JP2002039940A - Method and apparatus for detection of turning into cavitation in specimen - Google Patents

Method and apparatus for detection of turning into cavitation in specimen

Info

Publication number
JP2002039940A
JP2002039940A JP2000220168A JP2000220168A JP2002039940A JP 2002039940 A JP2002039940 A JP 2002039940A JP 2000220168 A JP2000220168 A JP 2000220168A JP 2000220168 A JP2000220168 A JP 2000220168A JP 2002039940 A JP2002039940 A JP 2002039940A
Authority
JP
Japan
Prior art keywords
detection
infrared light
light
detection light
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000220168A
Other languages
Japanese (ja)
Inventor
Hideki Toida
秀基 戸井田
Sunao Kondo
直 近藤
Gentaro Kakemizu
源太郎 掛水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNO ISHII KK
Original Assignee
TECHNO ISHII KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNO ISHII KK filed Critical TECHNO ISHII KK
Priority to JP2000220168A priority Critical patent/JP2002039940A/en
Publication of JP2002039940A publication Critical patent/JP2002039940A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for the detection of turning into cavitation of a specimen, where whether the cavitation exists in all specimens can be detected surely and precisely, without damaging the specimens and without spoiling their quality. SOLUTION: A gourd A is irradiated with near-infrared light B, which is irradiated from a near-infrared light projection device 11, and the near-infrared light B which is transmitted through a gourd A is received by a near-infrared light-receiving device 12. A CPU 20 compares detection information to be output by the device 12 with comparison information stored in a comparison- information storage device 25, and it determines whether a cavity Aa exists at the inside of the pepo shape A and the progress state of the cavity Aa. On the basis of the determination, the gourd A, which does not contain cavities and which are not cavitated, is sorted and treated according by items, on the basis of the detection information. The gourd A, which is being cavitated or which has advanced in cavitating is discarded, or collected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えばウリ、ミ
カン、リンゴ、トマト、柿、梨、桃、メロンなどの果菜
物、胡瓜、茄子、人参、長芋などの農作物、魚介類、食
品等の被検出物の空洞化検出方法及びその装置に関す
る。
The present invention relates to fruits and vegetables such as cucumber, oranges, apples, tomatoes, persimmons, pears, peaches, melons and the like, agricultural products such as cucumbers, eggplants, carrots, and yams, seafood, foods and the like. The present invention relates to a method and an apparatus for detecting cavitation of an object.

【0002】[0002]

【従来の技術】従来、上述例のウリは、熟れ過ぎると、
内部が空洞化するが、外部から空洞の有無を発見するこ
とが難しいため、販売に適さない規格外のウリが誤って
出荷されてしまうことがある。そこで、ウリ内部の空洞
を検出する方法として、例えばX線や赤外線等の放射線
をウリに照射し、ウリを透過した放射線を受光器で受光
すると共に、受光器が出力する透過線量と、予め記憶し
た比較線量とを比較して、ウリ内部に空洞が有るか否か
を判定する方法がある。
2. Description of the Related Art Conventionally, when the cucumber of the above example is too ripe,
Although the inside is hollowed out, it is difficult to detect the presence or absence of a hollow from the outside, so that non-standard uri which is not suitable for sale may be accidentally shipped. Therefore, as a method of detecting a cavity inside the uri, for example, irradiating the uri with radiation such as X-rays or infrared rays, receiving the radiation transmitted through the uri with a light receiver, and storing the transmitted dose output by the light receiver in advance. There is a method of comparing with the comparison dose thus determined to determine whether or not there is a cavity inside the uri.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述の方法
は、ウリに照射する放射線の量が多いと、検出精度が高
くなるが、ウリの細胞が破壊されたり、品質が損なわれ
るたりすることがあるため、放射線の照射量や時間を制
限しなければならず、一個のウリに要する検出時間が短
いと、空洞の大きさや形状を正確に検出することが難し
い。且つ、放射線が外部に漏洩しないようにシールドし
なければならず、装置全体の構成が複雑になるという問
題点を有している。
However, in the above-mentioned method, if the amount of radiation applied to the cucumber is large, the detection accuracy is increased, but the cucumber cells may be destroyed or the quality may be impaired. Therefore, the radiation dose and time must be limited, and if the detection time required for one cucumber is short, it is difficult to accurately detect the size and shape of the cavity. In addition, there is a problem that the radiation must be shielded so as not to leak to the outside, and the configuration of the entire apparatus becomes complicated.

