the center of the top surface of the packed tofu packaging film at room temperature to measure absorbance every 2 nm between wavelengths of 500 to 1,008 nm. did. In addition, the color difference meter (Minolta CR-300, diffuse illumination vertical light receiving type) with a built-in sensor having spectral sensitivity at wavelengths of about 450 nm, about 560 nm, and about 610 nm between wavelengths of 400 to 700 nm, L value, a value, The b value (hunter color method) was also measured.
[0050]
The obtained data was subjected to correlation analysis, multiple regression analysis, and analysis of variance using commercially available statistical analysis software (such as Microsoft Excel CEL2000) to obtain a multiple regression equation.
[0051]
As an example of the results, typical results of 100% magnesium chloride-filled tofu are shown in Table 1, the absorbance spectrum thereof is shown in FIG. 4, and the second derivative spectrum of absorbance is shown in FIG. It was found from FIG. 4 that there is a large absorption at 680 to 950 nm. FIG. 6 shows the relationship between the absorbance and the breaking force at a wavelength of 820 nm, which is particularly characteristic around 800 to 840 nm and exhibits the largest absorption. A high negative correlation (correlation coefficient 0.99, n = 6) was observed between them.
[0052]
[Table 1]
Figure 0004697764
[0053]
The results of multiple regression analysis for all data (n = 100) are shown in Table 2. The breaking force, water separation rate, and taste evaluation were all highly correlated with the second derivative of absorbance.
[0054]
[Table 2]
Figure 0004697764
[0055]
Table 3 shows the results when limited to filled tofu (n = 22) with 100% magnesium chloride. The breaking force had a high correlation with the Lab value, and the multiple correlation coefficient was 0.963 as shown in FIG. As shown in FIGS. 8 and 9, the water separation rate and the taste evaluation also showed a higher correlation than all the data.
[0056]
[Table 3]
Figure 0004697764
[0057]
For magnes fine 100% hot-filled tofu (n = 22), the breaking force is highly correlated with the Lab value, absorbance, and its second derivative value (multiple correlation coefficients 0.970, 0.714, 0.844). showed that.
[0058]
From the above, it was confirmed that defective products such as too soft, too much water separation, and low tasting evaluation could be clearly identified by using regression formulas and discriminants created for each product type.
[0059]
(Example 2)
Using the three-dimensional measurement system shown in FIG. 2, the regression equation using the absorbance at 820 nm obtained in Example 1 as a variable was used to evaluate the quality inside the filled tofu, particularly to predict the breaking force. In the case of a uniform product as shown in FIG. 3A, when an image is measured with a CCD camera in the range from the incident position of the linear laser beam to the position where the incident light hits the bottom surface, the attenuation according to the optical path length Distribution is obtained. However, as shown in FIG. 3 (b), the appearance is normal, but in the case of tofu with an uncoagulated part (soy milk) inside, the light that has passed through the uncoagulated part is more absorbed, Since only that portion is a dark image, it was easily determined that the product was defective.
[0060]
【The invention's effect】
According to the food quality determination method of claim 1 of the present invention, in gel-forming food, the reflected light or transmitted light is received, and the absorbance is measured for light in a specific wavelength region (range from 400 nm to 50,000 nm). In addition, the quality of the gel food can be objectively determined, and defective products such as semi-solidified and non-solidified can be determined. Moreover, if a part is light-transmitting, the quality of the contents can be evaluated through the packaging material. As a result, an objective complete inspection can be easily performed on an automatic production line for gel-forming foods, defective products can be reliably removed, and troubles such as loss and PL problems can be prevented.
[0061]
According to the quality discrimination device for gel-forming food according to claim 2 of the present invention, it is inexpensively configured with an area sensor such as an inexpensive commercial CCD camera sensitive from the visible light region to the near-infrared light region. Non-destructive and non-contact measurement), utilizing general-purpose image analysis processing, and using a light-cutting method using light in a specific wavelength region of received light, not only the appearance and ingredients, but also the interior of gel-forming foods Information on the two-dimensional or three-dimensional position of quality (physical properties, etc.) can be obtained, and the pass / fail judgment of a product with higher accuracy can be made quickly.
[Brief description of the drawings]
FIG. 1A is an explanatory diagram of a spectroscopic analysis measurement system (transmission reflection type) for gel-forming food according to claim 1 and Example 1 of the present invention.
(B) Explanatory drawing of the spectroscopic analysis measurement system (transmission type) of the gel-forming food according to claim 1 and Example 1 of the present invention
FIG. 2 is an explanatory diagram of a three-dimensional spectroscopic analysis measuring apparatus for gel-forming food according to claim 2 of the present invention.
FIG. 3A is an explanatory diagram of three-dimensional spectroscopic analysis measurement of a uniform gel-forming food according to Example 2 of the present invention.
(B) Explanatory drawing of the three-dimensional spectroscopic measurement of the non-uniform gel-forming food according to Example 2 of the present invention
FIG. 4 is an explanatory diagram of an absorbance spectrum by transmitted / reflected light of 100% bittern tofu of Example 1 of the present invention.
FIG. 5 is an explanatory diagram of the absorbance secondary spectrum of transmitted / reflected light of 100% bittern tofu of Example 1 of the present invention.
FIG. 6 is an explanatory diagram of the relationship between absorbance and breaking force of transmitted and reflected light of 100% bitter tofu filled with Example 1 of the present invention.
FIG. 7 is an explanatory diagram of a correlation between a predicted breaking force and a measured breaking force based on a multiple regression equation using the Lab value of Example 1 of the present invention.
FIG. 8 is an explanatory diagram of the correlation between the predicted breaking force and the measured breaking force based on the multiple regression equation using the second-order absorbance value of the absorbance according to Example 1 of the present invention.
FIG. 9 is an explanatory diagram of a correlation between a predicted breaking force and a measured breaking force by a multiple regression equation using the absorbance of Example 1 of the present invention.
[Explanation of symbols]
1 Object
2 Light source
3 Light receiver
4 Irradiation light (projection)
5 Reflected or transmitted light
6 Spectrometer
7 Light path adjuster
8 Optical path adjuster for slit light
9 Conveyor

