JP5531271B2 - Bivalve inspection method and inspection device - Google Patents

Bivalve inspection method and inspection device Download PDF

Info

Publication number
JP5531271B2
JP5531271B2 JP2008124107A JP2008124107A JP5531271B2 JP 5531271 B2 JP5531271 B2 JP 5531271B2 JP 2008124107 A JP2008124107 A JP 2008124107A JP 2008124107 A JP2008124107 A JP 2008124107A JP 5531271 B2 JP5531271 B2 JP 5531271B2
Authority
JP
Japan
Prior art keywords
light
bivalve
intensity
transmitted
wavelength component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008124107A
Other languages
Japanese (ja)
Other versions
JP2009271020A (en
Inventor
均 亀谷
直樹 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2008124107A priority Critical patent/JP5531271B2/en
Publication of JP2009271020A publication Critical patent/JP2009271020A/en
Application granted granted Critical
Publication of JP5531271B2 publication Critical patent/JP5531271B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C29/00Processing shellfish or bivalves, e.g. oysters, lobsters; Devices therefor, e.g. claw locks, claw crushers, grading devices; Processing lines
    • A22C29/04Processing bivalves, e.g. oysters
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C29/00Processing shellfish or bivalves, e.g. oysters, lobsters; Devices therefor, e.g. claw locks, claw crushers, grading devices; Processing lines
    • A22C29/005Grading or classifying shellfish or bivalves

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

この発明は、非破壊で検査が可能な二枚貝の検査方法及び検査装置に関する。   The present invention relates to a bivalve inspection method and inspection apparatus capable of non-destructive inspection.

従来、二枚貝の品質を検査するためには、二枚貝を開口させ、貝殻中の貝身を肉眼で直接確認したり、貝身に直接触れてみたりする方法が一般的であるが、この方法では、検査した二枚貝が商品にできなくなることがあるとう欠点がある他、二枚貝を開口させる処理(作業)が必要になるとう欠点がある。   Conventionally, in order to inspect the quality of bivalves, it is common to open bivalves and check the shells in the shells directly with the naked eye, or touch the shells directly. In addition to the disadvantage that the inspected bivalve can not be made into a product, there is a disadvantage that a process (work) for opening the bivalve is required.

これらの欠点を改善したものとして、二枚貝に赤外線を含む光を照射し、照射した光の内で二枚貝を透過した透過光のスペクトルを検出し、該スペクトルの所定波長域での2次微分(2階微分)処理を行ない、該2次微分処理により得られた判別グラフが二枚貝の品質により異なる点に着目することにより、二枚貝の品質等の検査を非破壊で行う特許文献1に示す二枚貝の検査方法が公知になっている。
特開平10−229776号公報
As an improvement of these drawbacks, the bivalve is irradiated with light containing infrared rays, and the spectrum of transmitted light transmitted through the bivalve is detected in the irradiated light, and the second derivative (2 The bivalve inspection shown in Patent Document 1 that performs non-destructive inspection on the quality of the bivalve, etc. by performing the second order differentiation) process and paying attention to the fact that the discrimination graph obtained by the second order differential process differs depending on the quality of the bivalve Methods are known.
Japanese Patent Laid-Open No. 10-229776

しかし、上記文献の二枚貝の検査方法は、判別グラフを得るためにスペクトルにおける所定波長域での2次微分(2階微分)を行う必要があるため、処理が複雑化するという課題がある他、上記判別グラフをどのように用いて二枚貝の品質を識別するかが開示されてないため、上記判別グラフを作業者が直接見て二枚貝の品質を判別することはできても、この判別処理をパソコンやマイコン等のコンピュータで自動的に実行させようとする際には、課題が残る。
本発明は、上記課題を解決し、二枚貝の検査を非破壊で行うにあたり、コンピュータ等の制御部で品質の判別を自動的に行うことが容易であるとともに、その処理が簡略化された二枚貝の検査方法及び検査装置を提供することを目的とする。
However, the bivalve inspection method of the above document has a problem that the process becomes complicated because it is necessary to perform second order differentiation (second order differentiation) in a predetermined wavelength range in the spectrum in order to obtain a discrimination graph. It is not disclosed how to identify the quality of the bivalve using the above discrimination graph, so even if the operator can directly determine the quality of the bivalve by looking at the above discrimination graph, When trying to automatically execute it on a computer such as a microcomputer, a problem remains.
The present invention solves the above-mentioned problems and makes it easy to automatically discriminate the quality by a control unit such as a computer when performing a non-destructive inspection of a bivalve, and the process of the bivalve has been simplified. An object is to provide an inspection method and an inspection apparatus.

本発明は、上記課題を解決するため、第1に、二枚貝に赤外線を含む光を照射する照射部6と、照射した光の内で二枚貝を透過した透過光又は二枚貝から反射した反射光を受光する受光部7と、前記受光部7で受光した透過光又は反射光における1040乃至1140ナノメートルの範囲の所定波長成分強度である第1強度を検出する第1検出手段8と、前記受光部7で受光した透過光又は反射光における1150乃至1370ナノメートルの範囲の所定波長成分強度である第2強度を検出する第2検出手段9と、前記第1検出手段8及び第2検出手段9が入力側に接続される制御部11とを備え、前記照射部6を、900〜1600nmの範囲の波長成分を含む光を照射する構成とし、制御部11が第1検出手段8からの第1強度と第2検出手段9からの第2強度を比較することにより二枚貝の品質を判別することを特徴としている。 In order to solve the above problems, the present invention first receives an irradiation unit 6 that irradiates a bivalve with light containing infrared rays, and transmits light transmitted through the bivalve or reflected light reflected from the bivalve in the irradiated light. A light receiving unit 7 for detecting light, a first detection unit 8 for detecting a first intensity of a predetermined wavelength component in a range of 1040 to 1140 nanometers in transmitted light or reflected light received by the light receiving unit 7, and the light receiving unit 7 The second detection means 9 for detecting the second intensity, which is the predetermined wavelength component intensity in the range of 1150 to 1370 nanometers, in the transmitted light or reflected light received by the light source, and the first detection means 8 and the second detection means 9 are input. A control unit 11 connected to the side, and the irradiation unit 6 is configured to irradiate light including a wavelength component in a range of 900 to 1600 nm, and the control unit 11 has a first intensity from the first detection unit 8 and Second inspection It is characterized by determining the quality of the bivalve by comparing the second intensity from the means 9.