【0004】また、作業者の目で目視検査する場合、作
業者によって判定基準が異なるため、判定結果にバラ付
きが生じやすい。且つ、一つの生産者から持ち込まれる
多数のウリを一個ずつ目視検査すると、検査作業に時間
及び手間が掛るため、作業開始時又は作業途中に抜取っ
たウリを目視検査しなければならず、全ウリを検査する
ことが不可能であるという問題点を有している。
[0004] In addition, when a visual inspection is performed with the eyes of an operator, the judgment criteria are different depending on the operator, and thus the judgment results tend to vary. Also, if a large number of cucumber brought in from one producer is visually inspected one by one, the inspection work takes time and labor, and the cucumber extracted at the start of the work or during the work must be visually inspected. There is a problem that it is impossible to inspect cucumber.

【0005】この発明は上記問題に鑑み、被検出物を透
過する検出光の透過光量に基づいて空洞の有無を検出す
ることにより、被検出物を傷付けたり、品質を損なうこ
となく、全被検出物の空洞の有無を正確且つ確実に検出
することができる被検出物の被検出物の空洞化検出方法
及びその装置の提供を目的とする。
SUMMARY OF THE INVENTION In view of the above problems, the present invention detects the presence or absence of a cavity based on the amount of detection light transmitted through an object to be detected without damaging the object or deteriorating the quality. It is an object of the present invention to provide a method for detecting cavitation of an object, which can accurately and reliably detect the presence or absence of an object cavity, and a device therefor.

【0006】[0006]

【課題を解決するための手段】請求項1記載の発明は、
被検出物を透過する検出光を該被検出物に照射し、該被
検出物を透過した検出光の検出情報と比較情報とを比較
して被検出物の空洞の有無を検出する被検出物の空洞化
検出方法であることを特徴とする。
According to the first aspect of the present invention,
An object to be detected which irradiates the object with detection light transmitted through the object, and compares the detection information of the detection light transmitted through the object with comparison information to detect the presence or absence of a cavity in the object. Is a method for detecting hollowing.

【0007】請求項2記載の発明は、被検出物を透過す
る検出光を該被検出物に対して照射する検出光投光手段
と、上記被検出物を透過した検出光を受光し、該検出光
の検出情報を出力する検出光受光手段と、上記被検出物
内部の空洞の有無を判定するための比較情報を記憶する
比較情報記憶手段と、上記検出光受光手段が出力する検
出情報と、上記比較情報記憶手段に記憶した比較情報と
を比較して空洞の有無を判定する空洞化判定手段とを備
えた被検出物の空洞化検出方法及びその装置であること
を特徴とする。
According to a second aspect of the present invention, there is provided a detection light projecting means for irradiating the detection object with the detection light transmitted through the detection object, and receiving the detection light transmitted through the detection object. Detection light receiving means for outputting detection information of the detection light, comparison information storage means for storing comparison information for determining the presence or absence of a cavity inside the object, and detection information output by the detection light receiving means And a hollowing detection method for determining whether or not there is a cavity by comparing the comparison information stored in the comparison information storage means with the hollowing determination means, and a device therefor.

【0008】請求項3記載の発明は、上記請求項1又は
2記載の構成と併せて、上記検出光を、上記被検出物の
空洞を検出するのに適した特定の波長を有する光で構成
した被検出物の空洞化検出方法及びその装置であること
を特徴とする。
According to a third aspect of the present invention, in addition to the configuration of the first or second aspect, the detection light comprises light having a specific wavelength suitable for detecting the cavity of the object. And a method and apparatus for detecting cavitation of an object to be detected.

【0009】請求項4記載の発明は、上記請求項1又は
2記載の構成と併せて、上記検出光を近赤外光とした被
検出物の空洞化検出方法及びその装置であることを特徴
とする。
According to a fourth aspect of the present invention, there is provided a method and a device for detecting cavitation of an object to be detected using near infrared light as the detection light, in addition to the configuration of the first or second aspect. And

【0010】請求項5記載の発明は、上記請求項1,
2,3又は4記載の構成と併せて、上記検出光を、略
0.7nm〜略1.2nmの範囲に含まれる特定の波長に設
定した被検出物の空洞化検出方法及びその装置であるこ
とを特徴とする。
[0010] The invention according to claim 5 is the invention according to claim 1,
A method and an apparatus for detecting cavitation of an object in which the detection light is set to a specific wavelength included in a range of approximately 0.7 nm to approximately 1.2 nm in combination with the configuration described in 2, 3, or 4. It is characterized by the following.