Claims (3)

可視光から赤外線領域(400〜50,000nm)の特定波長領域の光を用いる分光分析計測システムによって、ゲル形成性食品の成分含量変化を伴わない物性変化を測定することを特徴とする品質判定方法。A quality determination method characterized by measuring a change in physical properties of a gel-forming food without a change in component content by a spectroscopic measurement system using light in a specific wavelength region from visible light to an infrared region (400 to 50,000 nm). . 請求項1記載のゲル形成性食品の品質判定方法において、被対象物が移動装置によって移動する工程を設けて、移動方向に対して直角方向に直線状に投光される光を用いて、被対象物に対して垂直方向より斜めに投光し、その投光角度より垂直方向で受光するように配設した受光装置を備えた、いわゆる光切断法による三次元形状測定システムであって、直線状光線が被対象物表面と底面を横切る位置の間における、特定波長に限定された透過光又は反射光の吸光度の二次元分布を画像として取り込み、被対象物の深さ方向における吸光度に換算することを、被対象物が移動する間に連続的に行い、その結果から被対象物の二次元又は三次元位置における品質測定を行うことを特徴とするゲル形成性食品の品質判定装置。  The method for judging the quality of a gel-forming food according to claim 1, further comprising the step of moving the object by a moving device, and using light projected linearly in a direction perpendicular to the moving direction. A three-dimensional shape measurement system using a so-called light cutting method, comprising a light receiving device arranged to project light obliquely from a vertical direction with respect to an object and to receive light in a vertical direction from the light projection angle, The two-dimensional distribution of the absorbance of the transmitted or reflected light limited to a specific wavelength between the positions where the light beam crosses the surface of the object and the bottom is captured as an image and converted to the absorbance in the depth direction of the object This is performed continuously while the object is moving, and the quality determination device for the gel-forming food is characterized in that the quality of the object is measured at the two-dimensional or three-dimensional position based on the result. 可視光から赤外線領域(400〜50,000nm)の特定波長領域の光を用いる分光分析計測システムによって、ゲル形成性食品の破断力、硬さ、弾力、保水性、粘度、流動性、凝固又は沈殿物の有無の少なくとも一つを測定し、ゲル形成性食品の品質を判定することを特徴とする品質判定方法。  By a spectroscopic measurement system using light in a specific wavelength region from visible light to infrared region (400 to 50,000 nm), breaking strength, hardness, elasticity, water retention, viscosity, fluidity, coagulation or precipitation of gel-forming food A quality determination method comprising measuring at least one of the presence or absence of an object and determining the quality of a gel-forming food.
JP2001301653A 2001-09-28 2001-09-28 Method for judging the quality of gel-forming foods Expired - Lifetime JP4697764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001301653A JP4697764B2 (en) 2001-09-28 2001-09-28 Method for judging the quality of gel-forming foods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001301653A JP4697764B2 (en) 2001-09-28 2001-09-28 Method for judging the quality of gel-forming foods