第2に、制御部11が前記第1強度と第2強度の比を算出することにより、二枚貝の内、貝殻中に貝身が無いものと、貝殻中に貝見が所定量詰まった良品貝と、貝殻中に泥が混入した泥貝とを判別することを特徴としている。   Secondly, the control unit 11 calculates the ratio of the first strength and the second strength, so that there is no shell in the shell and a good shell with a predetermined amount of shellfish in the shell. And the mud shells in which mud is mixed in the shells.

第3に、第1検出手段8又は第2検出手段9が、所定波長の光を通過させるバントパスフィルタ36を備え、該バントパスフィルタ36を介して受光部7で受光した透過光又は反射光から所定波長成分を有する選択光を取出し、該選択光の強度を検知することにより、第1強度又は第2強度を検出することを特徴としている。   Third, the first detection means 8 or the second detection means 9 includes a bunt pass filter 36 that allows light of a predetermined wavelength to pass therethrough, and transmitted light or reflected light received by the light receiving unit 7 via the bunt pass filter 36. The first intensity or the second intensity is detected by extracting the selection light having a predetermined wavelength component from and detecting the intensity of the selection light.

第4に、900〜1600nmの範囲の波長成分を有する赤外線を含む光を、二枚貝に照射し、照射した光の内で二枚貝を透過した透過光又は二枚貝から反射した反射光を受光し、受光した透過光又は反射光における1040乃至1140ナノメートルの範囲の所定波長成分の強度である第1強度と、前記受光部で受光した透過光又は反射光における1150乃至1370ナノメートルの範囲の所定波長成分の強度である第2強度とを比較することにより二枚貝の品質を検査することを特徴としている。 Fourth , the bivalve is irradiated with light containing infrared rays having a wavelength component in the range of 900 to 1600 nm, and the transmitted light that has passed through the bivalve or the reflected light that is reflected from the bivalve is received and received. A first intensity that is an intensity of a predetermined wavelength component in a range of 1040 to 1140 nanometers in transmitted light or reflected light, and a predetermined wavelength component in a range of 1150 to 1370 nanometers in transmitted light or reflected light received by the light receiving unit. It is characterized by inspecting the quality of the bivalve by comparing it with the second strength, which is strength.

以上のように構成される本発明の二枚貝の検査方法及び検査装置によれば、制御部が、透過光又は反射光における1040乃至1140ナノメートルの範囲の所定波長成分の強度である第1強度と、透過光又は反射光における1150乃至1370ナノメートルの範囲の所定波長成分の強度である第2強度とを比較することにより二枚貝の品質を判別するため、2次微分等の複雑な処理を行う必要がなく、処理が簡略化されるとともに、コンピュータ等の制御部で品質の判別を自動的に行うことが容易になるという効果がある。   According to the bivalve inspection method and inspection apparatus of the present invention configured as described above, the control unit has a first intensity that is an intensity of a predetermined wavelength component in a range of 1040 to 1140 nanometers in transmitted light or reflected light, and In order to discriminate the quality of the bivalve shell by comparing it with the second intensity which is the intensity of the predetermined wavelength component in the range of 1150 to 1370 nanometers in the transmitted light or reflected light, it is necessary to perform complex processing such as second order differentiation There is an effect that the process is simplified and it becomes easy to automatically determine the quality by a control unit such as a computer.

本発明の二枚貝の検査方法では、物質がその性質により所定波長域の光を良く吸収する特性を利用することにより、二枚貝の品質等の判別を行うものである。具体的には、二枚貝がどの波長域の光に対して高い透過率を示すかは、二枚貝に光を照射し、二枚貝を透過する透過光又は二枚貝から反射する反射光のスペクトルを分析することにより知ることができる。光源としては、ハロゲンランプ1(図5参照)を用いる。   In the bivalve inspection method of the present invention, the quality or the like of the bivalve is discriminated by utilizing the property that the substance absorbs light in a predetermined wavelength range well depending on its properties. Specifically, the wavelength range in which the bivalve shows high transmittance is determined by irradiating the bivalve with light and analyzing the spectrum of transmitted light transmitted through the bivalve or reflected light reflected from the bivalve. I can know. A halogen lamp 1 (see FIG. 5) is used as the light source.

図1は、ハロゲンランプのスペクトルを示す特性グラフである。同図に示すようにハロゲンランプ1からの光は、可視光線の他に、赤外線を多く含んでいる。なお、同図の縦軸の強度は光量を示し、この強度が高いほど、その波長(周波数)を有する光を多く含んでいることを意味している   FIG. 1 is a characteristic graph showing the spectrum of a halogen lamp. As shown in the figure, the light from the halogen lamp 1 contains a lot of infrared rays in addition to visible rays. In addition, the intensity | strength of the vertical axis | shaft of the same figure shows light quantity, and it means that it has much light which has the wavelength (frequency), so that this intensity | strength is high.

このハロゲンランプ1からの光を、貝殻中に貝身がない二枚貝である空貝と、貝殻中に貝身が所定量(十分に)詰まった二枚貝である良品貝と、貝殻中に泥や泥水が混入した二枚貝である泥貝とに照射し、透過光のスペクトル分析を行う。なお、二枚貝としてはしじみを用いる。   The light from the halogen lamp 1 is divided into empty shells, which are bivalves without shells in shells, good products, which are bivalves with a sufficient amount (full) of shells, and mud and muddy water in shells. Irradiate the mud shell, which is a bivalve mixed with water, and perform spectral analysis of transmitted light. In addition, we use shijimi as bivalve.