【0011】[0011]

【作用及び効果】この発明によれば、被検出物内部に空
洞があると、該被検出物を透過する近赤外光などの検出
光の透過光量が大きくなるため、その時検出される検出
光の検出情報と、正常な被検出物の比較情報とを比較す
るだけで、被検出物を傷付けたり、品質を損なうことな
く、全被検出物の空洞の有無や進行具合を外部から正確
且つ確実に検出することができる。且つ、その検出を機
械的に行うので、人為的な判定ミスが皆無となり、被検
出物内部に空洞が有か否かの判定作業や被検出物を項目
別に仕分け処理する作業等が適確に行える。
According to the present invention, if there is a cavity inside the object, the amount of transmitted near infrared light or other detection light transmitted through the object increases, so that the detection light detected at that time is increased. By simply comparing the detection information of the target object with the comparison information of the normal target object, the presence / absence and progress of all the target objects can be accurately and reliably determined from the outside without damaging the target object or deteriorating the quality. Can be detected. In addition, since the detection is performed mechanically, there is no artificial determination error, and the work of determining whether there is a cavity inside the detected object and the operation of sorting and processing the detected object by item are performed accurately. I can do it.

【0012】[0012]

【実施例】この発明の一実施例を以下図面に基づいて詳
述する。図面は被検出物の一例であるウリの空洞化を検
知する作業に用いられる果菜物の空洞化検出装置を示
し、図1及び図2に於いて、この空洞化検出装置10
は、近赤外光BをウリA(例えばニガウリ=苦瓜)に対
して照射する近赤外光投光装置11と、ウリAを透過し
た近赤外光Bを受光して、その受光時の検出信号を出力
する近赤外光受光装置12と、ウリAを一定の速度で搬
送して、近赤外光Bを受光するときに何等支承を与えな
い材質及び配色の搬送コンベア13と、ウリAが到来し
たことを検知する物品検知センサー14とを備えてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail with reference to the drawings. The drawings show an apparatus for detecting hollowing of fruit and vegetables used for detecting hollowing of cucumber, which is an example of an object to be detected, and FIG. 1 and FIG.
Is a near-infrared light projecting device 11 that irradiates near-infrared light B to uri A (for example, bitter gourd = bitter melon), receives near-infrared light B transmitted through uri A, and A near-infrared light receiving device 12 for outputting a detection signal, a conveyer 13 of a material and color arrangement that conveys the uri A at a constant speed and does not provide any support when receiving the near-infrared light B; And an article detection sensor 14 for detecting that A has arrived.

【0013】つまり、物品検知センサー14がウリAの
到来を検知したとき、近赤外光投光装置11から投光さ
れる近赤外光BがウリAに照射され、そのウリAを透過
した近赤外光Bを近赤外光受光装置12で受光してその
検出信号を出力する。
That is, when the article detection sensor 14 detects the arrival of the urea A, the near-infrared light B emitted from the near-infrared light projecting device 11 is irradiated on the urea A and transmitted through the urea A. The near-infrared light B is received by the near-infrared light receiving device 12 and a detection signal is output.

【0014】図3は、空洞化検出装置10の制御回路ブ
ロック図を示し、装置本体19(例えばパーソナルコン
ピュータ)に内蔵されたCPU20は、ROM21に格
納されたプログラムに沿って各回路装置の駆動及び停止
を制御する他、経過時間を計時するタイマーを内蔵して
いる。また、RAM22には、検出処理に必要なデータ
を記憶する。
FIG. 3 is a block diagram of a control circuit of the hollowing-out detection device 10. A CPU 20 built in the device main body 19 (for example, a personal computer) drives and controls each circuit device in accordance with a program stored in a ROM 21. In addition to controlling the stop, it has a built-in timer that measures the elapsed time. The RAM 22 stores data necessary for the detection process.

【0015】比較情報記憶装置24は、例えばPROM
等の書込み可能及び読取り可能な記憶装置で構成され、
空洞化を比較するための比較情報を予め記憶している。
つまり、空洞化する前の正常なウリAに近赤外光Bを照
射し、そのウリAを透過した近赤外光Bを近赤外光受光
装置12が検出したとき、近赤外光受光装置12が出力
する検出情報を比較情報として記憶する。また、空洞部
分を検出するのに必要な情報を、例えばキーボードやマ
ウス、入力ペン等の入力装置を用いて入力又は変更して
もよい。
The comparison information storage device 24 is, for example, a PROM
It is composed of writable and readable storage devices such as
Comparison information for comparing hollowing is stored in advance.
In other words, the near-infrared light B is applied to the normal urea A before hollowing, and the near-infrared light receiving device 12 detects the near-infrared light B transmitted through the urea A. The detection information output from the device 12 is stored as comparison information. Further, information necessary for detecting a hollow portion may be input or changed using an input device such as a keyboard, a mouse, and an input pen.