Publications (2)

Publication Number Publication Date
JP2003106995A JP2003106995A (en) 2003-04-09
JP4697764B2 true JP4697764B2 (en) 2011-06-08

Family

ID=19122030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001301653A Expired - Lifetime JP4697764B2 (en) 2001-09-28 2001-09-28 Method for judging the quality of gel-forming foods

Country Status (1)

Country Link
JP (1) JP4697764B2 (en)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003236291A1 (en) * 2002-03-28 2003-10-27 Matsuuradenkosha Company Limited Evaluation method and device for gel state or sol-gel state change of object
JP4220285B2 (en) * 2003-03-31 2009-02-04 日世株式会社 Detection method of foreign substances and foreign substances in food
WO2005019811A2 (en) * 2003-08-26 2005-03-03 Blueshift Biotechnologies, Inc. Time dependent fluorescence measurements
JP4126009B2 (en) * 2003-12-25 2008-07-30 株式会社山本製作所 Granular inspection object state discrimination device
JP2005233724A (en) * 2004-02-18 2005-09-02 Nisshin Denshi Kogyo Kk Foreign matter detecting method and foreign matter detector
JP4604192B2 (en) * 2004-03-30 2010-12-22 国立大学法人広島大学 Gelling state evaluation apparatus, gel manufacturing apparatus and tofu manufacturing apparatus provided with the same, gel manufacturing method and tofu manufacturing method
JP2006133052A (en) * 2004-11-05 2006-05-25 Ishizuka Glass Co Ltd Foreign matter inspection method and device
JP4674309B2 (en) * 2005-08-18 2011-04-20 国立大学法人三重大学 Food taste information acquisition device
JP5004478B2 (en) * 2006-02-17 2012-08-22 日立造船株式会社 Object discrimination method and discrimination device
GB0613165D0 (en) * 2006-06-28 2006-08-09 Univ Warwick Real-time infrared measurement and imaging system
JP4948145B2 (en) * 2006-12-13 2012-06-06 日本信号株式会社 Gas detector
JP4823957B2 (en) * 2007-03-30 2011-11-24 森永乳業株式会社 Coagulation detection sensor scanning apparatus and scanning method
JP5126709B2 (en) * 2007-07-06 2013-01-23 国立大学法人島根大学 Shellfish sorting method
JP5576588B2 (en) * 2007-11-07 2014-08-20 株式会社相馬光学 Meat fatty acid content measuring device
JP4780099B2 (en) * 2007-12-17 2011-09-28 不二製油株式会社 Flour product observation method
US8072596B2 (en) * 2008-04-09 2011-12-06 S.A.E. Afikim Milking System Agricultural Cooperative Ltd System and method for on-line analysis and sorting of milk coagulation properties
JP5531271B2 (en) * 2008-05-10 2014-06-25 独立行政法人国立高等専門学校機構 Bivalve inspection method and inspection device
JP5439853B2 (en) * 2009-02-24 2014-03-12 凸版印刷株式会社 Packaged food deterioration inspection device and inspection method
JP4567814B1 (en) * 2010-02-12 2010-10-20 株式会社ユニソク Food quality measuring device
JP5533116B2 (en) * 2010-03-24 2014-06-25 凸版印刷株式会社 Inspection method and apparatus for contents of container
JP5712392B2 (en) * 2010-03-31 2015-05-07 株式会社 カロリアジャパン Device for determining foreign matter contamination in an object
JP5629861B2 (en) * 2010-03-31 2014-11-26 株式会社 カロリアジャパン Foreign object contamination determination method and foreign object contamination determination apparatus in an object
JP5311680B2 (en) * 2010-04-01 2013-10-09 長谷川香料株式会社 Method for evaluating food hardness, texture and texture
JP5539804B2 (en) * 2010-07-14 2014-07-02 有限会社スペクトルデザイン Package inspection method and apparatus using terahertz light
JP5348798B2 (en) * 2010-07-29 2013-11-20 長谷川香料株式会社 Relative evaluation method based on pattern recognition of food hardness, texture and texture
US9300883B2 (en) * 2010-11-05 2016-03-29 Examastica Co. Imaging device, image processing method for image captured by imaging device, and imaging system