図2は、サイズが小さい空貝、良品貝及び泥貝にハロゲンランプを照射した場合におけるそれぞれの透過光のスペクトルを示す特性グラフであり、図3は、サイズが中くらいの空貝、良品貝及び泥貝にハロゲンランプを照射した場合におけるそれぞれの透過光のスペクトルを示す特性グラフであり、図4は、サイズが大きい空貝、良品貝及び泥貝にハロゲンランプを照射した場合におけるそれぞれの透過光のスペクトルを示す特性グラフである。   FIG. 2 is a characteristic graph showing the spectrum of transmitted light when a small-size empty shell, good shellfish and mud shell are irradiated with a halogen lamp, and FIG. 3 is a medium-sized empty shell and good shellfish. FIG. 4 is a characteristic graph showing the spectrum of transmitted light when a halogen lamp is irradiated on a mud shell, and FIG. 4 shows the transmission when a halogen lamp is irradiated on a large-sized empty shell, a good shellfish and a mud shell. It is a characteristic graph which shows the spectrum of light.

サイズが異なる二枚貝は、貝殻の厚さや貝身の厚みが異なるので強度が異なる。一方、サイズが異なる二枚貝は、空貝の透過光は波長1100nm付近での強度に対して波長1300nm付近での強度がそれほど変わらないが、良品貝の透過光は波長1100nm付近での強度に対して波長1300nm付近での強度が大きく減少する点、泥貝の透過光の強度は波長成分によって強度があまり変化せずに全域で低くなるという点において、略同一の特性を示す。   The bivalve shells of different sizes are different in strength because the shell thickness and shell thickness are different. On the other hand, the bivalve shells of different sizes have the same intensity at around 1300 nm compared to the intensity at around 1100 nm, but the transmitted light from non-defective shells differs from the intensity around 1100 nm. The intensity of light at a wavelength near 1300 nm is greatly reduced, and the intensity of transmitted light of the mud shells shows substantially the same characteristics in that the intensity does not change so much depending on the wavelength component and decreases throughout the entire area.

そして、図2〜4の特性グラフにおいて、1040〜1140nmの範囲の波長を第1波長λとし、1150〜1370nmの範囲の波長を第2波長λとした場合、透過光における第1波長成分の強度である第1強度Iと、透過光における第2波長成分の強度である第2強度Iとの比は、二枚貝のサイズに殆ど影響を受けることが無く、所定範囲内に収まることが、本願発明者らの鋭利検討の結果判明した。 Then, in the characteristic graph of FIG. 2-4, a wavelength in the range of 1040~1140nm the first wavelength lambda a, if a wavelength in the range of 1150~1370nm is a second wavelength lambda b, the first wavelength component in the transmitted light a first intensity I a is the intensity of the ratio of the second intensity I b is the intensity of the second wavelength component in the transmitted light, without being subjected to little effect on the size of the bivalve, be within a predetermined range However, it became clear as a result of the present inventors' sharp examination.

例えば、第1波長λを1080nm近傍に設定し、第2波長λを1280nm近傍に設定した場合、第1強度Iと第2強度Iとの比を示すI/Iの値が0.9よりも大きな場合には空貝であると判断することができるとともに、0.7よりも小さい場合には良品貝であると判断することができる他、1.0よりも大きいか又は第1強度Iが測定限界よりも小さい値の場合には泥貝であると判断することができる。本発明では、上記原理を用いて二枚貝が空貝であるか、良品貝であるか、泥貝であるかを識別して品質を判別することにより、二枚貝の検査を行う。 For example, when the first wavelength λ a is set near 1080 nm and the second wavelength λ a is set near 1280 nm, the value of I b / I a indicating the ratio between the first intensity I a and the second intensity I b If it is greater than 0.9, it can be determined that it is an empty shellfish, and if it is less than 0.7, it can be determined that it is a good shellfish, or is it greater than 1.0? Or it can be judged that it is a mud shellfish when 1st intensity | strength Ia is a value smaller than a measurement limit. In the present invention, the bivalve is inspected by discriminating the quality by identifying whether the bivalve is an empty shell, a good shell, or a mud using the above principle.

ちなみに、以上のような特徴は、しじみにおける一対の貝殻の主成分である炭酸カルシウムが600〜2000nmの波長を有する光に対して高い透過率を示す点と、二枚貝における貝身の大部分を構成する水が980、1200,1450、1950nm近傍の波長を有する光を良く吸収する点とに起因するものであり、該2点の特徴はしじみ以外の二枚貝においても共通する特徴である。このため、しじみ以外の二枚貝の検査をする場合でも、同一の理論によって品質の判別を行うことが可能である。   By the way, the features as described above constitute the majority of shellfish in bivalve shells, with calcium carbonate, which is the main component of a pair of shells in shijie, exhibiting high transmittance for light having a wavelength of 600 to 2000 nm. This is due to the fact that water that absorbs light having a wavelength in the vicinity of 980, 1200, 1450, and 1950 nm well, and the characteristics of these two points are common to bivalves other than stigma. For this reason, even when inspecting bivalve molluscs other than shijimi, it is possible to discriminate quality according to the same theory.

また、上記ハロゲンランプ1以外でも、900〜1600nmの範囲の波長成分において高い強度を示す光を照射可能な光源(例えば、赤外線ランプ,高輝度LED等)であれば、同様の効果が期待できる。   In addition to the halogen lamp 1, a similar effect can be expected as long as it is a light source (for example, an infrared lamp, a high-intensity LED, etc.) that can emit light having a high intensity in a wavelength component in the range of 900 to 1600 nm.

さらに、二枚貝の透過光ではなく反射光のスペクトルを利用した場合でも、反射光の強度特性は二枚貝がどのような光を吸収するかに依存する点で透過光の強度特性と同様であるため、前述した効果と同様の効果が期待できる。   Furthermore, even when using the spectrum of reflected light instead of the transmitted light of bivalves, the intensity characteristics of reflected light are similar to the intensity characteristics of transmitted light in that it depends on what kind of light the bivalve absorbs, The same effect as described above can be expected.

以上により、本発明の二枚貝の検査方法は、二枚貝に赤外線を含む光を照射し、照射した光の内で二枚貝を透過した透過光又は二枚貝から反射した反射光を受光し、受光した透過光又は反射光における第1強度と第2強度とを比較することにより二枚貝の品質検査を行うものである。   As described above, the bivalve inspection method of the present invention irradiates the bivalve with light containing infrared rays, and receives the transmitted light transmitted through the bivalve or the reflected light reflected from the bivalve in the irradiated light, and the received transmitted light or The quality inspection of the bivalve is performed by comparing the first intensity and the second intensity in the reflected light.