【0016】コンベア駆動部25は、例えばベルトコン
ベアで構成される搬送コンベア13を予め設定した速度
で駆動する。また、搬送コンベア13を、例えばバロケ
ットコンベアやローラコンベア、フリートレイ等で構成
してもよい。或いは、搬送コンベア13の代わりに、例
えばウリAをフリートレイに載置したり、吸着子やアー
ムで保持する等して搬送してもよい。
The conveyor driving unit 25 drives the conveyor 13 composed of, for example, a belt conveyor at a preset speed. Further, the transport conveyor 13 may be composed of, for example, a barrocket conveyor, a roller conveyor, a free tray, or the like. Alternatively, instead of the transport conveyor 13, for example, the uri A may be placed on a free tray or transported by being held by an adsorbent or an arm.

【0017】物品検知センサー14は、例えば反射型の
光電センサーで構成され、近赤外光投光装置11の投光
範囲直前にウリAが到来したことを検知する信号を出力
する。また、物品検知センサー14を、例えばリミット
スイッチや近接スイッチ等で検知センサーで構成しても
よい。
The article detection sensor 14 is composed of, for example, a reflection-type photoelectric sensor, and outputs a signal for detecting that urea A has arrived immediately before the light projection range of the near-infrared light projector 11. Further, the article detection sensor 14 may be constituted by a detection sensor such as a limit switch or a proximity switch.

【0018】近赤外光投光装置11は、例えば高輝度を
有するハロゲンランプのような近赤外光又は近赤外光を
含んだ光を投光する光源で構成され、例えば略0.7nm
〜略1.2nmの範囲に含まれる特定の波長を有する近赤
外光Bを、ウリAの側部(又は上部、下部)から照射す
る。また、近赤外光投光装置11を、例えば白熱灯、蛍
光灯、キセノンランプ、タングステンランプ等のウリA
を透過するのに必要な輝度を有する光源で構成したり、
近赤外光Bの波長を略0.7nm以下の波長、略1.2nm
以上に変更してもよい。
The near-infrared light projecting device 11 is constituted by a light source for projecting near-infrared light or light containing near-infrared light, such as a halogen lamp having high luminance, for example, approximately 0.7 nm.
Near infrared light B having a specific wavelength within a range of about 1.2 nm is irradiated from the side (or upper and lower) of the urea A. In addition, the near-infrared light projecting device 11 is connected to a urea A such as an incandescent lamp, a fluorescent lamp, a xenon lamp, and a tungsten lamp.
Composed of a light source having the necessary luminance to transmit light,
The wavelength of the near-infrared light B is approximately 0.7 nm or less, approximately 1.2 nm.
The above may be changed.

【0019】近赤外光受光装置12は、例えばウリAを
透光した透過光を可視光線と近赤外光とに分光して該近
赤外光を受光したり、透過した近赤外光Bのみを受光す
る白黒又はカラーの撮像カメラで構成され、図4に示す
空洞化する前のウリAに照射され、該ウリAを透過した
近赤外光Bを受光して、その近赤外光Bの受光量と比例
する信号をディジタル化して検出情報として出力する。
また、近赤外光受光装置12を、例えばCCDカメラや
画像素子等の受光装置で構成してもよい。
The near-infrared light receiving device 12 receives the near-infrared light by dispersing the transmitted light transmitted through the urea A into visible light and near-infrared light, for example, or receives the transmitted near-infrared light. B is a black-and-white or color imaging camera that receives only B light, irradiates the urea A before cavitation shown in FIG. A signal proportional to the amount of light B received is digitized and output as detection information.
Further, the near-infrared light receiving device 12 may be constituted by a light receiving device such as a CCD camera or an image element.

【0020】表示装置26は、ディスプレーやモニター
で構成され、近赤外光受光装置12の受光情報やCPU
20の判定結果等を表示する。
The display device 26 is composed of a display and a monitor.
The result of the judgment of step 20 is displayed.

【0021】また、ウリAの大きさや形状、長さに応じ
て、近赤外光投光装置11の投光角度や投光範囲、投光
装置の配置数と、近赤外光受光装置12の受光角度や受
光範囲、受光装置の配置数とを変更してもよい。
Further, according to the size, shape and length of the uri A, the projection angle and the projection range of the near-infrared light projecting device 11, the number of the projecting devices, the near-infrared light receiving device 12 The light receiving angle, the light receiving range, and the number of light receiving devices may be changed.