JP5818675B2 (en) * 2011-12-22 2015-11-18 株式会社Sumco Method for determining three-dimensional distribution of bubble distribution in silica glass crucible, method for producing silicon single crystal
JP5749150B2 (en) * 2011-12-22 2015-07-15 株式会社Sumco Method for determining three-dimensional distribution of infrared absorption spectrum of silica glass crucible, method for producing silicon single crystal
JP2015057591A (en) * 2013-08-09 2015-03-26 株式会社島津製作所 Analytic method and analyzer for concentration of suspended matter in suspension liquid
CN103543153B (en) * 2013-10-24 2017-03-22 浙江农林大学 Fish freshness optical detection device
JP6296883B2 (en) * 2014-04-25 2018-03-20 三井金属計測機工株式会社 Processed food identification apparatus and processed food identification method
JP2016021956A (en) * 2014-07-24 2016-02-08 株式会社前川製作所 Measuring device and measurement method for atp amount, and measuring device and measurement method for viable cell count
JP6535843B2 (en) * 2015-01-27 2019-07-03 地方独立行政法人北海道立総合研究機構 Spectral imaging system
JP6753651B2 (en) * 2015-03-02 2020-09-09 株式会社籠谷 Egg yolk viscosity determination method and egg yolk viscosity determination device
JP5923644B2 (en) * 2015-05-13 2016-05-24 株式会社Sumco Method for determining three-dimensional distribution of infrared absorption spectrum of silica glass crucible, method for producing silicon single crystal
WO2017116294A1 (en) * 2015-12-30 2017-07-06 Marin Biogas Apparatus and method to separate ascidians
JP6652397B2 (en) * 2016-02-01 2020-02-19 株式会社明治 Method for determining sealed state of packaged food and method for manufacturing sealed packaged food
JP6914018B2 (en) * 2016-09-16 2021-08-04 株式会社明治 Tissue inspection method and inspection equipment for soft mold cheese
SG11201913495UA (en) 2018-03-13 2020-01-30 Jiddu Inc IoT BASED APPARATUS FOR ASSESSING QUALITY OF FOOD PRODUCE
EP3877900A1 (en) * 2018-11-07 2021-09-15 Marel Salmon A/S A food processing device and a method of providing images of food objects in a food processing device
CN111307735A (en) * 2019-12-04 2020-06-19 佛山科学技术学院 Detection method of bean curd product
JP7248317B2 (en) * 2020-04-30 2023-03-29 株式会社高井製作所 Tofu production system
KR20230004507A (en) * 2020-04-30 2023-01-06 가부시키가이샤 타카이세이사쿠쇼 Tofu Manufacturing System
JP7248316B2 (en) 2020-04-30 2023-03-29 株式会社高井製作所 TOFU INSPECTION DEVICE, TOFU MANUFACTURING SYSTEM, TOFU INSPECTION METHOD, AND PROGRAM
CN114442712B (en) * 2022-02-28 2023-09-08 青海金祁连乳业有限责任公司 Emulsion pump automatic adaptation system with continuous liquid supplementing and constant pressure
GB202202984D0 (en) * 2022-03-03 2022-04-20 Afe Group Ltd Apparatus and method for determining food characteristics
CN117191130B (en) * 2023-09-27 2024-07-23 深圳市英博伟业科技有限公司 Multi-scene online temperature and humidity monitoring method and system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63500263A (en) * 1985-05-10 1988-01-28 エレクトロ−テツク コ−ポレ−シヨン automatic refractometer
JPH0424541A (en) * 1990-05-21 1992-01-28 Mitsui Mining & Smelting Co Ltd Method and apparatus for measuring internal defect
JPH0447254A (en) * 1990-06-15 1992-02-17 Snow Brand Milk Prod Co Ltd Method and apparatus for measuring content of component of skim milk, milk, cream and cheese by using near infrared rays
JPH06265467A (en) * 1993-03-16 1994-09-22 Shokuhin Sangyo Intelligence Control Gijutsu Kenkyu Kumiai Cured meat coloring rate measuring method
JPH06288907A (en) * 1993-03-31 1994-10-18 Shizuoka Seiki Co Ltd Evaluation of quality of unhulled rice
JP2001091475A (en) * 1999-09-20 2001-04-06 Rohm Co Ltd Inspection device for transparent laminated body
JP2001133233A (en) * 1999-11-05 2001-05-18 Nichimo Co Ltd Method and apparatus for detection of fracture in shape of object to be detected