次に、図5乃至9に基づいて、上記特徴を利用して二枚貝の検査を行う検査装置について説明する。
図5は、本発明を適用した検査装置の簡略図である。本検査装置は、二枚貝を供給する供給装置(装置部)2と、二枚貝が載置される検査台3と、供給装置2から供給されてくる二枚貝を検査台3の所定箇所に確実に位置決めするガイド体4と、二枚貝の下面側から前述した条件を満たす光を照射する照射装置(照射部)6と、二枚貝を透過した透過光を受光する受光部7と、受光部7で受光した透過光から前述の第1波長を分光した後に該第1強度を検出する第1強度検出装置(第1検出手段,第1強度検出部)8と、受光部7で受光した透過光から前述の第2波長を分光した後に該第2強度を検出する第2強度検出装置(第2検出手段,第2強度検出部)9と、上記第1強度検出装置8及び第2強度検出装置9が入力側に接続されて二枚貝の品質判別を自動的に実行するマイコンやパソコン等のコンピュータからなる制御装置(制御部)11と、制御装置11の判別結果に基づいて空貝や泥貝等の不良品を不良品箱(不良品収容部)12に排出する排出装置13と、良品貝等の良品を収容する良品箱(良品収容部)14とを備えている。
Next, based on FIG. 5 thru | or 9, the test | inspection apparatus which test | inspects a bivalve using the said characteristic is demonstrated.
FIG. 5 is a simplified diagram of an inspection apparatus to which the present invention is applied. The inspection apparatus reliably positions a bivalve supply device (device unit) 2, an inspection table 3 on which the bivalve is placed, and a bivalve supplied from the supply device 2 at a predetermined position of the inspection table 3. Guide body 4, irradiation device (irradiation unit) 6 that irradiates light that satisfies the above-described conditions from the lower surface side of the bivalve, light receiving unit 7 that receives transmitted light that has passed through the bivalve, and transmitted light that is received by the light receiving unit 7. From the first intensity detecting device (first detecting means, first intensity detecting unit) 8 for detecting the first intensity after the first wavelength is separated from the first light, and the transmitted light received by the light receiving unit 7, the second described above. A second intensity detecting device (second detecting means, second intensity detecting unit) 9 for detecting the second intensity after spectrally separating the wavelength, and the first intensity detecting device 8 and the second intensity detecting device 9 on the input side A microcomputer or personal computer that is connected and automatically performs bivalve quality discrimination A control device (control unit) 11 comprising a computer, a discharge device 13 for discharging defective products such as empty shells and mud shells to a defective product box (defective product storage unit) 12 based on the determination result of the control device 11, And a non-defective box (non-defective container) 14 for storing non-defective shells and the like.

上記供給装置2は、図5及び6に示すように、二枚貝を複数同時に投入可能なホッパー16と、ホッパー16からの二枚貝を下流側に搬送する供給レール17と、供給レール17からの二枚貝を搬送方向に一列に並べながら検査台3に搬送する搬送レール(一列化レール)18と、供給レール17及び搬送レール18にそれぞれ設置される振動モータ(搬送モータ)19,21とを有している。   As shown in FIGS. 5 and 6, the supply device 2 transports the bivalve from the hopper 16 capable of simultaneously loading a plurality of bivalves, the supply rail 17 that conveys the bivalve from the hopper 16 to the downstream side, and the supply rail 17. It has conveyance rails (aligned rails) 18 that are conveyed in a row in the direction to the inspection table 3, and vibration motors (conveyance motors) 19 and 21 that are respectively installed on the supply rail 17 and the conveyance rail 18.

供給レール17は、搬送方向に向かって下方傾斜している。振動モータ19は固定部材22によって供給レール17下面側に取付固定されており、振動モータ19により常時回転駆動される回転体23によって搬送方向の振動が供給レール17に加えられる。上記傾斜及び振動により二枚貝が下流側に搬送される。   The supply rail 17 is inclined downward in the transport direction. The vibration motor 19 is attached and fixed to the lower surface side of the supply rail 17 by a fixing member 22, and vibration in the transport direction is applied to the supply rail 17 by a rotating body 23 that is always driven to rotate by the vibration motor 19. The bivalve is conveyed downstream by the inclination and vibration.

搬送レール18は、搬送方向に向かって下方傾斜している。振動モータ21は固定部材22によって搬送レール18下面側に取付固定されており、振動モータ21により常時回転駆動される回転体23によって搬送方向の振動が搬送レール18に加えられる。上記傾斜及び振動により二枚貝が下流側に搬送される。   The transport rail 18 is inclined downward in the transport direction. The vibration motor 21 is attached and fixed to the lower surface side of the transport rail 18 by a fixing member 22, and vibration in the transport direction is applied to the transport rail 18 by a rotating body 23 that is always driven to rotate by the vibration motor 21. The bivalve is conveyed downstream by the inclination and vibration.

また、搬送レール18は供給レール17と比較して幅が狭くなるとともに搬送方向に対して直交(交差)方向に下方傾斜するように形成されている。このため、二枚貝は、搬送過程で一列にされながら検査台3側に搬送される。   Further, the transport rail 18 is formed so as to be narrower than the supply rail 17 and to be inclined downward in the orthogonal (crossing) direction with respect to the transport direction. For this reason, the bivalves are conveyed to the inspection table 3 side while being lined up in the conveyance process.

上記検査台3は、図5に示すように、平面視略円形に形成されており、中心に設置されたステッピングモータ(検査台駆動手段,検査台用モータ)24によって回転駆動される。円形の検査台3上面は略水平に形成され、該上面の周縁部には等間隔に二枚貝載置用の載置皿26が複数設置固定されている。なお、この載置皿26の上面は、二枚貝が位置決め可能になるように凹状形成されている。   As shown in FIG. 5, the inspection table 3 is formed in a substantially circular shape in plan view, and is rotationally driven by a stepping motor (inspection table driving means, inspection table motor) 24 installed at the center. The upper surface of the circular inspection table 3 is formed substantially horizontally, and a plurality of mounting plates 26 for mounting bivalve shells are installed and fixed at equal intervals on the periphery of the upper surface. In addition, the upper surface of the mounting plate 26 is formed in a concave shape so that the bivalve can be positioned.