【0022】図示実施例は上記の如く構成するものにし
て、以下、空洞化検出装置10によりウリAの空洞化を
検出する方法を説明する。先ず、図1、図2に示すよう
に、搬送コンベア13により搬送されるウリAを物品検
知センサー14が検知したとき、CPU20は、近赤外
光投光装置11の投光範囲にウリAが搬送されるまでの
時間を計時する。所定時間が経過し、投光範囲に到達し
たと判定されたとき、近赤外光投光装置11から投光さ
れる近赤外光BをウリAの特定部分又は略全体に照射
し、ウリAを透過した近赤外光Bを近赤外光受光装置1
2で受光する。また、近赤外光Bを、搬送コンベア13
により搬送されるウリA…に対して連続して照射しても
よい。
The illustrated embodiment is configured as described above, and a method for detecting hollowing of uri A by the hollowing detection device 10 will be described below. First, as shown in FIGS. 1 and 2, when the article detection sensor 14 detects the urea A transported by the transport conveyor 13, the CPU 20 sets the urea A in the projection range of the near-infrared light projector 11. The time until transport is measured. When a predetermined time has elapsed and it is determined that the light reaches the light projecting range, the near infrared light B emitted from the near infrared light projecting device 11 is irradiated onto a specific portion or substantially the entire surface of the urine A. A near-infrared light receiving device 1 for near-infrared light B transmitted through A
Light is received at 2. Further, the near-infrared light B is transmitted to the conveyor 13.
May be continuously irradiated on the uri A.

【0023】CPU20は、近赤外光受光装置12が出
力する検出情報と、比較情報記憶装置25に記憶された
比較情報とを比較して、ウリA内部に空洞Aaが有るか
否かと、その空洞Aaの進行具合とを判定する。且つ、
近赤外光受光装置12が出力する受光情報に基づいて、
ウリAを透過する近赤外光Bの透過光量の最大値と、最
小値と、平均値とを算出すると共に、ウリA表面の形状
に略対応して、明るい部分及び暗い部分に於ける濃度値
と、近赤外光Bの分散度とを算出する。
The CPU 20 compares the detection information output from the near-infrared light receiving device 12 with the comparison information stored in the comparison information storage device 25, and determines whether or not the cavity Aa exists inside the uri A. The progress of the cavity Aa is determined. and,
Based on the light receiving information output by the near infrared light receiving device 12,
The maximum value, the minimum value, and the average value of the transmitted light amount of the near-infrared light B transmitted through the urea A are calculated, and the density in the bright part and the dark part substantially corresponds to the shape of the urea A surface. The value and the degree of dispersion of the near-infrared light B are calculated.

【0024】例えば図4のウリAの場合、近赤外光受光
装置12が受光する近赤外光Bの受光量は、最大値=7
2、最小値=33、平均値=50と、分散度=29とな
り、図5及び図6のウリAよりも数値が小さく、近赤外
光受光装置12が出力する検出情報と、比較情報記憶装
置24が記憶する比較情報とが略一致するため、空洞無
し又は空洞化する前であると判定される。且つ、予め設
定した数値と略同等又は以下であるウリAは、検出情報
に基づいて項目別に仕分け処理される。
For example, in the case of Uri A in FIG. 4, the amount of received near-infrared light B received by the near-infrared light receiving device 12 is a maximum value = 7.
2, the minimum value = 33, the average value = 50, and the dispersion degree = 29. The numerical value is smaller than Uri A in FIGS. 5 and 6, and the detection information output from the near-infrared light receiving device 12 and the comparison information storage are stored. Since the comparison information stored in the device 24 substantially matches, it is determined that there is no cavity or before the cavity is formed. Uri A, which is substantially equal to or less than a preset numerical value, is sorted for each item based on the detection information.

【0025】次に、図5のウリAの場合、受光量は、最
大値=98、最小値=26、平均値=52、分散度=1
00となり、近赤外光Aの透過光量及び分散度が図4の
ウリAよりも大きく、図6のウリAよりも小さいため、
空洞化が進行中であると判定される。
Next, in the case of Uri A in FIG. 5, the amount of received light is a maximum value = 98, a minimum value = 26, an average value = 52, and a degree of dispersion = 1.
Since the transmitted light amount and the degree of dispersion of the near-infrared light A are larger than that of Uri A in FIG. 4 and smaller than Uri A in FIG.
It is determined that cavitation is in progress.