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63500263A (en) * 1985-05-10 1988-01-28 エレクトロ−テツク コ−ポレ−シヨン automatic refractometer
JPH0424541A (en) * 1990-05-21 1992-01-28 Mitsui Mining & Smelting Co Ltd Method and apparatus for measuring internal defect
JPH0447254A (en) * 1990-06-15 1992-02-17 Snow Brand Milk Prod Co Ltd Method and apparatus for measuring content of component of skim milk, milk, cream and cheese by using near infrared rays
JPH06265467A (en) * 1993-03-16 1994-09-22 Shokuhin Sangyo Intelligence Control Gijutsu Kenkyu Kumiai Cured meat coloring rate measuring method
JPH06288907A (en) * 1993-03-31 1994-10-18 Shizuoka Seiki Co Ltd Evaluation of quality of unhulled rice
JP2001091475A (en) * 1999-09-20 2001-04-06 Rohm Co Ltd Inspection device for transparent laminated body
JP2001133233A (en) * 1999-11-05 2001-05-18 Nichimo Co Ltd Method and apparatus for detection of fracture in shape of object to be detected

Also Published As

Publication number Publication date
JP2003106995A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
JP4697764B2 (en) Method for judging the quality of gel-forming foods
Kamruzzaman et al. Non-destructive assessment of instrumental and sensory tenderness of lamb meat using NIR hyperspectral imaging
Cheng et al. Hyperspectral imaging as an effective tool for quality analysis and control of fish and other seafoods: Current research and potential applications
Iqbal et al. Prediction of moisture, color and pH in cooked, pre-sliced turkey hams by NIR hyperspectral imaging system
Kamruzzaman et al. Online monitoring of red meat color using hyperspectral imaging
Cheng et al. Rapid and non-invasive detection of fish microbial spoilage by visible and near infrared hyperspectral imaging and multivariate analysis
Baiano Applications of hyperspectral imaging for quality assessment of liquid based and semi-liquid food products: A review
Barbin et al. Prediction of chicken quality attributes by near infrared spectroscopy
Chen et al. Recent advances in emerging imaging techniques for non-destructive detection of food quality and safety
ElMasry et al. Meat quality evaluation by hyperspectral imaging technique: an overview
ElMasry et al. Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef
Feng et al. Near-infrared hyperspectral imaging and partial least squares regression for rapid and reagentless determination of Enterobacteriaceae on chicken fillets
KR101650679B1 (en) Method for scoring and controlling quality of food products in a dynamic production line
US7310139B2 (en) Evaluation method and device for gel state or sol-gel state change of object
Alander et al. A review of optical nondestructive visual and near‐infrared methods for food quality and safety
Sun et al. Simultaneous measurement of brown core and soluble solids content in pear by on-line visible and near infrared spectroscopy
Lukinac et al. Application of computer vision and image analysis method in cheese-quality evaluation: a review
Karoui Spectroscopic technique: fluorescence and ultraviolet-visible (UV-Vis) spectroscopies
Lu Imaging spectroscopy for assessing internal quality of apple fruit
Berzaghi et al. Near infrared spectroscopy in animal science production: principles and applications
Sahin et al. Electromagnetic properties
Chen et al. Non-destructive determination and visualization of gel springiness of preserved eggs during pickling through hyperspectral imaging
Uddin et al. Applications of vibrational spectroscopy to the analysis of fish and other aquatic food products
Faridi et al. Application of machine vision in agricultural products
JP6686216B1 (en) Method for selecting eggs with shell, method for evaluating eggs with shell, and method for producing boiled eggs

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110224

R150 Certificate of patent or registration of utility model

Ref document number: 4697764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250