検査台用モータ24は、検査台3を図5における時計回りに断続的に回転駆動させることにより、照射装置6により光を照射する照射位置に載置皿26を一時的に停止させる停止パターンと、該載置皿に隣接する次の載置皿26を上記照射位置に移動させる移動パターンとを交互に繰返すように構成されている。なお、この制御は制御装置11により実行される。   The inspection table motor 24 has a stop pattern for temporarily stopping the mounting tray 26 at the irradiation position where the irradiation device 6 emits light by intermittently rotating the inspection table 3 clockwise in FIG. The moving pattern for moving the next mounting tray 26 adjacent to the mounting tray to the irradiation position is alternately repeated. This control is executed by the control device 11.

上記ガイド体4は、図5及び7に示すように、平面視略円形の板フレーム27と、板フレーム27の下面中心から下方且つ外方に一体的に延設されるガイド羽28とを備えており、ステッピングモータ(ガイド体駆動手段,ガイド体用モータ)29によって回転駆動される。ガイド羽28は、等間隔で複数設けられており、隣接するガイド羽28同士が平面視楔状をなすように構成されている。そして、搬送レール18からの二枚貝を、2枚のガイド羽28によって、検査台3の載置皿26に案内する。   As shown in FIGS. 5 and 7, the guide body 4 includes a plate frame 27 having a substantially circular shape in plan view, and guide wings 28 integrally extending downward and outward from the center of the lower surface of the plate frame 27. It is rotated by a stepping motor (guide body driving means, guide body motor) 29. A plurality of guide wings 28 are provided at equal intervals, and the adjacent guide wings 28 form a wedge shape in plan view. And the bivalve from the conveyance rail 18 is guided to the mounting plate 26 of the inspection table 3 by the two guide wings 28.

ガイド体用モータ29は、上記検査台用モータ24の停止パターンに連動して駆動を停止することにより搬送レール18から送られてくる1個の二枚貝を載置皿26にガイドするとともに、上記検査台用モータ24の移動パターンに連動して駆動をされることにより該二枚貝の次に送られてくる二枚貝を次の載置皿26にガイド可能なように状態切換を行う。なお、このタイミング制御は制御装置11により実行される。   The guide body motor 29 guides one bivalve shell fed from the transport rail 18 to the mounting plate 26 by stopping driving in conjunction with the stop pattern of the inspection table motor 24, and also performs the inspection described above. By being driven in conjunction with the movement pattern of the table motor 24, the state is switched so that the bivalve fed next to the bivalve can be guided to the next placing plate 26. This timing control is executed by the control device 11.

上記照射装置6は、前述したハロゲンランプ1又はそれに準ずる光源と、ハロゲンランプ1等からの光を上記照射箇所まで導光する導光線31と備え、順次送られてくる二枚貝に光を照射するように構成されている。なお、導光線31は光ファイバーを複数束ねることにより形成されている。   The irradiation device 6 includes the above-described halogen lamp 1 or a light source equivalent thereto, and a light guide line 31 that guides light from the halogen lamp 1 or the like to the irradiation location, and irradiates light on the bivalve that is sequentially sent. It is configured. The light guide line 31 is formed by bundling a plurality of optical fibers.

上記受光部7は、図5及び図8に示すように、前述の導光線31と略同一構成の導光線32の一端側に形成される。載置皿26の下面側に位置する照射箇所からの光は、載置皿26に形成された上下方向の照射孔26aを介して、直接又は二枚貝を透過して、受光部7から導光線32に入射され、導光線32の他端側に設けられた第2強度検出装置8及び第2強度検出装置9側に配光される。   As shown in FIGS. 5 and 8, the light receiving unit 7 is formed on one end side of a light guide line 32 having substantially the same configuration as the light guide line 31 described above. Light from an irradiation location located on the lower surface side of the mounting tray 26 passes through the bivalve directly or through the vertical irradiation hole 26a formed in the mounting tray 26, and is guided from the light receiving unit 7 to the light guide line 32. And is distributed to the second intensity detecting device 8 and the second intensity detecting device 9 provided on the other end side of the light guide line 32.

上記第1強度検出装置8と第2強度検出装置9は、図5及び8に示すように、それぞれ、導光線32の他端側から拡散した光を直線状に配光する配光レンズ33と、配光レンズ33によって配光された光を集光する集光レンズ34と、集光された光から所定波長の光をフィルタリングするバンドパスフィルタ(分光手段,分光部,フィルタ)36と、バンドパスフィルタ36のフィルタリングにより取出された選択光を受光するフォトダイオード(受光素子)37とを備えている。   As shown in FIGS. 5 and 8, the first intensity detection device 8 and the second intensity detection device 9 are respectively a light distribution lens 33 that linearly distributes light diffused from the other end of the light guide line 32. A condensing lens 34 for condensing the light distributed by the light distribution lens 33, a bandpass filter (spectral means, spectroscopic unit, filter) 36 for filtering light of a predetermined wavelength from the collected light, and a band A photodiode (light receiving element) 37 that receives the selection light extracted by the filtering of the pass filter 36 is provided.

なお、第1強度検出装置8のバンドパスフィルタ36は第1波長(本実施例では1080nm)を有する選択光を取出し、第2強度検出装置9のバンドパスフィルタ36は第2波長(本実施例では1280nm)を有する選択光を取出す。くわえて、フォトダイオード37は、選択光の強度に応じた電圧を出力するように構成されている。この電圧信号が選択光の強度を示す強度信号であり、この強度信号はオペアンプ(増幅器)38によって増幅されて制御装置11側に送られる。   The bandpass filter 36 of the first intensity detection device 8 takes out selective light having a first wavelength (1080 nm in this embodiment), and the bandpass filter 36 of the second intensity detection device 9 has a second wavelength (this embodiment). Then, selective light having 1280 nm) is taken out. In addition, the photodiode 37 is configured to output a voltage corresponding to the intensity of the selected light. This voltage signal is an intensity signal indicating the intensity of the selected light. This intensity signal is amplified by an operational amplifier (amplifier) 38 and sent to the control device 11 side.