【0026】次に、図6のウリAの場合、受光量は、最
大値=255、最小値=46、平均値=154、分散度
=1900となり、近赤外光Aの透過光量及び分散度が
図4及び図5のウリAよりも大きいため、空洞化が進ん
でいると判定される。
Next, in the case of Uri A in FIG. 6, the amount of received light is the maximum value = 255, the minimum value = 46, the average value = 154, and the degree of dispersion = 1900. Is larger than uri A in FIGS. 4 and 5, it is determined that hollowing is in progress.

【0027】上述した空洞化する前のウリAは、品質的
に優れており、予め設定した規格に適合するため、例え
ば秀、優、良等の項目別に仕分け処理することができ
る。また、比較基準を、図5のウリAが含まれるような
レベルに引き下げてもよい。一方、空洞化が進行中及び
空洞化が進んだウリAは、規格外であると判定され、例
えば廃棄工程又は回収工程に搬送される。
Since the above-mentioned urine A before hollowing is excellent in quality and conforms to a preset standard, it can be sorted and processed according to items such as excellent, excellent and good. Further, the comparison standard may be reduced to a level that includes uri A in FIG. On the other hand, urea A in which hollowing is in progress and hollowing in is determined to be out of the standard, and is conveyed to, for example, a disposal process or a recovery process.

【0028】また、ウリAを、近赤外光投光装置11の
投光範囲に一旦停止させて、近赤外光Bを照射したり、
ウリAを透過した近赤外光Bを近赤外光受光装置12で
受光する等してもよい。
Further, the urea A is temporarily stopped in the projection range of the near-infrared light projecting device 11 and irradiated with near-infrared light B,
The near-infrared light B transmitted through the urea A may be received by the near-infrared light receiving device 12 or the like.

【0029】以上のように、ウリA内部に空洞Aaがあ
ると、近赤外光Bの透過光量が大きくなり、ウリA表面
の形状によって濃度値の分散も大きくなるので、その時
検出される近赤外光Bの検出情報と、予め記憶した正常
なウリAの比較情報とを比較したとき、空洞Aaの有無
や空洞Aaの進行具合をウリA外部から確実に検出する
ことができる。且つ、その検出を機械的に行うので、人
為的な判定ミスが皆無となり、ウリA内部に空洞Aaが
有か否かの判定と、ウリAを項目別に仕分け処理する作
業とが正確且つ確実に行える。
As described above, if the cavity Aa is inside the uri A, the amount of transmitted near-infrared light B increases, and the variance of the density value increases due to the shape of the uri A surface. When the detection information of the infrared light B and the comparison information of the normal urea A stored in advance are compared, the presence or absence of the cavity Aa and the progress of the cavity Aa can be reliably detected from outside the urea A. In addition, since the detection is performed mechanically, there is no artificial determination error, and the determination whether or not the cavity Aa is present inside the uri A and the operation of sorting and processing the uri A by item are accurately and reliably performed. I can do it.

【0030】この発明の構成と、上述の実施例との対応
において、この発明の被検出物は、実施例のウリAに対
応し、以下同様に、検出光は、近赤外光B及び空洞Aa
を検出可能なその他の光に対応し、検出光投光手段は、
近赤外光投光装置11に対応し、検出光受光手段は、近
赤外光受光装置12に対応し、比較情報記憶手段は、比
較情報記憶装置24に対応し、空洞化判定手段は、装置
本体19及び判定処理機能を備えたCPU20とに対応
するも、この発明は、上述の実施例の構成のみに限定さ
れるものではない。
In the correspondence between the configuration of the present invention and the above-described embodiment, the object to be detected according to the present invention corresponds to Uri A of the embodiment, and similarly, the detection light is the near-infrared light B and the cavity. Aa
Corresponding to other light that can detect the detection light, the detection light projection means,
Corresponding to the near-infrared light projecting device 11, the detection light receiving means corresponds to the near-infrared light receiving device 12, the comparison information storage means corresponds to the comparison information storage device 24, and the hollowing determination means, The present invention is not limited to the configuration of the above-described embodiment, although it corresponds to the apparatus main body 19 and the CPU 20 having the determination processing function.

【0031】上述のウリA内部の空洞Aaを検出するこ
とができれば、近赤外光Bの輝度や波長を変更してもよ
い。また、近赤外光Bの特定波長に限定されるものでは
なく、遠赤外光やその他の波長を有する検出光を用いた
り、所望する配色(例えば赤や青等)を有する波長の検
出光を用いて検出してもよい。
As long as the cavity Aa inside the uri A can be detected, the luminance and wavelength of the near-infrared light B may be changed. In addition, the detection wavelength is not limited to the specific wavelength of the near-infrared light B, but may be a detection light having a far-infrared light or another wavelength, or a detection light having a desired color (for example, red or blue). May be used for detection.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 空洞化検出装置による空洞化の検出方法を示
す斜視図。
FIG. 1 is a perspective view showing a hollowing detection method by a hollowing detection device.

【図2】 近赤外光の投光状態及び受光状態を示す正面
図。
FIG. 2 is a front view showing a light emitting state and a light receiving state of near-infrared light.

【図3】 空洞化検出装置の制御回路ブロック図。FIG. 3 is a block diagram of a control circuit of the hollowing detection device.

【図4】 空洞化する前のウリ内部の状態を示す断面
図。
FIG. 4 is a cross-sectional view showing a state inside the uri before it is hollowed out.

【図5】 空洞化が進行中のウリ内部の状態を示す断面
図。
FIG. 5 is a cross-sectional view showing a state of the inside of a uri in which hollowing is in progress.

【図6】 空洞化が進んだウリ内部の状態を示す断面
図。
FIG. 6 is a cross-sectional view showing a state of the inside of the uri where hollowing has progressed.

【符号の説明】[Explanation of symbols]

A…ウリ Aa…空洞 B…近赤外光 10…空洞化検出装置 11…近赤外光投光装置 12…近赤外光受光装置 13…搬送コンベア 19…装置本体 20…CPU 24…比較情報記憶装置 A: Uri Aa: Cavity B: Near-infrared light 10: Cavitation detecting device 11: Near-infrared light projecting device 12: Near-infrared light receiving device 13: Conveyor 19: Device body 20: CPU 24: Comparison information Storage device

フロントページの続き (72)発明者 掛水 源太郎 愛媛県松山市高岡町66番地 株式会社テク ノイシイ内 Fターム(参考) 2G051 AA05 AB06 BA06 BC01 CA03 CB02 DA06 EB01 EC01 2G059 AA05 BB11 DD12 EE01 FF01 FF06 HH01 HH06 KK04 MM01 MM03 MM05 MM09 PP01 Continued on the front page (72) Inventor Gentaro Kakemizu 66 Takaoka-cho, Matsuyama-shi, Ehime F-term in Technoishi Co., Ltd. (Reference) 2G051 AA05 AB06 BA06 BC01 CA03 CB02 DA06 EB01 EC01 2G059 AA05 BB11 DD12 EE01 FF01 FF06 HH01 HH06 KK MM01 MM03 MM05 MM09 PP01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】被検出物を透過する検出光を該被検出物に
照射し、該被検出物を透過した検出光の検出情報と比較
情報とを比較して被検出物内部の空洞の有無を検出する
被検出物の空洞化検出方法。
An object is illuminated with detection light transmitted through the object, the detection information of the detection light transmitted through the object is compared with comparison information, and the presence or absence of a cavity inside the object is detected. A method for detecting cavitation of an object to be detected.
【請求項2】被検出物を透過する検出光を該被検出物に
対して照射する検出光投光手段と、上記被検出物を透過
した検出光を受光し、該検出光の検出情報を出力する検
出光受光手段と、上記被検出物内部の空洞の有無を判定
するための比較情報を記憶する比較情報記憶手段と、上
記検出光受光手段が出力する検出情報と、上記比較情報
記憶手段に記憶した比較情報とを比較して空洞の有無を
判定する空洞化判定手段とを備えた被検出物の空洞化検
出装置。
A detection light projecting means for irradiating the detection object with a detection light transmitted through the detection object; a detection light transmitting means for receiving the detection light transmitting the detection object; and detecting detection information of the detection light. Detection light receiving means for outputting, comparison information storage means for storing comparison information for determining the presence or absence of a cavity inside the object, detection information output by the detection light receiving means, and comparison information storage means And a hollowing-out judging means for judging the presence or absence of a cavity by comparing the comparison information stored in the object with the comparison information.
【請求項3】上記検出光を、上記被検出物の空洞を検出
するのに適した特定の波長を有する光で構成した請求項
1又は2記載の被検出物の空洞化検出方法又はその装
置。
3. The method or apparatus for detecting cavitation of an object according to claim 1, wherein the detection light comprises light having a specific wavelength suitable for detecting the cavity of the object. .
【請求項4】上記検出光を近赤外光とした請求項1又は
2記載の被検出物の空洞化検出方法又はその装置。
4. The method or apparatus according to claim 1, wherein said detection light is near-infrared light.
【請求項5】上記検出光を、略0.7nm〜略1.2nmの
範囲に含まれる特定の波長に設定した請求項1,2,3
又は4記載の被検出物の空洞化検出方法又はその装置。
5. The detection light according to claim 1, wherein said detection light is set to a specific wavelength within a range of about 0.7 nm to about 1.2 nm.
Or the method or apparatus for detecting cavitation of an object according to 4.
JP2000220168A 2000-07-21 2000-07-21 Method and apparatus for detection of turning into cavitation in specimen Pending JP2002039940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000220168A JP2002039940A (en) 2000-07-21 2000-07-21 Method and apparatus for detection of turning into cavitation in specimen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000220168A JP2002039940A (en) 2000-07-21 2000-07-21 Method and apparatus for detection of turning into cavitation in specimen