排出装置13は、図5に示すように、エアを噴出すノズル(射出部)39と、コンプレッサ41と、コンプレッサ41からノズル39へのエアの流路の途中に設置されるソレノイドバルブ(排出装置駆動手段)42とを備えている。ソレノイドバルブ42は、制御装置11が上記不良品の判別をした際に制御装置11によって開作動され、照射箇所から送られてくる載置皿26上の二枚貝に向かってノズル39からエアを射出し、不良品レール43側に不良品を吹飛ばす。不良品レール43上の二枚貝は、不良品レール43上を滑り落ちて不良品箱12内に収容される。   As shown in FIG. 5, the discharge device 13 includes a nozzle (injection unit) 39 for discharging air, a compressor 41, and a solenoid valve (discharge device) installed in the middle of the air flow path from the compressor 41 to the nozzle 39. Drive means) 42. The solenoid valve 42 is opened by the control device 11 when the control device 11 determines the defective product, and injects air from the nozzle 39 toward the bivalve on the mounting plate 26 sent from the irradiation location. The defective product is blown off to the defective product rail 43 side. The bivalve on the defective product rail 43 slides down on the defective product rail 43 and is accommodated in the defective product box 12.

ノズル49の射出箇所を通過した載置皿26上の二枚貝(良品)は、ガイドプレート44によって、良品レール46に案内される。良品レール46上の二枚貝は、良品レール46上を滑り落ちて良品箱14内に収容される。   The bivalve (non-defective product) on the mounting plate 26 that has passed the injection point of the nozzle 49 is guided to the non-defective product rail 46 by the guide plate 44. The bivalve on the non-defective rail 46 slides on the non-defective rail 46 and is accommodated in the non-defective box 14.

上記制御装置11は、図5及び図9に示すように、第1強度検出装置8及び第2強度検出装置9からのアナログ信号である強度信号をそれぞれデジタル値に変換するADコンバータ47と、上記2つのステッピングモータ24,29を制御する2つのモータドライバ48,49及びソレノイドバルブ42を作動させるリレー回路(作動回路)51が接続されるIOポート52とを備えている。すなわち、制御装置11の入力側に第1強度検出装置8、第2強度検出装置9が接続される一方で、出力側に上記2つのステッピングモータ24,29及びソレノイドバルブ42が接続されている。   As shown in FIGS. 5 and 9, the control device 11 includes an AD converter 47 that converts the intensity signals, which are analog signals from the first intensity detection device 8 and the second intensity detection device 9, into digital values, respectively, Two motor drivers 48 and 49 for controlling the two stepping motors 24 and 29 and an IO port 52 to which a relay circuit (operation circuit) 51 for operating the solenoid valve 42 is connected are provided. That is, the first intensity detecting device 8 and the second intensity detecting device 9 are connected to the input side of the control device 11, while the two stepping motors 24 and 29 and the solenoid valve 42 are connected to the output side.

そして、入力側からの第1強度及び第2強度の値から、前述の方法に基づき、二枚貝に品質判別を実行し、この判別結果に基づいて排出装置13を制御する。くわえて、検査台3やガイド体4に対しては、上記2つのステッピングモータ24,29を介して、前述したような断続駆動制御が常時実行される。ちなみに、制御装置11は、照射箇所に二枚貝が無い場合にも品質判別処理を行ない、入力される第1強度及び第2強度が減衰していないことを検出することにより、照射箇所に二枚貝が無いことを識別するように構成されている。   And based on the value of the 1st intensity | strength and 2nd intensity | strength from an input side, based on the above-mentioned method, quality discrimination | determination is performed to a bivalve, and the discharge apparatus 13 is controlled based on this discrimination | determination result. In addition, the intermittent drive control as described above is always performed on the inspection table 3 and the guide body 4 via the two stepping motors 24 and 29. Incidentally, the control device 11 performs quality discrimination processing even when there is no bivalve at the irradiated location, and detects that the input first intensity and second intensity are not attenuated, so that there is no bivalve at the irradiated location. Configured to identify that.

なお、照射箇所近傍に制御装置11のIOポート52(入力側)に接続される通過センサ(通過検出手段)53を設置し、該通過センサ53によって照射箇所に二枚貝がある場合にのみ、上記判別処理を行うように制御装置11を構成してもよい。   Note that the above determination is made only when a passage sensor (passage detection means) 53 connected to the IO port 52 (input side) of the control device 11 is installed in the vicinity of the irradiation location, and there is a bivalve in the irradiation location by the passage sensor 53. The control device 11 may be configured to perform processing.

次に、本発明の二枚貝の検査装置における別実施形態について、前述した例と異なる部分を説明する。
本発明の二枚貝の検査装置の別実施形態を示す簡略図である。照射箇所を二枚貝の上方側に形成し、二枚貝からの反射光によって第1強度及び第2強度を検出し、この検出値に基づいて、二枚貝の品質判別処理を行ってもよい。
Next, a different embodiment of the bivalve inspection apparatus of the present invention from the above-described example will be described.
It is a schematic diagram which shows another embodiment of the inspection apparatus of the bivalve of this invention. An irradiation location may be formed on the upper side of the bivalve, the first intensity and the second intensity may be detected by reflected light from the bivalve, and the quality determination process of the bivalve may be performed based on the detected value.

次に、本発明の二枚貝の検査装置における別実施形態について、前述した例と異なる部分を説明する。
図11(A)及び(B)は、それぞれ本発明の二枚貝の検査装置の別実施形態を示す簡略図である。同図(A)に示すように、二枚貝の搬送方向に向かって下方傾斜した搬送路54上に照射装置6の照射箇所を形成するとともに、受光部7は配置してもよい。そして、照射箇所の下流側にノズル39を、上流側に通過センサ53を配置し、二枚貝の検査を実行してもよい。この場合には、搬送路54を滑り落ちる二枚貝が良品になり、エアによって吹飛ばされる二枚貝が不良品になる。このようにして、検査台3やガイド体4を省き、検査装置をシンプルに構成することもできる。
Next, a different embodiment of the bivalve inspection apparatus of the present invention from the above-described example will be described.
FIGS. 11A and 11B are simplified views showing different embodiments of the bivalve inspection apparatus of the present invention. As shown to the figure (A), while forming the irradiation location of the irradiation apparatus 6 on the conveyance path 54 inclined downward toward the bivalve conveyance direction, the light-receiving part 7 may be arrange | positioned. Then, the nozzle 39 may be disposed on the downstream side of the irradiation location, and the passage sensor 53 may be disposed on the upstream side, and the bivalve inspection may be executed. In this case, a bivalve that slides down the conveyance path 54 becomes a non-defective product, and a bivalve blown off by air becomes a defective product. In this way, the inspection table 3 and the guide body 4 can be omitted, and the inspection apparatus can be configured simply.