Publications (1)

Publication Number Publication Date
JP2002039940A true JP2002039940A (en) 2002-02-06

Family

ID=18714821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000220168A Pending JP2002039940A (en) 2000-07-21 2000-07-21 Method and apparatus for detection of turning into cavitation in specimen

Country Status (1)

Country Link
JP (1) JP2002039940A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009271020A (en) * 2008-05-10 2009-11-19 Institute Of National Colleges Of Technology Japan Inspection method and inspection device of clam
JP2015004547A (en) * 2013-06-19 2015-01-08 ヤンマー株式会社 Non-destructive quality determination device
CN106770346A (en) * 2016-11-29 2017-05-31 中国科学院合肥物质科学研究院 One kind is based on near-infrared diffusing transmission solids on-line detecting system
WO2019106992A1 (en) * 2017-11-28 2019-06-06 シャープ株式会社 Inspection device, inspection method, and manufacturing device
JP2020159971A (en) * 2019-03-27 2020-10-01 ウシオ電機株式会社 Product inspection method and product inspection device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009271020A (en) * 2008-05-10 2009-11-19 Institute Of National Colleges Of Technology Japan Inspection method and inspection device of clam
JP2015004547A (en) * 2013-06-19 2015-01-08 ヤンマー株式会社 Non-destructive quality determination device
CN106770346A (en) * 2016-11-29 2017-05-31 中国科学院合肥物质科学研究院 One kind is based on near-infrared diffusing transmission solids on-line detecting system
CN106770346B (en) * 2016-11-29 2019-10-22 中国科学院合肥物质科学研究院 One kind being based on near-infrared diffusing transmission solids on-line detecting system
WO2019106992A1 (en) * 2017-11-28 2019-06-06 シャープ株式会社 Inspection device, inspection method, and manufacturing device
JP2020159971A (en) * 2019-03-27 2020-10-01 ウシオ電機株式会社 Product inspection method and product inspection device
US12013347B2 (en) 2019-03-27 2024-06-18 Ushio Denki Kabushiki Kaisha Product inspection method and product inspection apparatus

Similar Documents

Publication Publication Date Title
JP5297049B2 (en) Inspection equipment
US5077477A (en) Method and apparatus for detecting pits in fruit
US20080204733A1 (en) Sensing in Meat Products and the Like
JP2019164156A (en) Inspection apparatus
JP2008541007A (en) Food foreign matter detection device
US6433293B1 (en) Method and device for detecting dirt as present on articles, for example eggs
JP2001037367A (en) Automatic selection system for egg and detection system for defective egg
JPS5937406A (en) Flaw detector
JP2002286647A (en) Conveyance and treatment apparatus for farm product
JP2006267037A (en) Internal quality evaluating apparatus and internal quality evaluation method of fresh product
JP3875842B2 (en) X-ray foreign object detection apparatus and defective product detection method in the apparatus
WO2009012095A1 (en) Inspection apparatus and method using penetrating radiation
JP2002162358A (en) Method and equipment for detecting transmuted part of object for inspection
JP2002039940A (en) Method and apparatus for detection of turning into cavitation in specimen
JP2002168805A (en) X-ray foreign matter detector
JP3618701B2 (en) X-ray foreign object detection device
JP2002310946A (en) Radiation inspection system
JP2002310944A (en) Radiation inspection system
JP2019128303A (en) Inspection line
JP4020712B2 (en) X-ray image processing filter automatic setting method, X-ray foreign object detection method, and X-ray foreign object detection device
JP2002062113A (en) Method and device for measuring object to be detected
JPWO2019235022A1 (en) Inspection equipment
JP3060097B2 (en) Bad egg display device at the time of egg inspection
JP2007044659A (en) Vegetable and fruit sorting system
JP2002039731A (en) Method and device for detecting cavitation of detected body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020