また、同図(B)に示すように、前述の搬送レール18上に、同図(A)の略同一配置の照射装置6、受光部7、ノズル39、通過センサ53を配することにより、検査装置を構成を構成してもよい。なお、この場合に、搬送最下流側に良品箱14を設けてもよい   Further, as shown in FIG. 5B, by arranging the irradiation device 6, the light receiving unit 7, the nozzle 39, and the passage sensor 53 having substantially the same arrangement in FIG. The configuration of the inspection apparatus may be configured. In this case, a non-defective box 14 may be provided on the most downstream side of the conveyance.

ハロゲンランプのスペクトルを示す特性グラフである。It is a characteristic graph which shows the spectrum of a halogen lamp. サイズが小さい空貝、良品貝及び泥貝にハロゲンランプを照射した場合におけるそれぞれの透過光のスペクトルを示す特性グラフである。It is a characteristic graph which shows the spectrum of each transmitted light at the time of irradiating a small-sized empty shellfish, a good-quality shellfish, and a mud shellfish with a halogen lamp. サイズが中くらいの空貝、良品貝及び泥貝にハロゲンランプを照射した場合におけるそれぞれの透過光のスペクトルを示す特性グラフである。It is a characteristic graph which shows the spectrum of each transmitted light at the time of irradiating a hollow lamp, a good-quality shellfish, and a mud shellfish of medium size with a halogen lamp. サイズが大きい空貝、良品貝及び泥貝にハロゲンランプを照射した場合におけるそれぞれの透過光のスペクトルを示す特性グラフである。It is a characteristic graph which shows the spectrum of each transmitted light at the time of irradiating a large-sized empty shellfish, a good-quality shellfish, and a mud shellfish with a halogen lamp. 本発明を適用した検査装置の簡略図である。It is a simplified diagram of an inspection device to which the present invention is applied. (A)は供給装置2の斜視図であり、(B)及び(C)は振動モータの正面図及び側面図である。(A) is a perspective view of supply device 2, (B) and (C) are the front views and side views of a vibration motor. ガイド体の構成を示す要部斜視図である。It is a principal part perspective view which shows the structure of a guide body. 第2強度検出装置及び第2強度検出装置の構成を示す概念図である。It is a conceptual diagram which shows the structure of a 2nd intensity | strength detection apparatus and a 2nd intensity | strength detection apparatus. 制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of a control apparatus. 本発明の二枚貝の検査装置の別実施形態を示す簡略図である。It is a schematic diagram which shows another embodiment of the inspection apparatus of the bivalve of this invention. (A)及び(B)は、それぞれ本発明の二枚貝の検査装置の別実施形態を示す簡略図である。(A) And (B) is a simplified diagram which shows another embodiment of the inspection apparatus of the bivalve of this invention, respectively.

符号の説明Explanation of symbols

6 照照射装置(照射部)
7 受光部
8 第1強度検出装置(第1検出手段,第1強度検出部)
9 第2強度検出装置(第2検出手段,第2強度検出部)
11 制御装置(制御部)
36 バンドパスフィルタ(分光手段,分光部,フィルタ)
6 Illumination device (irradiation unit)
7 light receiving unit 8 first intensity detecting device (first detecting means, first intensity detecting unit)
9 Second intensity detection device (second detection means, second intensity detection unit)
11 Control device (control unit)
36 Bandpass filter (spectral means, spectroscopic part, filter)

Claims (4)

二枚貝に赤外線を含む光を照射する照射部(6)と、照射した光の内で二枚貝を透過した透過光又は二枚貝から反射した反射光を受光する受光部(7)と、前記受光部(7)で受光した透過光又は反射光における1040乃至1140ナノメートルの範囲の所定波長成分強度である第1強度を検出する第1検出手段(8)と、前記受光部(7)で受光した透過光又は反射光における1150乃至1370ナノメートルの範囲の所定波長成分強度である第2強度を検出する第2検出手段(9)と、前記第1検出手段(8)及び第2検出手段(9)が入力側に接続される制御部(11)とを備え、前記照射部(6)を、900〜1600nmの範囲の波長成分を含む光を照射する構成とし、制御部(11)が第1検出手段(8)からの第1強度と第2検出手段(9)からの第2強度を比較することにより二枚貝の品質を判別する二枚貝の検査装置。 An irradiation unit (6) for irradiating light including infrared rays to the bivalve, a light receiving unit (7) for receiving transmitted light transmitted through the bivalve or reflected light reflected from the bivalve, and the light receiving unit (7 The first detection means (8) for detecting the first intensity, which is a predetermined wavelength component intensity in the range of 1040 to 1140 nanometers, in the transmitted light or reflected light received in (1), and the transmitted light received by the light receiving section (7) Alternatively, a second detection means (9) for detecting a second intensity which is a predetermined wavelength component intensity in the range of 1150 to 1370 nanometers in the reflected light, and the first detection means (8) and the second detection means (9) A control unit (11) connected to the input side, the irradiation unit (6) is configured to irradiate light including a wavelength component in the range of 900 to 1600 nm, and the control unit (11) is a first detection unit. With the first intensity from (8) Inspection apparatus bivalves to determine the quality of the bivalve by comparing the second intensity from the second detecting means (9). 制御部(11)が前記第1強度と第2強度の比を算出することにより、二枚貝の内、貝殻中に貝身が無いものと、貝殻中に貝見が所定量詰まった良品貝と、貝殻中に泥が混入した泥貝とを判別する請求項1の二枚貝の検査装置。   The control unit (11) calculates the ratio between the first strength and the second strength, so that the bivalve shell has no shell in the shell, the non-defective shellfish having a predetermined amount of shellfish in the shell, The bivalve inspection device according to claim 1, wherein the apparatus is distinguished from mud shells in which mud is mixed in the shells. 第1検出手段(8)又は第2検出手段(9)が、所定波長の光を通過させるバントパスフィルタ(36)を備え、該バントパスフィルタ(36)を介して受光部(7)で受光した透過光又は反射光から所定波長成分を有する選択光を取出し、該選択光の強度を検知することにより、第1強度又は第2強度を検出する請求項1又は2の二枚貝の検査装置。   The first detection means (8) or the second detection means (9) includes a bunt pass filter (36) that allows light of a predetermined wavelength to pass through, and is received by the light receiving unit (7) via the bunt pass filter (36). The bivalve inspection apparatus according to claim 1 or 2, wherein the first intensity or the second intensity is detected by extracting the selection light having a predetermined wavelength component from the transmitted light or the reflected light and detecting the intensity of the selection light. 900〜1600nmの範囲の波長成分を有する赤外線を含む光を、二枚貝に照射し、照射した光の内で二枚貝を透過した透過光又は二枚貝から反射した反射光を受光し、受光した透過光又は反射光における1040乃至1140ナノメートルの範囲の所定波長成分の強度である第1強度と、前記受光部で受光した透過光又は反射光における1150乃至1370ナノメートルの範囲の所定波長成分の強度である第2強度とを比較することにより二枚貝の品質を検査する二枚貝の検査方法。 The bivalve is irradiated with light containing infrared rays having a wavelength component in the range of 900 to 1600 nm, the transmitted light transmitted through the bivalve or the reflected light reflected from the bivalve is received, and the transmitted light or reflection received. The first intensity, which is the intensity of a predetermined wavelength component in the range of 1040 to 1140 nanometers in the light, and the intensity of the predetermined wavelength component in the range of 1150 to 1370 nanometers in the transmitted light or reflected light received by the light receiving unit. A bivalve inspection method that inspects the quality of bivalves by comparing two strengths.
JP2008124107A 2008-05-10 2008-05-10 Bivalve inspection method and inspection device Expired - Fee Related JP5531271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008124107A JP5531271B2 (en) 2008-05-10 2008-05-10 Bivalve inspection method and inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008124107A JP5531271B2 (en) 2008-05-10 2008-05-10 Bivalve inspection method and inspection device

Publications (2)

Publication Number Publication Date
JP2009271020A JP2009271020A (en) 2009-11-19
JP5531271B2 true JP5531271B2 (en) 2014-06-25

Family

ID=41437697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008124107A Expired - Fee Related JP5531271B2 (en) 2008-05-10 2008-05-10 Bivalve inspection method and inspection device

Country Status (1)

Country Link
JP (1) JP5531271B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439889U (en) * 1987-08-31 1989-03-09
JPH01216266A (en) * 1988-02-25 1989-08-30 Fuji Electric Co Ltd Screening and detecting device for shellfishes
JPH0630742B2 (en) * 1988-07-08 1994-04-27 有限会社安西総合研究所 Sorting method and sorting device
JPH0247538A (en) * 1988-08-10 1990-02-16 Fuji Electric Co Ltd Measuring apparatus of quantity of contained moisture
JPH06103257B2 (en) * 1988-12-19 1994-12-14 大塚電子株式会社 Method and apparatus for measuring absorption coefficient of substance using light scattering
JPH03229678A (en) * 1990-02-01 1991-10-11 Hitachi Plant Eng & Constr Co Ltd Apparatus for classifying grade of shellfish
JPH10229776A (en) * 1997-02-20 1998-09-02 Matsushita Electric Ind Co Ltd Health condition discriminating method for shellfish
JP2002039940A (en) * 2000-07-21 2002-02-06 Techno Ishii:Kk Method and apparatus for detection of turning into cavitation in specimen
JP4697764B2 (en) * 2001-09-28 2011-06-08 株式会社高井製作所 Method for judging the quality of gel-forming foods
JP2006242800A (en) * 2005-03-04 2006-09-14 Institute Of National Colleges Of Technology Japan Method for finding and apparatus for sorting corbicula
JP2007071603A (en) * 2005-09-05 2007-03-22 Niigata Univ Nondestructive determination method of japanese radish having internal fault and its device

Also Published As

Publication number Publication date
JP2009271020A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
US9975149B2 (en) Device and method for sorting bulk material
AU2010282784B2 (en) Methods and apparatus for ascertaining interferents and physical dimensions in liquid samples and containers to be analyzed by a clinical analyzer
JP6711755B2 (en) Method and device for detecting substances
KR101136804B1 (en) Method And Apparatus For Detecting Faults In Transparent Material
EP2976204B1 (en) Method and system for checking the color quality of unordered preforms
JP2002540397A (en) Material inspection
JP2009538420A (en) Method and apparatus for detecting undesirable objects or defects
KR101400649B1 (en) Blooded egg detection method using vis/nir transmitted light
KR20110081668A (en) Nondestructive sorting apparatus for fruit
JP2022000641A (en) Inspection device for eggs
KR102354515B1 (en) Inspection of containers
JP5531271B2 (en) Bivalve inspection method and inspection device
CN110621983A (en) Egg inspection device
JP4424537B2 (en) Foreign matter inspection device
JP5502437B2 (en) Non-destructive quality judgment device
JP2007069061A (en) Sorting system of vegetables and fruits
KR102207410B1 (en) Sorting apparatus of thickness and different thing from dried laver
EP3966551B1 (en) Device and process for screening of a biological sample
JP2015182882A (en) Garden stuff multi-row transport device, and internal quality inspection device and defective product selector including the same
KR102568342B1 (en) Detection system
KR102026771B1 (en) discriminant system of contamination grain
JP2020071132A (en) Egg inspection device
JP2004309417A (en) Cleaning device and optical characteristics measuring instrument
KR20180071913A (en) Quality inspect apparatus for grain
JP2007098277A (en) Sorting system of vegetables and fruits

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140327

R150 Certificate of patent or registration of utility model

Ref document number: 5531271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees