WO2019106992A1 - Inspection device, inspection method, and manufacturing device - Google Patents

Inspection device, inspection method, and manufacturing device Download PDF

Info

Publication number
WO2019106992A1
WO2019106992A1 PCT/JP2018/038544 JP2018038544W WO2019106992A1 WO 2019106992 A1 WO2019106992 A1 WO 2019106992A1 JP 2018038544 W JP2018038544 W JP 2018038544W WO 2019106992 A1 WO2019106992 A1 WO 2019106992A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
inspection
inspection apparatus
transmitted
detection unit
Prior art date
Application number
PCT/JP2018/038544
Other languages
French (fr)
Japanese (ja)
Inventor
京子 松田
裕介 榊原
真 和泉
綿野 哲
Original Assignee
シャープ株式会社
株式会社Ps&T
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, 株式会社Ps&T filed Critical シャープ株式会社
Publication of WO2019106992A1 publication Critical patent/WO2019106992A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids

Definitions

  • the present disclosure relates to an inspection apparatus that performs inspection nondestructively by irradiating light.
  • Patent Document 1 discloses an example of such an inspection apparatus.
  • the object is inspected by relatively displacing the inspection object and the spot of the inspection light.
  • FIG. 12 is a diagram conceptually showing an example of variation in light intensity depending on the emission direction of light emitted from the light source.
  • a light source in particular, an LED (light emitting diode)
  • the intensity of light emitted from a light source is not uniform. Therefore, unevenness of light intensity occurs in the spot of the inspection light. The influence of such unevenness may lower the inspection accuracy. So, in the invention of patent document 1, the said nonuniformity is reduced by averaging the light of a LED light source through a diffusion plate and a fiber.
  • An object of the present disclosure is to realize an inspection apparatus capable of reducing the influence of the unevenness without using an optical system for reducing the unevenness of the light intensity of the inspection light.
  • an inspection device concerning one mode of this indication is a light source which irradiates inspection light to each of a plurality of objects, and a relative of the irradiation range of the object and the inspection light and the inspection light
  • the inspection light is continuously or intermittently applied to the object so as to generate a state included in the above, and the transmitted light is detected by the detection unit while changing the relative positional relationship.
  • An inspection method is a method for inspecting an object, comprising: irradiating each of a plurality of the objects with an inspection light; and irradiating the object and the inspection light
  • the effect of the unevenness can be reduced without using an optical system for reducing the unevenness of the light intensity of the inspection light.
  • (A) is a figure showing the composition of the inspection device concerning Embodiment 1 of this indication.
  • (B) is a figure which shows a part of structure of a test
  • (A) is a figure which shows the relationship between the measurement conditions of a target object, and a correct answer rate.
  • (B) is a figure which shows the result of having performed the measurement of the object on another conditions.
  • FIG. 1 is a figure which shows the structure of the test
  • the object 1 is an object to be inspected by the inspection apparatus 100, and is, for example, a tablet.
  • the shape of the object 1 is not limited to a cylindrical shape, and may be any shape.
  • the object 1 may be one obtained by solidifying the powder.
  • the subject 1 may be a drug or a food.
  • the object 1 may have some contents inside a capsule.
  • the capsule here may be a soft capsule. That is, the subject 1 may be any one selected from the group consisting of medicines, medicines, health care intakes, nutrients, granules, powders, films and capsules.
  • Organic substances such as hair and insects are assumed to be detected as foreign substances by inspection.
  • a piece of resin, metal or the like may be included in the substance to be detected as a foreign matter.
  • the light source 2 is a light source that irradiates the inspection light 3 continuously or intermittently to each of the plurality of objects 1 and may include, for example, a halogen lamp.
  • the inspection light 3 is irradiated such that a state in which the whole of the object 1 is included in the spot 4 (irradiation range) of the inspection light 3 occurs at least temporarily during the inspection of the object 1.
  • the shape of the spot 4 is circular in FIG. 1, it does not limit to a circle.
  • the inspection light 3 is irradiated to the object 1 from the exit of the inspection light 3 without passing through the light diffusing member or the like.
  • unevenness of light may be reduced by using a light diffusion member or the like, but the following problems occur when detecting the transmitted light of the inspection light 3 as in the present embodiment.
  • These members greatly lose the inspection light 3 in the process of diffusing the light. Then, since the irradiation power of the light to the object 1 decreases, the power of the light transmitted through the object 1 also decreases, which makes detection difficult. In particular, when the light is strongly scattered inside the object 1 and the transmitted light becomes weak, the problem becomes more serious. For example, tablets formed into powder may be mentioned.
  • the inspection light 3 since the inspection light 3 is irradiated to the object 1 from the exit of the inspection light 3 without passing through the light diffusing member or the like, the inspection light 3 can be effectively used.
  • the spot 4 of the inspection light 3 includes unevenness of light intensity because the inspection light 3 is irradiated to the object 1 from the exit of the inspection light 3 without passing through the light diffusion member or the like. As described later, the relative positional relationship between the object 1 and the spot 4 is changed under specific conditions to suppress the decrease in inspection accuracy due to the influence of unevenness.
  • any optical member having a small light loss may be used.
  • the light from the light source 2 may be guided to the object 1 by an optical fiber, or the light from the light source 2 may be condensed onto the object 1 by a lens.
  • an optical member for light collection and light guiding has less light loss than a light diffusing member.
  • FIG. 1B is a view showing a part of the configuration of the inspection apparatus 100 provided with the condensing lens group 61. As shown in FIG. In the example shown in (b) of FIG. 1, the inspection light 3 from the light source 2 is subjected to light distribution control by the condenser lens group 61 and is irradiated onto the object 1.
  • the number of lenses constituting the condensing lens group 61 used be three or less. If the number of lenses used for focusing is three, the spot diameter can be adjusted optimally, but if four or more lenses are used, the light loss will be large, which will lower the efficiency of inspection. Moreover, if it is up to three, it can be provided as an integrated compact condensing lens, and the problem that an optical system becomes complicated does not arise.
  • the peak wavelength of the inspection light 3 may be, for example, 600 nm or more and 2500 nm or less.
  • the peak wavelength of the inspection light 3 is not limited to this range, but in this wavelength range, it easily penetrates the object 1 and does not damage the object 1 as when irradiated with ultraviolet light. So preferred.
  • the peak wavelength of the inspection light 3 may be, for example, 800 nm or more and 1600 nm or less.
  • the peak wavelength of the inspection light 3 is preferably 800 nm or more and 1600 nm or less.
  • a halogen lamp is given as an example of the light source 2, but the type of the light source 2 is not limited to this and may be another type of lamp or the like.
  • the light source 2 may be any device that can emit light of a wavelength that can detect foreign matter, and may be, for example, any of a tungsten lamp, a phosphor, an LED, and a laser.
  • the support 5 is a member for supporting the object 1 and has an opening (not shown) for transmitting the transmitted light 8 transmitted through the object 1.
  • the inside diameter of the opening is smaller than the outside diameter of the object 1.
  • the location in which the target object 1 in the support part 5 is mounted may be formed with the transparent member which has a wavelength characteristic which permeate
  • quartz glass or synthetic quartz glass is employable, for example.
  • the recessed part for inserting the target object 1 one each may be formed in the support part 5.
  • the light source 2 and the support 5 move relative to each other.
  • the light source 2 may move, or the support 5 may move.
  • the position of the light source 2 is fixed, and the support portion 5 is moved in the direction of the arrow 110 in FIG. Therefore, the support unit 5 functions as a moving mechanism that changes the relative positional relationship between the object 1 and the spot 4 of the inspection light 3.
  • the support unit 5 continuously supplies the plurality of objects 1 to the position of the spot 4 (in other words, the inspection position by the detection unit 7).
  • the lens 6 is an optical member for condensing the transmitted light 8 toward the detection unit 7 and is disposed on the lower side of the support unit 5 and at a position coaxial with the opening of the support unit 5 or the transparent member There is.
  • the detection unit 7 is a device that detects transmitted light transmitted through the object 1 at a predetermined timing.
  • a polychromator-type spectrometer may be used as the detection unit 7.
  • a large number of light receiving elements are arranged at the end of a prism for dispersing light of each wavelength, and light of each wavelength can be measured simultaneously.
  • Polychromator spectrometers have the advantage of short measurement times.
  • the polychromator may be of a type using a light receiving element and a prism, or a type using a CCD (Charge Coupled Device).
  • the type of polychromator is appropriately selected according to the configuration of the inspection apparatus, the type of tablet to be measured, the wavelength of light, and the like.
  • the spectroscope provided in the detection unit 7 measures the spectrum of the received light.
  • the detection unit 7 does not have to include a spectroscope.
  • the detection unit 7 may be configured to include, for example, any one of a photodiode, a phototransistor, an avalanche photodiode, and a photomultiplier.
  • the number, arrangement, and the like of the light receiving elements in the detection unit 7 are appropriately selected according to the configuration of the foreign matter inspection apparatus, the type of the object to be measured, the wavelength of the light to be used, and the like.
  • the light transmitted through the object 1 may be guided to the detection unit 7 using an optical member such as an optical fiber.
  • the detection unit 7 does not always measure the transmitted light 8 but performs measurement intermittently. Measurement is started according to the timing when the inspection object 1 comes to the inspection position, measurement is stopped when scanning of the inspection light 3 is finished, and measurement is started again when the object 1 for the next inspection comes to the inspection position Do.
  • the light source 2 may be controlled to irradiate the inspection light 3 from the light source 2 in a pulse shape.
  • the control device 10 controls the detection unit 7 to intermittently perform the measurement of the detection unit 7.
  • the control device 10 controls the light source 2, the detection unit 7, and a drive mechanism for moving the support 5.
  • Each process by the control unit 13 may be realized by a central processing unit (CPU).
  • the control device 10 includes a determination unit 11 and a storage unit 12.
  • the determination unit 11 performs an operation with reference to the measurement data of the object 1 obtained by the detection unit 7 based on the transmitted light and the data stored in the storage unit 12, and foreign matter mixed in the object 1. Is determined.
  • the storage unit 12 is for storing information necessary for the examination.
  • the storage unit 12 is an area for temporarily storing measurement data by the detection unit 7, various programs executed by the control device 10, an area for storing data used in these programs, and these programs And a work area used when these programs are executed.
  • the various programs mentioned here are, for example, a program for performing determination, a calculation algorithm, a database, and the like.
  • the storage unit 12 can hold reference data used for determination by the determination unit 11.
  • FIG. 2 is a diagram for explaining an inspection method in the inspection apparatus 100.
  • the target 1 (target to be focused on) to be the target of the most recent inspection is the target 1A
  • the target 1 to be inspected next is the target 1B
  • the distance between the target 1A and the target 1B is M and Do.
  • the measurement start time of the detection unit 7 is S.
  • W be the width of the object 1 in the direction parallel to the transport direction.
  • the support 5 moves the object 1 in the direction of the arrow 110 in FIG.
  • the distance by which the object 1A moves from the measurement start time S to the measurement end time E is indicated by the arrow 16.
  • the measurement time t Assuming that the transport speed of the object 1 is V and the measurement time of the detection unit 7 (that is, the integration time from the measurement start time S to the measurement end time E) is t, the measurement time t indicated by the following equation (1) Within the range, the detection unit 7 measures the object 1 (detects the transmitted light 8).
  • the unit 7 measures the object 1. In other words, from the position where the spot 4 covers the whole of the object 1 to the position where the spot 4 does not cover the object 1 (the position indicated by the reference numeral 15) 7 measures the object 1; When the detection unit 7 intermittently detects the transmitted light 8, the measurement time of integration from the measurement start time S to the measurement end time E is t.
  • the inspection can be performed efficiently.
  • the inspection speed is slower than the production speed of the object 1, the inspection process becomes the rate-limiting of the speed of the entire production process.
  • the measurement time can be shortened compared to two-dimensionally scanning with the light spot.
  • each target 1 is disposed on the support 5 such that the distance M between the target 1A and the target 1B is larger than the width W of the target 1A (target 1B). Further, the distance M is larger than the width of the spot 4 in the transport direction. By satisfying these conditions, it can be prevented that the object 1A and the object 1B are simultaneously measured (in other words, a plurality of objects 1 fall within the range of the spot 4 at one time).
  • the inspection apparatus 100 may include an arrangement mechanism (for example, a robot arm) that arranges the plurality of objects 1 on the support 5 by adjusting the distance between the plurality of objects 1.
  • an arrangement mechanism for example, a robot arm
  • the size of the spot 4 may be set so that a plurality of objects 1 do not fall within the range of the spot 4 at one time.
  • the lower limit of the amount of change of the relative positional relationship at which a preferable percentage of correct answers for inspection can be obtained is 2.5 mm, and the measurement time t at this time is 2 ms. Therefore, in the first embodiment, it is preferable to set the lower limit value of the measurement time t in the above equation (1) to 2 ms as the following equation (1A) indicates.
  • FIG. 3 is a flowchart illustrating an example of the flow of processing in the inspection apparatus 100.
  • the light source 2 starts irradiation of the inspection light 3 (S1).
  • the inspection light 3 always emits the inspection light 3.
  • the detection unit 7 starts the measurement (S2) at the timing when the whole of the object 1 enters the range of the spot 4 (S2), and ends the measurement when the object 1 moves a distance corresponding to the width W (YES in S3) To do (S4).
  • the detection unit 7 outputs the measurement data (data indicating the intensity of the transmitted light 8) acquired during this time to the determination unit 11.
  • the determination unit 11 measures the intensity I 0 of the inspection light 3 and the transmitted light 8 indicated by the measurement data, which are measured in advance in a state where there is no object 1 between the light source 2 and the detection unit 7 before starting the inspection. A value reflecting the difference from the intensity I is calculated, and from the value, it is determined whether foreign matter is mixed (S5).
  • the determination unit 11 refers to the absorbance A1 and the calculation model for each type of tablet read from the database stored in the storage unit 12 to calculate an index indicating the feature of the tablet, and determines the presence or absence of foreign matter contamination Do.
  • the determination method performed by the determination unit 11 may be a known method, and is not particularly limited.
  • the inspection apparatus 100 ends the process.
  • the object 1 determined to be contaminated or the lot including the same is discarded.
  • FIG. 4 is a diagram for explaining a second inspection method in the inspection apparatus 100.
  • the measurement start time S is when the spot 4 slightly covers the object 1A (or the outer edge of the spot 4 circumscribes the outer edge of the object 1A). Other conditions are the same as in the first inspection method.
  • the distance by which the object 1A moves from the measurement start time S to the measurement end time E is indicated by an arrow 18.
  • the detection unit 7 measures the object 1.
  • the detection unit 7 starts the detection of the transmitted light 8 from the state in which the target 1 to be focused is not included in the spot 4, and the upper limit of the measurement time t ′ is that the optical axis of the inspection light 3 is the object 1. It is twice the time required to cross. Also in this case, the same effect as the first inspection method can be obtained.
  • FIG. 5 is a diagram for explaining a third inspection method in the inspection apparatus 100.
  • a set of objects 1 is a target set 1C, and an interval of a plurality of target sets 1C arranged along the transport direction is M ". Further, a width of the target set 1C in a direction parallel to the transport direction is W". I assume.
  • the width W is the distance between the most upstream point of the transport direction and the most downstream point of the transport direction among the points forming the outer edge of each object 1 included in the target set 1C. It is.
  • the spot 4 has a size that can cover the entire target set 1C.
  • Example 1 A present Example demonstrates the result of having measured the target object 1 by the 1st inspection method.
  • the transport speed V of the target 1 is 1250 mm / s, and the width W of the target 1 in the direction parallel to the transport direction is 8 mm.
  • the light from the light source 2 is guided by a light guide using an optical fiber, and the number of lenses constituting the condensing lens group 61 used for condensing is three.
  • the lensless state the state of one sheet, the state of two sheets, and the state of three sheets were respectively tried, for the object 1 having a width W of 8 mm, three lenses constituting the condensing lens group 61 If there were, it was possible to adjust the spot size suitably.
  • the measurement time t from the start time S to the end time E of the measurement by the detection unit 7 was changed stepwise to calculate the correct answer rate of the measurement.
  • a target 1 for which the foreign substance is contained and a target 1 for which the foreign substance is not contained are prepared as an inspection target, and the correct answer is obtained, assuming that the correct determination is made whether the foreign substance is included or not.
  • the proportion of object 1 was calculated as the correct answer rate.
  • FIG. 6 is a figure which shows the relationship between the measurement conditions of the target object 1, and a correct answer rate.
  • the relative positional relationship (displacement amount) between the object 1 and the spot 4 changes from 2.5 mm to 7.5 mm by changing the measurement time t from 2 ms to 6 ms. Do.
  • the correct answer rate became 85% when the measurement time t was 4 ms. From this result, it is clear that the measurement time t should be 4 ms or more in a test that requires a correct answer rate of 85% or more.
  • (b) of FIG. 6 is the result of having performed measurement of the target object 1 on another conditions by the 1st inspection method.
  • the transport speed V of the target 1 is 250 mm / s
  • the width W of the target 1 in the direction parallel to the transport direction is 10 mm.
  • the relative positional relationship (displacement amount) between the object 1 and the spot 4 changes from 0.5 mm to 10 mm.
  • the correct answer rate became 70% when the measurement time t was 2 ms. From this result, it is clear that the measurement time t should be 2 ms or more in a test that requires a correct answer rate of 70% or more.
  • FIG. 7 is a figure which shows notionally the nonuniformity of the intensity
  • FIG. 7 in the spot 4 formed by the light source 2 used in the present embodiment, unevenness of the light intensity of substantially concentric circle occurs.
  • the illuminance decreases toward the outside of the spot 4, and when the distance between the spot 4 and the light source 2 is 50 mm, the illuminance decreases to 72% of the central portion on the circumference of 35 mm in diameter.
  • FIG. 13 is a view showing the relationship between the amount of light irradiated to the object 1 and the number of lenses constituting the condensing lens group 61.
  • the spectral data in the case where the amount of irradiated light is measured with a configuration that does not use the condensing lens group 61 using the same light source 2 and three lenses that constitute the condensing lens group 61 reduce unevenness in light intensity.
  • the irradiation light amount when the number of lenses constituting the condensing lens group 61 is three is approximately 1 ⁇ 2 as compared with the case where it is not used.
  • the light quantity of the inspection light 3 decreases as a result of the configuration to reduce the light unevenness in this way, the light passing through the object 1 becomes weak and the light quantity threshold which is the limit that the detection unit 7 can detect If it falls below the threshold, the light amount detected by the detection unit 7 will go to 0 at once.
  • the threshold of the required light amount to obtain the required accuracy of the inspection that is, the required correct answer rate, below which the inspection becomes impossible.
  • FIG. 13 A table showing the correspondence between the light quantity at a certain wavelength of the spectral data of FIG. 13 and the inspection correct answer rate is shown in FIG.
  • the value of the transmitted light amount in FIG. 14 indicates the relative value of the transmitted light amount, with the amount of light transmitted through the object 1 being the inspection light 3 emitted from the light source 2 as the transmitted light amount. . Further, the light reception amount relatively indicates the intensity of the transmitted light 8 detected by the detection unit 7.
  • the data without a lens shown by a solid line in FIG. 13 corresponds to the case where the irradiation light amount is 15000 in FIG. Further, the data of the use of three lenses indicated by the broken line in FIG. 13 corresponds to the case where the irradiation light quantity is 7500 in FIG.
  • the ratio of the amount of light lost to the inspection object to the amount of irradiated light is about 99% in this case, and when the amount of irradiated light is 15000, the amount of transmitted light is 150 and the amount of irradiated light is 7500.
  • the transmitted light amount is 75.
  • the detection unit 7 has a detectable threshold (100 in this experiment), it is detected as 150 when the transmitted light quantity is 150, but it is not detected because it falls below the detection threshold when the transmitted light quantity is 75. Will be zero. That is, in this case, since the light quantity of the inspection light 3 has become low due to the three lenses reducing light unevenness, the quantity of light to be detected rapidly decreases to 0, and the inspection becomes impossible.
  • the rate of correct answers is rapidly deteriorating when the amount of irradiation light decreases.
  • the correct answer rate is increased to 95%. If the required correct answer rate is 90%, the test can not be performed because the required correct answer rate is not reached when the irradiation light amount is 10000.
  • the percentage of light loss to the inspection object was about 99%, but this figure is not fixed.
  • the loss of light in the object to be inspected is increased, and the amount of transmitted light is further reduced, and the inspection accuracy is deteriorated. That is, the loss of light becomes large and the amount of transmitted light can not be obtained, and the amount of light loss is lower than the amount of light for obtaining a required correct answer rate or lower than the detection threshold of the detection unit 7 and inspection itself becomes impossible. More serious adverse effects on test results. Therefore, it is more important not to reduce the irradiation light amount.
  • the detection unit 7 when the light passes through the object 1 and is detected by the detection unit 7, it is not detected as it falls below the detection threshold, so that the inspection accuracy may deteriorate or the inspection may become impossible. However, if the amount of light of the inspection light 3 is large, the light travels through the object 1 to every corner and is transmitted, and the amount of light detected by the detection unit 7 increases. It becomes possible to detect evenly and inspection accuracy improves.
  • the influence of unevenness in light intensity can be reduced, so the number of optical systems can be reduced and the loss of inspection light can be suppressed.
  • the amount of irradiated light is increased as compared to the prior art.
  • the increase of the irradiation light quantity can achieve the following synergetic effect in addition to the S / N ratio improvement by simply increasing the detection light.
  • FIG. 8 is a view showing the configuration of an inspection apparatus 200 according to the present embodiment.
  • the inspection apparatus 200 includes a support 5 ⁇ / b> A instead of the support 5.
  • the support 5 ⁇ / b> A has a recess 9 for placing the object 1.
  • the bottom surface of the recess 9 is a reflective surface that reflects the light transmitted through the object 1.
  • the inspection light emitted from the light source 2 passes through the object 1, is reflected by the bottom of the recess 9, is condensed by the lens 6, and reaches the detection unit 7.
  • the same effect as that of the inspection apparatus 100 can be obtained. Furthermore, in the inspection apparatus 200, after the inspection light 3 passes through the object 1, it is reflected by the bottom of the recess 9 and passes through the object 1 again, so that the transmitted light 8 includes more information of foreign matter. Become. Therefore, the detection accuracy of the foreign substance contained in the object 1 can be enhanced.
  • FIG. 9 is a view showing the configuration of an inspection apparatus 300 according to the present embodiment.
  • a circular rotor 21 is provided as a member for supporting the object 1, instead of the linearly moving support portion 5.
  • members other than the rotor 21 such as the light source 2 are omitted.
  • the basic configuration of the inspection apparatus 300 is the same as the configuration of the inspection apparatus 100.
  • the plurality of objects 1 are arranged circumferentially along the outer edge of the rotor 21.
  • one target 1 to be inspected is included in the irradiation range of the spot 4 of the inspection light 3 emitted from the light source 2.
  • the positional relationship between the object 1 and the spot 4 is set such that each of the objects 1 passes through the center of the spot 4.
  • R be the radius of the track 24 on which the object 1 is transported.
  • the transport speed (peripheral speed) of the object 1 is set to Vc.
  • Trajectory 24 preferably passes through the center of object 1.
  • the spot 4 covers the entire object 1A.
  • the rotor 21 moves the object 1 in the direction of the arrow 110 in FIG. 9 as it rotates.
  • the angle at which the object 1A moves from the measurement start time S to the measurement end time E is indicated by the arrow 23.
  • the detection unit 7 measures the object 1 within the range of the measurement time t indicated by the following equation (8).
  • the object 1 can cross the spot 4 to reduce the influence of the unevenness. Moreover, it becomes possible to implement
  • FIG. 10 is a diagram for explaining a second inspection method in the inspection apparatus 300.
  • the measurement start time S is when the spot 4 slightly covers the object 1A (or the outer edge of the spot 4 circumscribes the outer edge of the object 1A).
  • the other conditions are the same as in the first inspection method, and the plurality of objects 1 are disposed on the same circular trajectory 24 so that the angle Mc is larger than the angle Wc.
  • the object 1A moves to the position indicated by the reference numeral 25 between the measurement start time S and the measurement end time E.
  • the change in angle of the object 1 at this time is indicated by the arrow 26.
  • the detection unit 7 detects the object 1 within the range of the measurement time tc indicated by the following equation (9) or (10). Make a measurement.
  • FIG. 11 is a diagram for explaining a third inspection method in the inspection apparatus 300.
  • a set of objects 1 be an object set 1C.
  • the spot 4 has a size that can cover the entire target set 1C. If the target set 1C is regarded as one inspection target, the first or second inspection method in the inspection apparatus 300 can be applied to inspect a plurality of target sets 1C.
  • Embodiment 4 Other embodiments of the present disclosure will be described below.
  • FIG. 15 is a view showing the configuration of a manufacturing apparatus 900 according to this embodiment.
  • the manufacturing apparatus 900 is a manufacturing apparatus for manufacturing the object 1.
  • the manufacturing apparatus 900 includes a manufacturing unit 910, a belt conveyor 920, and an inspection apparatus 100.
  • the production unit 910 is a unit for producing the object 1.
  • the belt conveyor 920 conveys the object 1 manufactured by the manufacturing unit 910 to the inspection apparatus 100.
  • the inspection apparatus 100 inspects the object 1 conveyed by the belt conveyor 920.
  • the object 1 conveyed by the belt conveyor 920 may be moved to the support 5 (see FIG. 1 and the like) by a robot arm or the like.
  • the belt conveyor 920 and the support 5 may be configured as a series of members.
  • the manufacturing apparatus 900 is a manufacturing apparatus for manufacturing the object 1 and includes the inspection apparatus 100.
  • the manufacturing apparatus 900 by inspecting the object 1 manufactured by the manufacturing unit 910 with the inspection apparatus 100, defective products can be eliminated in a short time with high accuracy.
  • the manufacturing apparatus 900 may include the inspection apparatus 200 or 300 instead of the inspection apparatus 100.
  • control block (particularly, the determination unit 11) of the control device 10 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software.
  • the control device 10 includes a computer that executes instructions of a program that is software that implements each function.
  • the computer includes, for example, at least one processor (control device) and at least one computer readable storage medium storing the program.
  • the processor reads the program from the recording medium and executes the program to achieve the object of the present disclosure.
  • a CPU Central Processing Unit
  • the above-mentioned recording medium a tape, a disk, a card, a semiconductor memory, a programmable logic circuit or the like can be used besides “a non-temporary tangible medium”, for example, a ROM (Read Only Memory).
  • a RAM Random Access Memory
  • the program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
  • any transmission medium communication network, broadcast wave, etc.
  • one aspect of the present disclosure may also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.

Abstract

The present invention reduces the influence of unevenness of the light intensity of an inspection light without using an optical system for reducing the light intensity unevenness. An inspection device (100) continually or intermittently illuminates each object (1) with an inspection light (3) while changing the relative positional relationship between the objects (1) and the illumination range, so as to create a condition where the entirety of each object (1) is in the illumination range of the inspection light (3), and while changing said relative positional relationship, the inspection device causes a detection unit (7) to detect any transmitted light (8).

Description

検査装置、検査方法および製造装置Inspection apparatus, inspection method and manufacturing apparatus
 本開示は、光を照射することにより非破壊で検査を行う検査装置に関するものである。 The present disclosure relates to an inspection apparatus that performs inspection nondestructively by irradiating light.
 光源から出射された検査光を、光学系を介して検査の対象物に照射し、当該対象物に反射した光または当該対象物を透過した光を受光する非破壊の検査装置が知られている。カメラで外観を撮影する形式の検査装置では、対象物の内部の異物または欠陥を検出できないため、こうした非破壊の検査装置が用いられる。このような検査装置の一例が特許文献1に開示されている。特許文献1に記載の発明では、検査の対象物と検査光のスポットとを相対的に変位させて対象物を検査している。 There is known a nondestructive inspection apparatus which irradiates inspection light emitted from a light source to an object of inspection via an optical system and receives light reflected by the object or light transmitted through the object. . In the inspection apparatus of the type which photographs the appearance with a camera, since the foreign material or defect inside the object can not be detected, such nondestructive inspection apparatus is used. Patent Document 1 discloses an example of such an inspection apparatus. In the invention described in Patent Document 1, the object is inspected by relatively displacing the inspection object and the spot of the inspection light.
 図12は、光源から出射される光の、出射方向に依存した光強度のばらつきの一例を概念的に示す図である。図12に示すように、一般的に光源(特にLED(発光ダイオード))から出射される光の強度は均一ではない。そのため、検査光のスポットには光強度のムラが生じる。こうしたムラの影響により検査精度が低下することがある。そこで、特許文献1に記載の発明では、LED光源の光を拡散板およびファイバを通じて平均化させることにより当該ムラを低減している。 FIG. 12 is a diagram conceptually showing an example of variation in light intensity depending on the emission direction of light emitted from the light source. As shown in FIG. 12, in general, the intensity of light emitted from a light source (in particular, an LED (light emitting diode)) is not uniform. Therefore, unevenness of light intensity occurs in the spot of the inspection light. The influence of such unevenness may lower the inspection accuracy. So, in the invention of patent document 1, the said nonuniformity is reduced by averaging the light of a LED light source through a diffusion plate and a fiber.
国際公開WO2011/121694(2011年10月6日公開)International Publication WO2011 / 121694 (released on October 6, 2011)
 しかしながら、光強度のムラを低減するための光学系を設けることにより、検査光の光損失が発生する、検査装置が複雑化するなどの問題が生じる。 However, the provision of an optical system for reducing unevenness in light intensity causes problems such as occurrence of light loss of inspection light and complication of the inspection apparatus.
 本開示は、検査光の光強度のムラを低減するための光学系を用いなくとも当該ムラの影響を低減できる検査装置を実現することを目的とする。 An object of the present disclosure is to realize an inspection apparatus capable of reducing the influence of the unevenness without using an optical system for reducing the unevenness of the light intensity of the inspection light.
 上記の課題を解決するために、本開示の一態様に係る検査装置は、複数の対象物のそれぞれに対して検査光を照射する光源と、前記対象物と前記検査光の照射範囲との相対位置関係を変化させる移動機構と、前記対象物を透過した透過光を所定のタイミングで検出する検出部とを備え、前記相対位置関係を変化させながら、個々の前記対象物の全体が前記照射範囲に含まれる状態が発生するように、継続的または断続的に前記検査光を前記対象物に照射するとともに、前記相対位置関係を変化させながら、前記検出部により前記透過光を検出する。 In order to solve the above-mentioned subject, an inspection device concerning one mode of this indication is a light source which irradiates inspection light to each of a plurality of objects, and a relative of the irradiation range of the object and the inspection light and the inspection light A moving mechanism for changing the positional relationship, and a detection unit for detecting the transmitted light transmitted through the object at a predetermined timing, and while changing the relative positional relationship, the whole of the individual objects is the irradiation range The inspection light is continuously or intermittently applied to the object so as to generate a state included in the above, and the transmitted light is detected by the detection unit while changing the relative positional relationship.
 本開示の一態様に係る検査方法は、対象物を検査するための方法であって、複数の前記対象物のそれぞれに対して検査光を照射する工程と、前記対象物と前記検査光の照射範囲との相対位置関係を変化させる工程と、前記対象物を透過した透過光を所定のタイミングで検出する工程と、前記相対位置関係を変化させながら、個々の前記対象物の全体が前記照射範囲に含まれる状態が発生するように、継続的または断続的に前記検査光を前記対象物に照射する工程と、前記相対位置関係を変化させながら、前記検出部により前記透過光を検出する工程とを含む。 An inspection method according to an aspect of the present disclosure is a method for inspecting an object, comprising: irradiating each of a plurality of the objects with an inspection light; and irradiating the object and the inspection light The step of changing the relative positional relationship with the range, the step of detecting the transmitted light transmitted through the object at a predetermined timing, and the irradiation range of the entire individual objects while changing the relative position relationship Irradiating the inspection light to the object continuously or intermittently so as to generate the state included in the step; and detecting the transmitted light by the detection unit while changing the relative positional relationship; including.
 本開示の一態様によれば、検査光の光強度のムラを低減するための光学系を用いなくとも当該ムラの影響を低減できるという効果を奏する。 According to an aspect of the present disclosure, the effect of the unevenness can be reduced without using an optical system for reducing the unevenness of the light intensity of the inspection light.
(a)は、本開示の実施形態1に係る検査装置の構成を示す図である。(b)は、集光レンズを備える検査装置の構成の一部を示す図である。(A) is a figure showing the composition of the inspection device concerning Embodiment 1 of this indication. (B) is a figure which shows a part of structure of a test | inspection apparatus provided with a condensing lens. 上記検査装置における検査方法を説明するための図である。It is a figure for demonstrating the inspection method in the said inspection apparatus. 上記検査装置における処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the process in the said test | inspection apparatus. 上記検査装置における別の検査方法を説明するための図である。It is a figure for demonstrating another inspection method in the said inspection apparatus. 上記検査装置におけるさらに別の検査方法を説明するための図である。It is a figure for demonstrating the further another inspection method in the said inspection apparatus. (a)は、対象物の測定条件と正答率との関係を示す図である。(b)は、対象物の測定を別の条件にて行った結果を示す図である。(A) is a figure which shows the relationship between the measurement conditions of a target object, and a correct answer rate. (B) is a figure which shows the result of having performed the measurement of the object on another conditions. 上記検査装置が備える光源が発する検査光の強度のムラを概念的に示す図である。It is a figure which shows notionally the nonuniformity of the intensity | strength of the test light which the light source with which the said test | inspection apparatus is equipped emits. 本開示の実施形態2に係る検査装置の構成を示す図である。It is a figure which shows the structure of the inspection apparatus which concerns on Embodiment 2 of this indication. 本開示の実施形態3に係る検査装置の構成を示す図である。It is a figure which shows the structure of the inspection apparatus which concerns on Embodiment 3 of this indication. 上記検査装置における第2の検査方法を説明するための図である。It is a figure for demonstrating the 2nd inspection method in the said inspection apparatus. 上記検査装置における第3の検査方法を説明するための図である。It is a figure for demonstrating the 3rd inspection method in the said inspection apparatus. 検査光の強度のムラの一例を概念的に示す図である。It is a figure which shows notionally an example of the nonuniformity of the intensity | strength of test | inspection light. 使用する集光レンズの枚数と検査光の光損失との関係を示す図である。It is a figure which shows the relationship between the number of objects of the condensing lens to be used, and the optical loss of test light. 光量と正答率との関係を示す図である。It is a figure which shows the relationship between a light quantity and a correct answer rate. 本開示の実施形態4に係る製造装置の構成を示す図である。It is a figure which shows the structure of the manufacturing apparatus which concerns on Embodiment 4 of this indication.
 〔実施形態1〕
 以下、本開示の一実施形態について、詳細に説明する。図1の(a)は、対象物1を検査対象とする検査装置100の構成を示す図である。
Embodiment 1
Hereinafter, an embodiment of the present disclosure will be described in detail. (A) of FIG. 1 is a figure which shows the structure of the test | inspection apparatus 100 which makes the target object 1 test object.
 対象物1は、検査装置100の検査対象となる物体であり、例えば錠剤である。対象物1の形状は、円筒形状に限定されず、どのような形状であってもよい。対象物1は、粉末を固めて固形に成形されたものであってよい。例えば、対象物1は、薬剤であってもよく、食品であってもよい。対象物1は、カプセルの内部に何らかの内容物を収めたものであってもよい。ここでいうカプセルは、ソフトカプセルであってもよい。すなわち、対象物1は、薬品、医薬品、健康保持用摂取品、栄養剤、顆粒剤、散剤、フィルム剤、カプセル剤からなる群から選ばれたいずれかであってもよい。 The object 1 is an object to be inspected by the inspection apparatus 100, and is, for example, a tablet. The shape of the object 1 is not limited to a cylindrical shape, and may be any shape. The object 1 may be one obtained by solidifying the powder. For example, the subject 1 may be a drug or a food. The object 1 may have some contents inside a capsule. The capsule here may be a soft capsule. That is, the subject 1 may be any one selected from the group consisting of medicines, medicines, health care intakes, nutrients, granules, powders, films and capsules.
 検査によって異物として検出すべきものとしては、毛髪、虫などの有機物が想定される。樹脂片や金属なども異物として検出すべきものに含めてもよい。 Organic substances such as hair and insects are assumed to be detected as foreign substances by inspection. A piece of resin, metal or the like may be included in the substance to be detected as a foreign matter.
 光源2は、複数の対象物1のそれぞれに対して検査光3を継続的または断続的に照射する光源であり、例えば、ハロゲンランプを備えていてもよい。検査光3は、対象物1の全体が検査光3のスポット4(照射範囲)に含まれる状態が、当該対象物1の検査中に、少なくとも一時的に発生するように照射される。なお図1ではスポット4の形状は円になっているが、円に限定するものではない。 The light source 2 is a light source that irradiates the inspection light 3 continuously or intermittently to each of the plurality of objects 1 and may include, for example, a halogen lamp. The inspection light 3 is irradiated such that a state in which the whole of the object 1 is included in the spot 4 (irradiation range) of the inspection light 3 occurs at least temporarily during the inspection of the object 1. In addition, although the shape of the spot 4 is circular in FIG. 1, it does not limit to a circle.
 本実施形態では、検査光3の出射口から光拡散部材などを介さずに検査光3を対象物1に照射する。一般には、光拡散部材などを用いて光のムラを低減されることがあるが、本実施形態のように検査光3の透過光を検出する場合においては以下のような不具合が生じる。これらの部材は光を拡散する過程で検査光3を大きく損失してしまう。すると対象物1への光の照射パワーが低下するため対象物1を透過する光のパワーも低下して検出が困難になってしまう。特に対象物1の内部で光が強く散乱されて透過光が微弱になる場合はより深刻な問題となる。例えば粉体を成形した錠剤が挙げられる。この不具合を解消するために光源のパワーを上げて対象物1に照射できる光量を増やそうとしても、消費電力が大きくなったり、光源の寿命が短くなってメンテナンスの労力が増えたりするという問題が生じてしまう。本実施形態では、検査光3の出射口から光拡散部材などを介さずに検査光3を対象物1に照射するため、検査光3を有効に利用することができる。本実施形態では、検査光3の出射口から光拡散部材などを介さずに検査光3を対象物1に照射するため、検査光3のスポット4には光強度のムラが含まれているが、後述のように対象物1とスポット4との相対位置関係を特定の条件で変化させることでムラの影響による検査精度の低下を抑えている。 In the present embodiment, the inspection light 3 is irradiated to the object 1 from the exit of the inspection light 3 without passing through the light diffusing member or the like. In general, unevenness of light may be reduced by using a light diffusion member or the like, but the following problems occur when detecting the transmitted light of the inspection light 3 as in the present embodiment. These members greatly lose the inspection light 3 in the process of diffusing the light. Then, since the irradiation power of the light to the object 1 decreases, the power of the light transmitted through the object 1 also decreases, which makes detection difficult. In particular, when the light is strongly scattered inside the object 1 and the transmitted light becomes weak, the problem becomes more serious. For example, tablets formed into powder may be mentioned. Even if it is attempted to increase the power of the light source and increase the amount of light that can be irradiated to the object 1 in order to solve this problem, the power consumption increases and the life of the light source shortens and maintenance labor increases. It will occur. In the present embodiment, since the inspection light 3 is irradiated to the object 1 from the exit of the inspection light 3 without passing through the light diffusing member or the like, the inspection light 3 can be effectively used. In the present embodiment, the spot 4 of the inspection light 3 includes unevenness of light intensity because the inspection light 3 is irradiated to the object 1 from the exit of the inspection light 3 without passing through the light diffusion member or the like. As described later, the relative positional relationship between the object 1 and the spot 4 is changed under specific conditions to suppress the decrease in inspection accuracy due to the influence of unevenness.
 なお検査光3を集光あるいは導光する為に光の損失が小さい光学部材を使用するのであれば構わない。例えば光ファイバで光源2からの光を対象物1まで導く場合や、レンズで光源2からの光を対象物1へ集光させる場合である。一般にこうした集光や導光のための光学部材は、光拡散部材に比べて光の損失が抑えられる。 In addition, in order to condense or guide the inspection light 3, any optical member having a small light loss may be used. For example, the light from the light source 2 may be guided to the object 1 by an optical fiber, or the light from the light source 2 may be condensed onto the object 1 by a lens. Generally, such an optical member for light collection and light guiding has less light loss than a light diffusing member.
 図1の(b)は、集光レンズ群61を備える検査装置100の構成の一部を示す図である。図1の(b)に示す例では、光源2からの検査光3は、集光レンズ群61によって配光制御され、対象物1に照射される。 FIG. 1B is a view showing a part of the configuration of the inspection apparatus 100 provided with the condensing lens group 61. As shown in FIG. In the example shown in (b) of FIG. 1, the inspection light 3 from the light source 2 is subjected to light distribution control by the condenser lens group 61 and is irradiated onto the object 1.
 ただしこの場合も使用する集光レンズ群61を構成するレンズは3枚以下であることが望ましい。集光の為に使用するレンズは3枚あればスポット径を最適に調整できるが、4枚以上の使用は光の損失が大きくなるために検査の効率が落ちてしまう。また3枚までであれば一体型のコンパクトな集光レンズとして設ける事が出来、光学系が複雑化するという問題が生じない。 However, in this case as well, it is desirable that the number of lenses constituting the condensing lens group 61 used be three or less. If the number of lenses used for focusing is three, the spot diameter can be adjusted optimally, but if four or more lenses are used, the light loss will be large, which will lower the efficiency of inspection. Moreover, if it is up to three, it can be provided as an integrated compact condensing lens, and the problem that an optical system becomes complicated does not arise.
 検査光3のピーク波長は、たとえば600nm以上2500nm以下であってよい。検査光3のピーク波長は、この範囲内に限られないが、この波長域においては、対象物1を透過しやすく、かつ、紫外線を照射したときのように対象物1を損傷させることがないので、好ましい。 The peak wavelength of the inspection light 3 may be, for example, 600 nm or more and 2500 nm or less. The peak wavelength of the inspection light 3 is not limited to this range, but in this wavelength range, it easily penetrates the object 1 and does not damage the object 1 as when irradiated with ultraviolet light. So preferred.
 さらに、検査光3のピーク波長は、たとえば800nm以上1600nm以下であってよい。検査光3の波長の1600nm付近には、一般的なタブレットに多く含まれるスターチ、乳糖、結晶セルロースなどの大きな吸収ピークがあり、混入した異物によるスペクトルへの影響が覆い隠されてしまう。また、波長が短すぎたり長すぎたりすると光散乱、吸収などによる光損失が大きくなってしまう。そのため、検査光3のピーク波長としては800nm以上1600nm以下であることが好ましい。 Furthermore, the peak wavelength of the inspection light 3 may be, for example, 800 nm or more and 1600 nm or less. There is a large absorption peak of starch, lactose, crystalline cellulose, etc., which is commonly contained in general tablets, at around 1600 nm of the wavelength of the inspection light 3, and the influence of foreign substances mixed in on the spectrum is obscured. If the wavelength is too short or too long, the light loss due to light scattering, absorption, etc. will be large. Therefore, the peak wavelength of the inspection light 3 is preferably 800 nm or more and 1600 nm or less.
 本実施の形態では光源2の一例としてハロゲンランプを挙げたが、光源2の種類はこれに限らず他の種類のランプなどであってもよい。光源2は、異物を検出できる波長の光を照射できる装置であればよく、たとえばタングステンランプ、蛍光体、LED、レーザのいずれかであってもよい。 In the present embodiment, a halogen lamp is given as an example of the light source 2, but the type of the light source 2 is not limited to this and may be another type of lamp or the like. The light source 2 may be any device that can emit light of a wavelength that can detect foreign matter, and may be, for example, any of a tungsten lamp, a phosphor, an LED, and a laser.
 支持部5は、対象物1を支持する部材であり、対象物1を透過した透過光8を通過させる開口部(図示せず)を有している。対象物1が円盤型である場合には、当該開口部の内径は、対象物1の外径より小さい。また、支持部5における対象物1を載置する箇所は、光を透過する波長特性を有する透明部材で形成されていてもよい。当該透明部材の材料としては、たとえば、石英ガラス、または、合成石英ガラスを採用することができる。また、支持部5には、対象物1を1個ずつ挿入するための凹部が形成されていてもよい。 The support 5 is a member for supporting the object 1 and has an opening (not shown) for transmitting the transmitted light 8 transmitted through the object 1. When the object 1 is a disc, the inside diameter of the opening is smaller than the outside diameter of the object 1. Moreover, the location in which the target object 1 in the support part 5 is mounted may be formed with the transparent member which has a wavelength characteristic which permeate | transmits light. As a material of the said transparent member, quartz glass or synthetic quartz glass is employable, for example. Moreover, the recessed part for inserting the target object 1 one each may be formed in the support part 5. FIG.
 光源2と支持部5とは相対的に移動する。光源2が移動してもよいし、支持部5が移動してもよい。本実施形態では、光源2の位置が固定されており、支持部5が図1の(a)における矢印110の方向に移動するものとする。そのため、支持部5は、対象物1と検査光3のスポット4との相対位置関係を変化させる移動機構として機能する。具体的には、支持部5は、複数の対象物1を連続的にスポット4の位置(換言すれば、検出部7による検査位置)に供給する。 The light source 2 and the support 5 move relative to each other. The light source 2 may move, or the support 5 may move. In the present embodiment, the position of the light source 2 is fixed, and the support portion 5 is moved in the direction of the arrow 110 in FIG. Therefore, the support unit 5 functions as a moving mechanism that changes the relative positional relationship between the object 1 and the spot 4 of the inspection light 3. Specifically, the support unit 5 continuously supplies the plurality of objects 1 to the position of the spot 4 (in other words, the inspection position by the detection unit 7).
 レンズ6は、透過光8を検出部7に向けて集光するための光学部材であり、支持部5の下側、かつ支持部5の開口部または透明部材と同軸となる位置に配置されている。 The lens 6 is an optical member for condensing the transmitted light 8 toward the detection unit 7 and is disposed on the lower side of the support unit 5 and at a position coaxial with the opening of the support unit 5 or the transparent member There is.
 検出部7は、対象物1を透過した透過光を所定のタイミングで検出する装置である。検出部7として、例えばポリクロメータ式の分光器を用いることとしてよい。ポリクロメータ式の分光器においては、各波長に分光するプリズムの先に受光素子が多数並んでおり、各波長光を同時に測定できる。ポリクロメータ式の分光器は、測定時間が短いという利点を有する。 The detection unit 7 is a device that detects transmitted light transmitted through the object 1 at a predetermined timing. For example, a polychromator-type spectrometer may be used as the detection unit 7. In the polychromator type spectroscope, a large number of light receiving elements are arranged at the end of a prism for dispersing light of each wavelength, and light of each wavelength can be measured simultaneously. Polychromator spectrometers have the advantage of short measurement times.
 ポリクロメータには、受光素子とプリズムとを用いた方式のものや、CCD(Charge Coupled Device)を用いた方式のものなどがある。ポリクロメータの種類は、検査装置の構成や測定するタブレットの種類、光の波長などに応じて適宜選択される。本実施の形態では、一例として、CCDよりも精度の良いInGaAs受光素子とプリズムとを組み合わせた方式を用いる。 The polychromator may be of a type using a light receiving element and a prism, or a type using a CCD (Charge Coupled Device). The type of polychromator is appropriately selected according to the configuration of the inspection apparatus, the type of tablet to be measured, the wavelength of light, and the like. In this embodiment, as an example, a system combining an InGaAs light receiving element and a prism, which are more accurate than a CCD, is used.
 検出部7に備わる分光器は、受光した光のスペクトルを測定する。検出部7は、分光器を備えるとは限らない。検出部7は、たとえばフォトダイオード、フォトトランジスタ、アバランシェフォトダイオード、光電子倍増管のいずれかを備える構成であってもよい。検出部7における受光素子の個数、配置などは、異物検査装置の構成、測定すべき対象物の種類、用いられる光の波長などに応じて適宜選択される。 The spectroscope provided in the detection unit 7 measures the spectrum of the received light. The detection unit 7 does not have to include a spectroscope. The detection unit 7 may be configured to include, for example, any one of a photodiode, a phototransistor, an avalanche photodiode, and a photomultiplier. The number, arrangement, and the like of the light receiving elements in the detection unit 7 are appropriately selected according to the configuration of the foreign matter inspection apparatus, the type of the object to be measured, the wavelength of the light to be used, and the like.
 なお、対象物1を透過した光を、光ファイバなどの光学部材を用いて検出部7に導いてもよい。 The light transmitted through the object 1 may be guided to the detection unit 7 using an optical member such as an optical fiber.
 検出部7は、常に透過光8を測定しているわけではなく、間欠的に測定を行う。検査の対象物1が検査位置に来たタイミングに合わせて測定を開始し、検査光3の走査が終われば測定を止めて次の検査の対象物1が検査位置に来た時にまた測定を開始する。 The detection unit 7 does not always measure the transmitted light 8 but performs measurement intermittently. Measurement is started according to the timing when the inspection object 1 comes to the inspection position, measurement is stopped when scanning of the inspection light 3 is finished, and measurement is started again when the object 1 for the next inspection comes to the inspection position Do.
 このように必要な時間だけ測定することで、不良品の排除指示を出すまでの時間を短縮することができる。また、現時点の検査の対象物1の測定データと次の検査の対象物1の測定データとを明確に区別するためにも、間欠的に測定を行うことが好ましい。 By measuring only for the necessary time in this manner, it is possible to shorten the time until the removal instruction of the defective product is issued. Moreover, in order to clearly distinguish the measurement data of the object 1 of the current inspection from the measurement data of the object 1 of the next inspection, it is preferable to perform the measurement intermittently.
 なお、光源2からの検査光3をパルス状に照射するよう光源2を制御してもよい。本実施形態では、光源2は点灯・消灯に時間がかかるハロゲンランプであるため常時点灯させておいたほうが好ましい。そのため、制御装置10は、検出部7の測定を間欠的に行うよう検出部7を制御する。 The light source 2 may be controlled to irradiate the inspection light 3 from the light source 2 in a pulse shape. In the present embodiment, since the light source 2 is a halogen lamp which takes a long time to turn on and off, it is preferable to always turn it on. Therefore, the control device 10 controls the detection unit 7 to intermittently perform the measurement of the detection unit 7.
 制御装置10は、光源2、検出部7、支持部5を移動させる駆動機構などを制御する。制御部13による各処理は、中央演算装置(CPU:Central Processing Unit)によって実現されてもよい。制御装置10は、判定部11および記憶部12を備えている。 The control device 10 controls the light source 2, the detection unit 7, and a drive mechanism for moving the support 5. Each process by the control unit 13 may be realized by a central processing unit (CPU). The control device 10 includes a determination unit 11 and a storage unit 12.
 判定部11は、透過光に基づき検出部7によって得られる対象物1の測定データと、記憶部12に格納されたデータとを参照して演算を行ない、対象物1の内部に、混入した異物が含まれているか否かを判定する。 The determination unit 11 performs an operation with reference to the measurement data of the object 1 obtained by the detection unit 7 based on the transmitted light and the data stored in the storage unit 12, and foreign matter mixed in the object 1. Is determined.
 記憶部12は、検査に必要な情報を記憶するためのものである。記憶部12は、たとえば、検出部7による測定データを一時的に記憶するための領域、制御装置10が実行する各種プログラム、これらのプログラムにおいて使用されるデータを記憶するための領域、これらのプログラムがロードされる領域、および、これらプログラムが実行される際に使用される作業領域などを備えている。ここでいう各種プログラムとは、たとえば、判定を行なうためのプログラム、計算アルゴリズム、データベースなどである。記憶部12は、判定部11による判定のために用いられる基準データを保持することができる。 The storage unit 12 is for storing information necessary for the examination. For example, the storage unit 12 is an area for temporarily storing measurement data by the detection unit 7, various programs executed by the control device 10, an area for storing data used in these programs, and these programs And a work area used when these programs are executed. The various programs mentioned here are, for example, a program for performing determination, a calculation algorithm, a database, and the like. The storage unit 12 can hold reference data used for determination by the determination unit 11.
 (第1の検査方法)
 図2は、検査装置100における検査方法を説明するための図である。直近の検査の対象となる対象物1(注目する対象物)を対象物1Aとし、その次に検査される対象物1を対象物1Bとし、対象物1Aと対象物1Bとの間隔をMとする。検出部7の測定開始時刻をSとする。このとき、図2に示すように、スポット4は対象物1Aの全体を覆っているものとする。対象物1の、搬送方向に平行な方向における幅をWとする。支持部5は、図2における矢印110の方向に対象物1を移動させる。測定開始時刻Sから測定終了時刻Eまでの間に対象物1Aが移動する距離を矢印16で示している。
(First inspection method)
FIG. 2 is a diagram for explaining an inspection method in the inspection apparatus 100. The target 1 (target to be focused on) to be the target of the most recent inspection is the target 1A, the target 1 to be inspected next is the target 1B, and the distance between the target 1A and the target 1B is M and Do. The measurement start time of the detection unit 7 is S. At this time, as shown in FIG. 2, it is assumed that the spot 4 covers the whole of the object 1A. Let W be the width of the object 1 in the direction parallel to the transport direction. The support 5 moves the object 1 in the direction of the arrow 110 in FIG. The distance by which the object 1A moves from the measurement start time S to the measurement end time E is indicated by the arrow 16.
 対象物1の搬送速度をVとし、検出部7の測定時間(すなわち、測定開始時刻Sから測定終了時刻Eまでの積算時間)をtとすると、次の式(1)が示す測定時間tの範囲内で検出部7は、対象物1の測定(透過光8の検出)を行う。 Assuming that the transport speed of the object 1 is V and the measurement time of the detection unit 7 (that is, the integration time from the measurement start time S to the measurement end time E) is t, the measurement time t indicated by the following equation (1) Within the range, the detection unit 7 measures the object 1 (detects the transmitted light 8).
 0<t≦ W/V・・・(1)
 すなわち、スポット4と対象物1との相対位置が、対象物1の幅W分変化する時間(すなわち、検査光3の光軸が対象物1を横切るために必要な時間)以下の時間で検出部7は対象物1の測定を行う。換言すれば、スポット4が対象物1の全体を覆う位置から、スポット4が対象物1を覆わなくなる位置(符号15で示す位置)まで対象物1が移動するために要する時間を上限として検出部7は対象物1の測定を行う。検出部7が間欠的に透過光8を検出している場合には、測定開始時刻Sから測定終了時刻Eまでの積算の測定時間をtとする。
0 <t ≦ W / V (1)
That is, detection is performed in a time less than the time when the relative position between the spot 4 and the object 1 changes by the width W of the object 1 (that is, the time required for the optical axis of the inspection light 3 to cross the object 1) The unit 7 measures the object 1. In other words, from the position where the spot 4 covers the whole of the object 1 to the position where the spot 4 does not cover the object 1 (the position indicated by the reference numeral 15) 7 measures the object 1; When the detection unit 7 intermittently detects the transmitted light 8, the measurement time of integration from the measurement start time S to the measurement end time E is t.
 このように測定時間tをW/V以下にすることにより、効率的に検査を行うことができる。対象物1の生産スピードに対して検査スピードが遅くなると、検査工程が生産工程全体のスピードの律速となる。特に不良品を排除する機器と連動させる場合は、短時間で検査して異物の判定を行い排除機器に命令を送る必要がある。そのために、1ミリ秒の検査スピードの差でも致命的な問題となってしまうことがある。そのため、測定時間tの上限をW/Vにすることが好ましい。 By setting the measurement time t to W / V or less as described above, the inspection can be performed efficiently. When the inspection speed is slower than the production speed of the object 1, the inspection process becomes the rate-limiting of the speed of the entire production process. In particular, in the case of interlocking with a device for removing a defective product, it is necessary to inspect in a short period of time to determine foreign matter, and to send an instruction to the excluded device. Therefore, even a difference in inspection speed of 1 millisecond can be fatal. Therefore, it is preferable to set the upper limit of the measurement time t to W / V.
 また、対象物1とスポット4との相対位置関係を一次元的に変化させることにより、光スポットで2次元的に走査するよりも測定時間を短縮できる。 In addition, by changing the relative positional relationship between the object 1 and the spot 4 in one dimension, the measurement time can be shortened compared to two-dimensionally scanning with the light spot.
 また、間隔Mと幅Wとの関係を次の式(2)に示す関係とする。 Further, the relationship between the interval M and the width W is represented by the following equation (2).
 W<M  ・・・(2)
 すなわち、対象物1Aと対象物1Bとの間隔Mが、対象物1A(対象物1B)の幅Wよりも大きくなるように、各対象物1が支持部5の上に配置されている。また、間隔Mは、スポット4の搬送方向における幅よりも大きい。これらの条件を満たすことにより、対象物1Aと対象物1Bとが同時に測定されてしまうこと(換言すれば、一度に複数の対象物1がスポット4の範囲内に入ること)を防止できる。
W <M (2)
That is, each target 1 is disposed on the support 5 such that the distance M between the target 1A and the target 1B is larger than the width W of the target 1A (target 1B). Further, the distance M is larger than the width of the spot 4 in the transport direction. By satisfying these conditions, it can be prevented that the object 1A and the object 1B are simultaneously measured (in other words, a plurality of objects 1 fall within the range of the spot 4 at one time).
 このように複数の対象物1の間隔を整えて対象物1を支持部5の上に配置する配置機構(例えば、ロボットアーム)を検査装置100が備えていてもよい。 As described above, the inspection apparatus 100 may include an arrangement mechanism (for example, a robot arm) that arranges the plurality of objects 1 on the support 5 by adjusting the distance between the plurality of objects 1.
 逆に、一度に複数の対象物1がスポット4の範囲内に入らないように、スポット4の大きさを設定してもよい。 Conversely, the size of the spot 4 may be set so that a plurality of objects 1 do not fall within the range of the spot 4 at one time.
 また、スポット4に光強度のムラがあっても、対象物1とスポット4との相対位置関係を変化させながら測定することにより、当該ムラの検査結果に及ぼす影響が低減され、検査精度を保つことができる。 In addition, even if there is unevenness of light intensity in the spot 4, by measuring while changing the relative positional relationship between the object 1 and the spot 4, the influence exerted on the inspection result of the unevenness is reduced and the inspection accuracy is maintained. be able to.
 なお、前記相対位置関係をどれだけ変化させれば、当該ムラが悪影響を及ぼさない程度まで低減されるかについては、光源2の種類、およびスポット4の大きさと対象物1の大きさとの関係等によって異なる。後述する実施例1では、検査の好ましい正答率が得られる前記相対位置関係の変化量の下限は2.5mmであり、このときの測定時間tは2msである。そのため、実施例1においては、上記式(1)における測定時間tの下限値を、次の式(1A)が示すように2msとすることが好ましい。 As to how much the relative positional relationship is changed, the kind of the light source 2 and the relationship between the size of the spot 4 and the size of the object 1, etc. can be reduced to the extent that the unevenness does not adversely affect. Depends on In Example 1 to be described later, the lower limit of the amount of change of the relative positional relationship at which a preferable percentage of correct answers for inspection can be obtained is 2.5 mm, and the measurement time t at this time is 2 ms. Therefore, in the first embodiment, it is preferable to set the lower limit value of the measurement time t in the above equation (1) to 2 ms as the following equation (1A) indicates.
 2〔ms〕≦t≦ W/V・・・(1A)
 図3は、検査装置100における処理の流れの一例を示すフローチャートである。光源2は、検査光3の照射を開始する(S1)。ここでは、検査光3は常時検査光3を照射しているものとする。対象物1の全体がスポット4の範囲に入るタイミングで検出部7は、測定を開始し(S2)、対象物1が幅Wに相当する距離移動した時点で(S3にてYES)測定を終了する(S4)。検出部7は、この間に取得した測定データ(透過光8の強度を示すデータ)を判定部11へ出力する。
2 [ms] ≦ t ≦ W / V (1A)
FIG. 3 is a flowchart illustrating an example of the flow of processing in the inspection apparatus 100. The light source 2 starts irradiation of the inspection light 3 (S1). Here, it is assumed that the inspection light 3 always emits the inspection light 3. The detection unit 7 starts the measurement (S2) at the timing when the whole of the object 1 enters the range of the spot 4 (S2), and ends the measurement when the object 1 moves a distance corresponding to the width W (YES in S3) To do (S4). The detection unit 7 outputs the measurement data (data indicating the intensity of the transmitted light 8) acquired during this time to the determination unit 11.
 判定部11は、検査を開始する前に光源2と検出部7の間に対象物1が無い状態で予め測定しておいた検査光3の強度Iと上記測定データが示す透過光8の強度Iとの差を反映した値を算出し、当該値から異物混入の有無を判定する(S5)。本実施の形態では、上記値として、波長ごとの吸光度A1(吸光度A1=log(I/I))を算出する。判定部11は、吸光度A1と、記憶部12に格納されたデータベースから読み出したタブレットの種類ごとの計算モデルとを参照して、タブレットの特徴を示す指標を算出し、異物混入の有無の判定を行う。 The determination unit 11 measures the intensity I 0 of the inspection light 3 and the transmitted light 8 indicated by the measurement data, which are measured in advance in a state where there is no object 1 between the light source 2 and the detection unit 7 before starting the inspection. A value reflecting the difference from the intensity I is calculated, and from the value, it is determined whether foreign matter is mixed (S5). In the present embodiment, as the above value, absorbance A1 for each wavelength (absorbance A1 = log (I 0 / I)) is calculated. The determination unit 11 refers to the absorbance A1 and the calculation model for each type of tablet read from the database stored in the storage unit 12 to calculate an index indicating the feature of the tablet, and determines the presence or absence of foreign matter contamination Do.
 なお、対象物1がタブレットである場合、内部での光の散乱が大きいので厳密にはA1を吸光度とは呼べないが、ここでは便宜的にこのA1を吸光度と定義する。判定部11が行う判定方法としては公知の方法を用いればよく、特に限定されない。 In addition, when the object 1 is a tablet, the scattering of light inside is large, so A1 can not be called the absorbance strictly, but here, for convenience, the A1 is defined as the absorbance. The determination method performed by the determination unit 11 may be a known method, and is not particularly limited.
 検査対象となる対象物1の全ての検査が終われば(S6にてYES)、検査装置100は、処理を終了する。異物混入と判定された対象物1あるいはこれを含むロットは廃棄される。 When all the inspections of the target 1 to be inspected are completed (YES in S6), the inspection apparatus 100 ends the process. The object 1 determined to be contaminated or the lot including the same is discarded.
 (第2の検査方法)
 図4は、検査装置100における第2の検査方法を説明するための図である。図4に示すように、スポット4が対象物1Aをわずかに覆っている状態(または、スポット4の外縁が対象物1Aの外縁と外接している状態)のときを測定開始時刻Sとする。その他の条件は、第1の検査方法と同様である。測定開始時刻Sから測定終了時刻Eまでの間に対象物1Aが移動する距離を矢印18で示している。
(Second inspection method)
FIG. 4 is a diagram for explaining a second inspection method in the inspection apparatus 100. As shown in FIG. As shown in FIG. 4, the measurement start time S is when the spot 4 slightly covers the object 1A (or the outer edge of the spot 4 circumscribes the outer edge of the object 1A). Other conditions are the same as in the first inspection method. The distance by which the object 1A moves from the measurement start time S to the measurement end time E is indicated by an arrow 18.
 対象物1の搬送速度をVとし、検出部7の測定時間(透過光8を検出する時間の積算時間)をt’とすると、次の式(3)または式(4)が示す測定時間t’の範囲内で検出部7は、対象物1の測定を行う。 Assuming that the transport speed of the object 1 is V, and the measurement time of the detection unit 7 (the integration time of the time for detecting the transmitted light 8) is t ′, the measurement time t indicated by the following equation (3) or (4) Within the range of ', the detection unit 7 measures the object 1.
 W/V <t’≦ 2W/V  ・・・(3)
 t’=W/V  ・・・(4)
 すなわち、検出部7は、注目する対象物1がスポット4に含まれていない状態から透過光8の検出を開始し、測定時間t’の上限は、検査光3の光軸が対象物1を横切るために必要な時間の2倍の時間である。この場合にも、第1の検査方法と同様の効果を得ることができる。
W / V <t '≦ 2 W / V (3)
t '= W / V (4)
That is, the detection unit 7 starts the detection of the transmitted light 8 from the state in which the target 1 to be focused is not included in the spot 4, and the upper limit of the measurement time t ′ is that the optical axis of the inspection light 3 is the object 1. It is twice the time required to cross. Also in this case, the same effect as the first inspection method can be obtained.
 (第3の検査方法)
 図5は、検査装置100における第3の検査方法を説明するための図である。対象物1の集合を対象集合1Cとし、搬送方向に沿って配列された複数の対象集合1Cの間隔をM”とする。また、対象集合1Cの、搬送方向に平行な方向における幅をW”とする。幅Wとは、対象集合1Cに含まれる個々の対象物1の外縁を形成する点のうち、搬送方向の最も上流に位置する点と、搬送方向の最も下流に位置する点との間の距離である。スポット4は、対象集合1Cの全体を覆うことができる大きさを有している。
(Third inspection method)
FIG. 5 is a diagram for explaining a third inspection method in the inspection apparatus 100. A set of objects 1 is a target set 1C, and an interval of a plurality of target sets 1C arranged along the transport direction is M ". Further, a width of the target set 1C in a direction parallel to the transport direction is W". I assume. The width W is the distance between the most upstream point of the transport direction and the most downstream point of the transport direction among the points forming the outer edge of each object 1 included in the target set 1C. It is. The spot 4 has a size that can cover the entire target set 1C.
 図5に示す例の場合も、検出部7の測定時間t”について、第1の検査方法と同様に次の式が成り立つ。 Also in the case of the example shown in FIG. 5, the following equation holds for the measurement time t ′ ′ of the detection unit 7 as in the first inspection method.
 0<t”≦ W/V・・・(5)
 W”<M”  ・・・(6)
 この場合にも、第1の検査方法と同様の効果を得ることができる。
0 <t ′ ′ ≦ W / V (5)
W ′ ′ <M ′ ′ (6)
Also in this case, the same effect as the first inspection method can be obtained.
 〔実施例1〕
 本実施例では、第1の検査方法により対象物1の測定を行った結果について説明する。対象物1の搬送速度Vは、1250mm/sであり、対象物1の、搬送方向に平行な方向における幅Wは、8mmである。光源2からの光は光ファイバを使用したライトガイドにより導光し、集光に使用した集光レンズ群61を構成するレンズは3枚である。レンズ無しの状態、1枚の状態、2枚の状態、3枚の状態をそれぞれ試行したところ、幅W=8mmの対象物1に対しては、集光レンズ群61を構成するレンズが3枚あれば好適にスポットサイズを調整可能であった。なお集光レンズ群61を構成するレンズの使用枚数はこれに限るものではなく、例えば検査対象物が対象物1よりも大きい幅W=75mmであれば、集光レンズ群61は使用せずとも検査可能であった。また検査に応じて光源2の数を増やす場合においても、使用する集光レンズ群61を構成するレンズは3枚以下であれば好適にスポットサイズを調整可能であった。
Example 1
A present Example demonstrates the result of having measured the target object 1 by the 1st inspection method. The transport speed V of the target 1 is 1250 mm / s, and the width W of the target 1 in the direction parallel to the transport direction is 8 mm. The light from the light source 2 is guided by a light guide using an optical fiber, and the number of lenses constituting the condensing lens group 61 used for condensing is three. When the lensless state, the state of one sheet, the state of two sheets, and the state of three sheets were respectively tried, for the object 1 having a width W of 8 mm, three lenses constituting the condensing lens group 61 If there were, it was possible to adjust the spot size suitably. The number of used lenses of the condensing lens group 61 is not limited to this. For example, if the inspection object has a width W = 75 mm larger than the object 1, the condensing lens group 61 may not be used. It was possible to inspect. Further, even when the number of light sources 2 is increased according to the inspection, it is possible to preferably adjust the spot size as long as the number of lenses constituting the condensing lens group 61 to be used is three or less.
 検出部7による測定の開始時刻Sから終了時刻Eまでの測定時間tを段階的に変化させ、測定の正答率を算出した。異物が含まれている対象物1と異物が含まれていない対象物1とを検査対象として用意し、異物が含まれているかどうかを正しく判定できた場合を正解とし、正解が得られた対象物1の割合を正答率として算出した。 The measurement time t from the start time S to the end time E of the measurement by the detection unit 7 was changed stepwise to calculate the correct answer rate of the measurement. A target 1 for which the foreign substance is contained and a target 1 for which the foreign substance is not contained are prepared as an inspection target, and the correct answer is obtained, assuming that the correct determination is made whether the foreign substance is included or not. The proportion of object 1 was calculated as the correct answer rate.
 図6の(a)は、対象物1の測定条件と正答率との関係を示す図である。図6の(a)に示すように、測定時間tを2msから6msまで変化させることにより、対象物1とスポット4との相対位置関係(変位量)は、2.5mmから7.5mmまで変化する。このように測定時間tを異ならせて検査を行ったところ、測定時間tが4msの場合に正答率が85%となった。この結果から、正答率が85%以上であることが要求される検査においては、測定時間tを4ms以上にすべきであることが明らかになった。 (A) of FIG. 6 is a figure which shows the relationship between the measurement conditions of the target object 1, and a correct answer rate. As shown in FIG. 6A, the relative positional relationship (displacement amount) between the object 1 and the spot 4 changes from 2.5 mm to 7.5 mm by changing the measurement time t from 2 ms to 6 ms. Do. As described above, when the test was performed with different measurement times t, the correct answer rate became 85% when the measurement time t was 4 ms. From this result, it is clear that the measurement time t should be 4 ms or more in a test that requires a correct answer rate of 85% or more.
 また図6の(b)は第1の検査方法により、対象物1の測定を別の条件にて行った結果である。対象物1の搬送速度Vは、250mm/sであり、対象物1の、搬送方向に平行な方向における幅Wは、10mmである。図6の(b)に示すように、測定時間tを2msから40msまで変化させることにより、対象物1とスポット4との相対位置関係(変位量)は、0.5mmから10mmまで変化する。このように測定時間tを異ならせて検査を行ったところ、測定時間tが2msの場合に正答率が70%となった。この結果から、正答率が70%以上であることが要求される検査においては、測定時間tを2ms以上にすべきであることが明らかになった。 Moreover, (b) of FIG. 6 is the result of having performed measurement of the target object 1 on another conditions by the 1st inspection method. The transport speed V of the target 1 is 250 mm / s, and the width W of the target 1 in the direction parallel to the transport direction is 10 mm. As shown in (b) of FIG. 6, by changing the measurement time t from 2 ms to 40 ms, the relative positional relationship (displacement amount) between the object 1 and the spot 4 changes from 0.5 mm to 10 mm. As described above, when the test was performed with different measurement times t, the correct answer rate became 70% when the measurement time t was 2 ms. From this result, it is clear that the measurement time t should be 2 ms or more in a test that requires a correct answer rate of 70% or more.
 図7は、光源2が発する検査光3の強度のムラを概念的に示す図である。図7に示すように、本実施例で用いた光源2によって形成されるスポット4には、概ね同心円状の光強度のムラが発生する。スポット4の外側へいくにつれて照度が下がり、スポット4と光源2との距離が50mmの場合、直径35mmの円周上では、中心部分の72%まで照度が低下している。 FIG. 7: is a figure which shows notionally the nonuniformity of the intensity | strength of the test light 3 which the light source 2 emits. As shown in FIG. 7, in the spot 4 formed by the light source 2 used in the present embodiment, unevenness of the light intensity of substantially concentric circle occurs. The illuminance decreases toward the outside of the spot 4, and when the distance between the spot 4 and the light source 2 is 50 mm, the illuminance decreases to 72% of the central portion on the circumference of 35 mm in diameter.
 このような光強度のムラが発生している場合でも、対象物1とスポット4との相対位置関係を所定値以上変化させることにより、当該ムラの影響を低減できる。これにより本実施形態では光強度のムラを低減するための光学系を用いなくともよいので、光学系による検査光の光損失が抑えられ、検査精度が上がるという効果が得られる。 Even when such unevenness in light intensity occurs, the influence of the unevenness can be reduced by changing the relative positional relationship between the object 1 and the spot 4 by a predetermined value or more. As a result, in the present embodiment, since it is not necessary to use an optical system for reducing unevenness in light intensity, it is possible to suppress the light loss of inspection light by the optical system and to obtain an effect of increasing inspection accuracy.
 図13は対象物1への照射光量と集光レンズ群61を構成するレンズの枚数との関係を示す図である。図13では同じ光源2を用いて、集光レンズ群61を使用しない構成で照射光量を測定した場合の分光データと、集光レンズ群61を構成するレンズを3枚として光強度のムラを低減している構成で照射光量を測定した場合の分光データとの比較を行っている。図13に示すように、集光レンズ群61を構成するレンズを3枚とした場合の照射光量は、使用しない場合に比較しておよそ1/2となった。このように光ムラを低減する構成にすることにより検査光3の光量が少なくなった結果、対象物1を透過する光が微弱になって、検出部7が検知できる限界である光量の閾値を下回った場合、検出部7で検出される光量が一気に0となってしまうという問題が生じる。また、検査の要求精度つまり必要な正答率を得るために、必要な光量の閾値があり、それを下回ると検査が不可能になってしまうという問題が生じる。 FIG. 13 is a view showing the relationship between the amount of light irradiated to the object 1 and the number of lenses constituting the condensing lens group 61. As shown in FIG. In FIG. 13, the spectral data in the case where the amount of irradiated light is measured with a configuration that does not use the condensing lens group 61 using the same light source 2 and three lenses that constitute the condensing lens group 61 reduce unevenness in light intensity. The comparison with the spectral data in the case of measuring the irradiation light amount with the configuration shown in FIG. As shown in FIG. 13, the irradiation light amount when the number of lenses constituting the condensing lens group 61 is three is approximately 1⁄2 as compared with the case where it is not used. As a result that the light quantity of the inspection light 3 decreases as a result of the configuration to reduce the light unevenness in this way, the light passing through the object 1 becomes weak and the light quantity threshold which is the limit that the detection unit 7 can detect If it falls below the threshold, the light amount detected by the detection unit 7 will go to 0 at once. There is also a problem that there is a threshold of the required light amount to obtain the required accuracy of the inspection, that is, the required correct answer rate, below which the inspection becomes impossible.
 図13の分光データのある波長における光量と検査正答率との対応を表わす表を図14に示す。 A table showing the correspondence between the light quantity at a certain wavelength of the spectral data of FIG. 13 and the inspection correct answer rate is shown in FIG.
 図14における透過光量の値は、光源2から照射された光である検査光3が対象物1を透過した光の量を透過光量として、この透過光量の相対的な値を示したものである。また受光量は、検出部7で検知された透過光8の強度を相対的に示したものである。図13にて実線で示されているレンズ無しのデータは図14では照射光量が15000の場合に対応するものである。また図13にて破線で示されているレンズ3枚使用のデータは図14では照射光量が7500の場合に対応するものである。 The value of the transmitted light amount in FIG. 14 indicates the relative value of the transmitted light amount, with the amount of light transmitted through the object 1 being the inspection light 3 emitted from the light source 2 as the transmitted light amount. . Further, the light reception amount relatively indicates the intensity of the transmitted light 8 detected by the detection unit 7. The data without a lens shown by a solid line in FIG. 13 corresponds to the case where the irradiation light amount is 15000 in FIG. Further, the data of the use of three lenses indicated by the broken line in FIG. 13 corresponds to the case where the irradiation light quantity is 7500 in FIG.
 図14に示すように、照射光量に対して検査対象物に損失される光量の割合はこの場合およそ99%であり、照射光量が15000の場合は透過光量が150、照射光量が7500の場合の透過光量は75となる。しかし検出部7には検出可能な閾値(この実験では100)があるため、透過光量が150の場合は150として検出されるが、透過光量が75の場合は検出閾値を下回るために検出されなくなって0になってしまう。つまりこの場合、光ムラを低減している3枚のレンズによって検査光3の光量が低くなってしまったために、検知される光の量が一気に0に減少してしまい、検査が不可能になるという問題が生じている。また、図13には示していないが、図14に示すように照射光量が10000の場合の検査も行ったところ、検査の正答率が照射光量15000の場合よりも悪化した。その理由は、ひとつには照射光量が10000の場合は透過光量が100であり、検出部7が検出可能な閾値のぎりぎりであったためにS/N比が低くなったことである。もうひとつの理由は、対象物1の中で光が拡散するに従って減衰されていく際に、検査光3の光量が少ないと対象物1の隅々まで光が行きわたりにくくなり、対象物1の中で光が行きとどかない部分の情報が得られないことである。これらの理由により、照射光量が減少すると正答率が一気に悪化している。一方、照射光量が15000に増した場合は正答率が95%までアップしている。仮に必要な正答率が90%であった場合は、照射光量が10000の場合は必要な正答率に達しない為に検査が不可能な状態となった。 As shown in FIG. 14, the ratio of the amount of light lost to the inspection object to the amount of irradiated light is about 99% in this case, and when the amount of irradiated light is 15000, the amount of transmitted light is 150 and the amount of irradiated light is 7500. The transmitted light amount is 75. However, since the detection unit 7 has a detectable threshold (100 in this experiment), it is detected as 150 when the transmitted light quantity is 150, but it is not detected because it falls below the detection threshold when the transmitted light quantity is 75. Will be zero. That is, in this case, since the light quantity of the inspection light 3 has become low due to the three lenses reducing light unevenness, the quantity of light to be detected rapidly decreases to 0, and the inspection becomes impossible. The problem of Further, although not shown in FIG. 13, when the inspection was also performed when the irradiation light amount was 10000 as shown in FIG. 14, the correct answer rate of the inspection was worse than in the case of the irradiation light amount 15000. The reason is that the transmitted light amount is 100 when the irradiated light amount is 10000 and the S / N ratio is lowered because the detected portion 7 is just at the threshold that can be detected. Another reason is that when the light is attenuated as the light diffuses in the object 1, it becomes difficult for the light to spread to every corner of the object 1 if the light quantity of the inspection light 3 is small. It is that the information of the part where light does not reach is not obtained. For these reasons, the rate of correct answers is rapidly deteriorating when the amount of irradiation light decreases. On the other hand, when the irradiation light amount is increased to 15,000, the correct answer rate is increased to 95%. If the required correct answer rate is 90%, the test can not be performed because the required correct answer rate is not reached when the irradiation light amount is 10000.
 なおこの実験では検査対象物に損失される光量の割合がおよそ99%であったが、この数値は固定ではない。例えば検査対象物がより厚ければ検査対象物の中における光の損失が大きくなるために透過光量がより減ってしまい、検査精度が悪化する。つまり光の損失が大きくなって透過光量が得られず、必要な正答率を得るための光量を下回ったり、検出部7の検知閾値を下回って検査そのものが不可能になる等、光の損失が検査結果にさらに重大な悪影響を及ぼす。よって照射光量を低減させないことが、より重要となる。 In this experiment, the percentage of light loss to the inspection object was about 99%, but this figure is not fixed. For example, if the object to be inspected is thicker, the loss of light in the object to be inspected is increased, and the amount of transmitted light is further reduced, and the inspection accuracy is deteriorated. That is, the loss of light becomes large and the amount of transmitted light can not be obtained, and the amount of light loss is lower than the amount of light for obtaining a required correct answer rate or lower than the detection threshold of the detection unit 7 and inspection itself becomes impossible. More serious adverse effects on test results. Therefore, it is more important not to reduce the irradiation light amount.
 これらの結果から、光強度のムラを低減するための光学系を用いずに検査光の損失を抑えることで対象物1に照射される検査光の光量が増えると、対象物1を透過する透過光8の光量も増えるために正答率が向上する効果が得られることが明らかになった。透過光8の光量が増えれば検出部7で検知される光はS/N比が良くなるため、より精度よく対象物1の状態を検出できる。また、対象物1の中で光が拡散するに従って減衰されていく際に、検査光3の光量が少ないと対象物1の隅々まで光が行きわたりにくくなる。さらに対象物1を透過して検出部7に検出される際に検出閾値を下回ることで検出されなくなるために、検査精度が悪化したり、検査が不可能になったりする。しかし、検査光3の光量が多ければ対象物1の中を光が隅々まで行き渡って透過し、検出部7に検知される光の量が多くなるために、対象物1の中の状態をまんべんなく検出できるようになり検査精度が向上する。 From these results, when the light quantity of the inspection light irradiated to the object 1 is increased by suppressing the loss of the inspection light without using the optical system for reducing the unevenness of the light intensity, the light is transmitted through the object 1 It has become clear that the effect of improving the correct answer rate can be obtained because the light amount of the light 8 is also increased. If the light amount of the transmitted light 8 increases, the light detected by the detection unit 7 has a good S / N ratio, so that the state of the object 1 can be detected more accurately. In addition, when light is attenuated as the light diffuses in the object 1, when the light amount of the inspection light 3 is small, it becomes difficult for the light to spread to every corner of the object 1. Furthermore, when the light passes through the object 1 and is detected by the detection unit 7, it is not detected as it falls below the detection threshold, so that the inspection accuracy may deteriorate or the inspection may become impossible. However, if the amount of light of the inspection light 3 is large, the light travels through the object 1 to every corner and is transmitted, and the amount of light detected by the detection unit 7 increases. It becomes possible to detect evenly and inspection accuracy improves.
 以上に説明してきたように、本実施形態では光強度のムラの影響を低減できるため、光学系の削減が可能になり検査光の損失を抑えることができる。これにより従来技術に比べて照射光量が増加する。本実施形態のような光拡散しやすい対象物1の検査においては、照射光量の増加により、単なる検出光増加によるS/N比向上に加えて以下の相乗効果を得ることができる。すなわち(1)対象物1の中を光が隅々まで行き渡ることでより多くの内部情報を得ることができる、(2)検出部7の検出閾値に対して照射光量および透過光量が十分に大きいため、検出部7にて検知される光量が激減しなくなることで測定効率が向上する。 As described above, in the present embodiment, the influence of unevenness in light intensity can be reduced, so the number of optical systems can be reduced and the loss of inspection light can be suppressed. As a result, the amount of irradiated light is increased as compared to the prior art. In the inspection of the object 1 in which light diffusion is likely to occur as in the present embodiment, the increase of the irradiation light quantity can achieve the following synergetic effect in addition to the S / N ratio improvement by simply increasing the detection light. That is, (1) more internal information can be obtained by the light traveling around the object 1 to every corner, (2) the irradiation light amount and the transmission light amount are sufficiently large with respect to the detection threshold of the detection unit 7 Therefore, the measurement efficiency is improved by the light amount detected by the detection unit 7 not being drastically reduced.
 〔実施形態2〕
 本開示の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
Second Embodiment
Other embodiments of the present disclosure will be described below. In addition, about the member which has the same function as the member demonstrated in the said embodiment for convenience of explanation, the same code | symbol is appended and the description is abbreviate | omitted.
 図8は、本実施形態に係る検査装置200の構成を示す図である。検査装置200は、支持部5の代わりに支持部5Aを備えている。支持部5Aは、対象物1を配置するための凹部9を有している。凹部9の底面は、対象物1を透過した光を反射する反射面になっている。光源2から出射された検査光は、対象物1を透過した後、凹部9の底面で反射され、レンズ6によって集光されて検出部7に到達する。 FIG. 8 is a view showing the configuration of an inspection apparatus 200 according to the present embodiment. The inspection apparatus 200 includes a support 5 </ b> A instead of the support 5. The support 5 </ b> A has a recess 9 for placing the object 1. The bottom surface of the recess 9 is a reflective surface that reflects the light transmitted through the object 1. The inspection light emitted from the light source 2 passes through the object 1, is reflected by the bottom of the recess 9, is condensed by the lens 6, and reaches the detection unit 7.
 このような構成でも検査装置100と同様の効果を得ることができる。さらに、検査装置200では、検査光3が対象物1を透過した後、凹部9の底面で反射し、再度対象物1を透過するため、透過光8に異物の情報がより多く含まれるようになる。そのため、対象物1に含まれる異物の検出精度を高めることができる。 Even with such a configuration, the same effect as that of the inspection apparatus 100 can be obtained. Furthermore, in the inspection apparatus 200, after the inspection light 3 passes through the object 1, it is reflected by the bottom of the recess 9 and passes through the object 1 again, so that the transmitted light 8 includes more information of foreign matter. Become. Therefore, the detection accuracy of the foreign substance contained in the object 1 can be enhanced.
 〔実施形態3〕
 本開示の他の実施形態について、以下に説明する。図9は、本実施形態に係る検査装置300の構成を示す図である。検査装置300では、対象物1を支持する部材として、直線的に移動する支持部5の代わりに円形のロータ21を備えている。図9では、光源2など、ロータ21以外の部材は省略されている。検査装置300の基本的な構成は、検査装置100の構成と同様である。検査装置300では、複数の対象物1はロータ21の外縁に沿って周方向に配列されている。
Third Embodiment
Other embodiments of the present disclosure will be described below. FIG. 9 is a view showing the configuration of an inspection apparatus 300 according to the present embodiment. In the inspection apparatus 300, a circular rotor 21 is provided as a member for supporting the object 1, instead of the linearly moving support portion 5. In FIG. 9, members other than the rotor 21 such as the light source 2 are omitted. The basic configuration of the inspection apparatus 300 is the same as the configuration of the inspection apparatus 100. In the inspection apparatus 300, the plurality of objects 1 are arranged circumferentially along the outer edge of the rotor 21.
 ロータ21が断続的または連続的に回転することにより、光源2から出射された検査光3のスポット4の照射範囲に、検査対象となる対象物1が1個ずつ入るように構成されている。対象物1のそれぞれがスポット4の中心を通過するように、対象物1とスポット4との位置関係が設定されていることが好ましい。この構成により、対象物1に検査光3を効率良く照射することができ、検査精度を高めることができる。 By intermittently or continuously rotating the rotor 21, one target 1 to be inspected is included in the irradiation range of the spot 4 of the inspection light 3 emitted from the light source 2. Preferably, the positional relationship between the object 1 and the spot 4 is set such that each of the objects 1 passes through the center of the spot 4. With this configuration, the inspection light 3 can be efficiently irradiated to the object 1, and the inspection accuracy can be enhanced.
 (第1の検査方法)
 直近の検査の対象となっている対象物1を対象物1Aとし、その次に検査される対象物1を対象物1Bとする。対象物1の搬送方向における幅に相当する角度をWcとする。ロータ21の中心と対象物1Aとを結ぶ線分と、前記中心と対象物1Bとを結ぶ線分との角度をMcとする。この角度Mcは、対象物1Aと対象物1Bとの配置の角度差を示す。また、下記式(7)が示す条件が満たされるように、すなわち、角度Mcが角度Wcよりも大きくなるように複数の対象物1が同一の円形の軌道24上に配置されている。
(First inspection method)
Let the object 1 which is the object of the latest inspection be the object 1A, and let the object 1 to be inspected next be the object 1B. An angle corresponding to the width of the object 1 in the transport direction is Wc. An angle between a line connecting the center of the rotor 21 and the object 1A and a line connecting the center and the object 1B is Mc. The angle Mc indicates an angle difference of the arrangement of the object 1A and the object 1B. Further, the plurality of objects 1 are disposed on the same circular trajectory 24 so that the condition represented by the following equation (7) is satisfied, that is, the angle Mc is larger than the angle Wc.
 Wc<Mc ・・・(7)
 対象物1が搬送される軌道24の半径をRとする。対象物1の搬送速度(周速度)をVcとする。軌道24は対象物1の中心を通ることが好ましい。この構成により、検査の対象物の形状によってはスポット4に覆われる面積がより大きくなるため、検査精度を上げることができる。
Wc <Mc (7)
Let R be the radius of the track 24 on which the object 1 is transported. The transport speed (peripheral speed) of the object 1 is set to Vc. Trajectory 24 preferably passes through the center of object 1. With this configuration, depending on the shape of the object to be inspected, the area covered by the spots 4 becomes larger, so that the inspection accuracy can be improved.
 検出部7の測定開始時刻Sにおいて、図9に示すように、スポット4は対象物1Aの全体を覆っているものとする。ロータ21は、自らが回転することにより、対象物1を図9における矢印110の方向に移動させる。測定開始時刻Sから測定終了時刻Eまでの間に対象物1Aが移動する角度を矢印23で示している。 At the measurement start time S of the detection unit 7, as shown in FIG. 9, it is assumed that the spot 4 covers the entire object 1A. The rotor 21 moves the object 1 in the direction of the arrow 110 in FIG. 9 as it rotates. The angle at which the object 1A moves from the measurement start time S to the measurement end time E is indicated by the arrow 23.
 対象物1の搬送速度をVcとし、検出部7の測定時間をtとすると、次の式(8)が示す測定時間tの範囲内で検出部7は、対象物1の測定を行う。 Assuming that the transport speed of the object 1 is Vc and the measurement time of the detection unit 7 is t, the detection unit 7 measures the object 1 within the range of the measurement time t indicated by the following equation (8).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 この構成によれば、スポット4に光強度のムラがあっても、対象物1がスポット4を横切ることで当該ムラの影響を低減できる。また、配光制御を行うレンズや拡散板を設けない構成を実現することが可能となり、検査光3の損失を防ぎつつ、検査精度を保つことができる。また、光スポットで2次元的に対象物1を走査するよりも測定時間を短縮できる。 According to this configuration, even if the spot 4 has unevenness in light intensity, the object 1 can cross the spot 4 to reduce the influence of the unevenness. Moreover, it becomes possible to implement | achieve the structure which does not provide the lens which performs light distribution control, or a diffusion plate, and can maintain inspection precision, preventing the loss of the test | inspection light 3. FIG. In addition, the measurement time can be shortened compared to scanning the object 1 two-dimensionally with the light spot.
 (第2の検査方法)
 図10は、検査装置300における第2の検査方法を説明するための図である。図10に示すように、スポット4が対象物1Aをわずかに覆っている状態(または、スポット4の外縁が対象物1Aの外縁と外接している状態)のときを測定開始時刻Sとする。その他の条件は、第1の検査方法と同様であり、複数の対象物1は、角度Mcが角度Wcよりも大きくなるように同一の円形の軌道24上に配置されている。測定開始時刻Sから測定終了時刻Eまでの間に対象物1Aは、符号25で示す位置まで移動する。このときの対象物1の角度変化を矢印26で示している。
(Second inspection method)
FIG. 10 is a diagram for explaining a second inspection method in the inspection apparatus 300. As shown in FIG. As shown in FIG. 10, the measurement start time S is when the spot 4 slightly covers the object 1A (or the outer edge of the spot 4 circumscribes the outer edge of the object 1A). The other conditions are the same as in the first inspection method, and the plurality of objects 1 are disposed on the same circular trajectory 24 so that the angle Mc is larger than the angle Wc. The object 1A moves to the position indicated by the reference numeral 25 between the measurement start time S and the measurement end time E. The change in angle of the object 1 at this time is indicated by the arrow 26.
 対象物1の搬送速度をVcとし、検出部7の測定時間をtcとすると、次の式(9)または式(10)が示す測定時間tcの範囲内で検出部7は、対象物1の測定を行う。 Assuming that the transport speed of the object 1 is Vc, and the measurement time of the detection unit 7 is tc, the detection unit 7 detects the object 1 within the range of the measurement time tc indicated by the following equation (9) or (10). Make a measurement.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 この場合にも、検査装置300における第1の検査方法と同様の効果を得ることができる。 Also in this case, the same effect as the first inspection method in the inspection apparatus 300 can be obtained.
 (第3の検査方法)
 図11は、検査装置300における第3の検査方法を説明するための図である。対象物1の集合を対象集合1Cとする。スポット4は、対象集合1Cの全体を覆うことができる大きさを有している。対象集合1Cをひとつの検査対象とみなせば、検査装置300における第1または第2の検査方法を適用して、複数の対象集合1Cの検査を行うことができる。
(Third inspection method)
FIG. 11 is a diagram for explaining a third inspection method in the inspection apparatus 300. As shown in FIG. Let a set of objects 1 be an object set 1C. The spot 4 has a size that can cover the entire target set 1C. If the target set 1C is regarded as one inspection target, the first or second inspection method in the inspection apparatus 300 can be applied to inspect a plurality of target sets 1C.
 〔実施形態4〕
 本開示の他の実施形態について、以下に説明する。
Embodiment 4
Other embodiments of the present disclosure will be described below.
 図15は、本実施形態に係る製造装置900の構成を示す図である。製造装置900は、対象物1を製造する製造装置である。図15に示すように、製造装置900は、製造ユニット910と、ベルトコンベア920と、検査装置100とを備える。 FIG. 15 is a view showing the configuration of a manufacturing apparatus 900 according to this embodiment. The manufacturing apparatus 900 is a manufacturing apparatus for manufacturing the object 1. As shown in FIG. 15, the manufacturing apparatus 900 includes a manufacturing unit 910, a belt conveyor 920, and an inspection apparatus 100.
 製造ユニット910は、対象物1を製造するユニットである。ベルトコンベア920は、製造ユニット910により製造された対象物1を、検査装置100へ運搬する。検査装置100は、ベルトコンベア920により運搬された対象物1の検査を行う。なお、製造装置900においては、ベルトコンベア920により運搬された対象物1がロボットアームなどにより支持部5(図1等参照)に移動させられてもよい。または、ベルトコンベア920と支持部5とが一連の部材として構成されてもよい。 The production unit 910 is a unit for producing the object 1. The belt conveyor 920 conveys the object 1 manufactured by the manufacturing unit 910 to the inspection apparatus 100. The inspection apparatus 100 inspects the object 1 conveyed by the belt conveyor 920. In the manufacturing apparatus 900, the object 1 conveyed by the belt conveyor 920 may be moved to the support 5 (see FIG. 1 and the like) by a robot arm or the like. Alternatively, the belt conveyor 920 and the support 5 may be configured as a series of members.
 以上のとおり、製造装置900は、対象物1を製造する製造装置であって、検査装置100を備える。製造装置900においては、製造ユニット910により製造された対象物1の検査を、検査装置100により行うことで、不良品を短時間かつ高精度で排除することができる。なお、製造装置900は、検査装置100の代わりに検査装置200または300を備えていてもよい。 As described above, the manufacturing apparatus 900 is a manufacturing apparatus for manufacturing the object 1 and includes the inspection apparatus 100. In the manufacturing apparatus 900, by inspecting the object 1 manufactured by the manufacturing unit 910 with the inspection apparatus 100, defective products can be eliminated in a short time with high accuracy. The manufacturing apparatus 900 may include the inspection apparatus 200 or 300 instead of the inspection apparatus 100.
 〔ソフトウェアによる実現例〕
 制御装置10の制御ブロック(特に判定部11)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
[Example of software implementation]
The control block (particularly, the determination unit 11) of the control device 10 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software.
 後者の場合、制御装置10は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば少なくとも1つのプロセッサ(制御装置)を備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な少なくとも1つの記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本開示の目的が達成される。上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本開示の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the control device 10 includes a computer that executes instructions of a program that is software that implements each function. The computer includes, for example, at least one processor (control device) and at least one computer readable storage medium storing the program. Then, in the computer, the processor reads the program from the recording medium and executes the program to achieve the object of the present disclosure. For example, a CPU (Central Processing Unit) can be used as the processor. As the above-mentioned recording medium, a tape, a disk, a card, a semiconductor memory, a programmable logic circuit or the like can be used besides “a non-temporary tangible medium”, for example, a ROM (Read Only Memory). In addition, a RAM (Random Access Memory) or the like for developing the program may be further provided. The program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program. Note that one aspect of the present disclosure may also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
 〔付記事項〕
 本開示は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
(関連出願の相互参照)
 本出願は、2017年11月28日に出願された日本国特許出願:特願2017-228182に対して優先権の利益を主張するものであり、それを参照することにより、その内容の全てが本書に含まれる。
[Items to be added]
The present disclosure is not limited to the above-described embodiments, and various modifications are possible within the scope of the claims, and embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present disclosure. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.
(Cross-reference to related applications)
This application claims the benefit of priority to Japanese Patent Application filed on November 28, 2017: Japanese Patent Application No. 2017-228182, the entire contents of which are hereby incorporated by reference. Included in this book.
1、1A、1B 対象物
1C 対象集合
2 光源
3 検査光
4 スポット
5、5A 支持部(移動機構)
6 レンズ
7 検出部
8 透過光
10 制御装置
61 集光レンズ群(レンズ)
100、200、300 検査装置
900 製造装置
1, 1A, 1B target 1C target set 2 light source 3 inspection light 4 spot 5, 5A support portion (moving mechanism)
6 lens 7 detector 8 transmitted light 10 control device 61 condensing lens group (lens)
100, 200, 300 inspection device 900 manufacturing device

Claims (10)

  1.  複数の対象物のそれぞれに対して検査光を照射する光源と、
     前記対象物と前記検査光の照射範囲との相対位置関係を変化させる移動機構と、
     前記対象物を透過した透過光を所定のタイミングで検出する検出部とを備え、
     前記相対位置関係を変化させながら、個々の前記対象物の全体が前記照射範囲に含まれる状態が発生するように、継続的または断続的に前記検査光を前記対象物に照射するとともに、
     前記相対位置関係を変化させながら、前記検出部により前記透過光を検出する検査装置。
    A light source for irradiating the inspection light to each of the plurality of objects;
    A moving mechanism for changing the relative positional relationship between the object and the irradiation range of the inspection light;
    And a detection unit for detecting the transmitted light transmitted through the object at a predetermined timing,
    The inspection light is continuously or intermittently applied to the object so as to generate a state in which the whole of the individual objects is included in the irradiation range while changing the relative positional relationship.
    The inspection apparatus which detects the said transmitted light by the said detection part, changing the said relative positional relationship.
  2.  前記対象物と前記光源との間に設けられるレンズは3枚以下である、請求項1に記載の検査装置。 The inspection apparatus according to claim 1, wherein the number of lenses provided between the object and the light source is three or less.
  3.  前記照射範囲は、一度に複数の前記対象物が当該照射範囲に入らないように設定されている請求項1または2に記載の検査装置。 The inspection apparatus according to claim 1, wherein the irradiation range is set such that a plurality of the objects do not enter the irradiation range at one time.
  4.  前記検出部は、注目する前記対象物の全体が前記照射範囲に含まれている状態から前記透過光の検出を開始し、
     前記透過光を検出する積算時間の上限は、前記検査光の光軸が注目する前記対象物を横切るために必要な時間である請求項1から3のいずれか1項に記載の検査装置。
    The detection unit starts detection of the transmitted light from a state in which the entire target object of interest is included in the irradiation range;
    The inspection apparatus according to any one of claims 1 to 3, wherein the upper limit of the integration time for detecting the transmitted light is a time required for the optical axis of the inspection light to cross the object of interest.
  5.  前記検出部は、注目する前記対象物が前記照射範囲に含まれていない状態から前記透過光の検出を開始し、
     前記透過光を検出する積算時間の上限は、前記検査光の光軸が注目する前記対象物を横切るために必要な時間の2倍の時間である請求項1から3のいずれか1項に記載の検査装置。
    The detection unit starts detection of the transmitted light from a state in which the target object of interest is not included in the irradiation range;
    The upper limit of the integration time for detecting the transmitted light is a time twice as long as the time required for the optical axis of the inspection light to cross the target object of interest. Inspection equipment.
  6.  前記検査光のピーク波長は、600nm以上2500nm以下である請求項1から5のいずれか1項に記載の検査装置。 The inspection apparatus according to any one of claims 1 to 5, wherein a peak wavelength of the inspection light is 600 nm or more and 2500 nm or less.
  7.  前記検査光のピーク波長は、800nm以上1600nm以下である請求項1から5のいずれか1項に記載の検査装置。 The inspection apparatus according to any one of claims 1 to 5, wherein a peak wavelength of the inspection light is 800 nm or more and 1600 nm or less.
  8.  前記対象物は、薬品、医薬品、健康保持用摂取品、栄養剤、顆粒剤、散剤、フィルム剤、カプセル剤からなる群から選ばれたいずれかである請求項1から7のいずれか1項に記載の検査装置。 The object according to any one of claims 1 to 7, wherein the target is any one selected from the group consisting of medicines, medicines, health intakes, nutrients, granules, powders, films and capsules. Inspection apparatus as described.
  9.  対象物を検査するための検査方法であって、
     複数の前記対象物のそれぞれに対して検査光を照射する工程と、
     前記対象物と前記検査光の照射範囲との相対位置関係を変化させる工程と、
     前記対象物を透過した透過光を所定のタイミングで検出する工程と、
     前記相対位置関係を変化させながら、個々の前記対象物の全体が前記照射範囲に含まれる状態が発生するように、継続的または断続的に前記検査光を前記対象物に照射する工程と、
     前記相対位置関係を変化させながら、前記透過光を検出する工程とを含む、検査方法。
    An inspection method for inspecting an object,
    Irradiating an inspection light to each of the plurality of objects;
    Changing the relative positional relationship between the object and the irradiation range of the inspection light;
    Detecting the transmitted light transmitted through the object at a predetermined timing;
    Irradiating the inspection light to the object continuously or intermittently so that a state in which the whole of the individual objects is included in the irradiation range is generated while changing the relative positional relationship;
    Detecting the transmitted light while changing the relative positional relationship.
  10.  請求項1から8のいずれか1項に記載の検査装置を備える製造装置であって、前記対象物を製造する製造装置。 It is a manufacturing apparatus provided with the inspection apparatus of any one of Claim 1 to 8, Comprising: The manufacturing apparatus which manufactures the said target object.
PCT/JP2018/038544 2017-11-28 2018-10-16 Inspection device, inspection method, and manufacturing device WO2019106992A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017228182A JP2021028572A (en) 2017-11-28 2017-11-28 Inspection device, inspection method and manufacturing device
JP2017-228182 2017-11-28

Publications (1)

Publication Number Publication Date
WO2019106992A1 true WO2019106992A1 (en) 2019-06-06

Family

ID=66664880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038544 WO2019106992A1 (en) 2017-11-28 2018-10-16 Inspection device, inspection method, and manufacturing device

Country Status (2)

Country Link
JP (1) JP2021028572A (en)
WO (1) WO2019106992A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210299783A1 (en) * 2018-08-22 2021-09-30 Autoliv Development Ab Device and method for inspecting laser welding protective glass

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039940A (en) * 2000-07-21 2002-02-06 Techno Ishii:Kk Method and apparatus for detection of turning into cavitation in specimen
JP2002162358A (en) * 2000-11-22 2002-06-07 Ishii Ind Co Ltd Method and equipment for detecting transmuted part of object for inspection
JP2004219375A (en) * 2003-01-17 2004-08-05 Kubota Corp Apparatus for evaluating quality of fruits and vegetables
US20040151360A1 (en) * 2001-07-02 2004-08-05 Eric Pirard Method and apparatus for measuring particles by image analysis
WO2008001785A1 (en) * 2006-06-26 2008-01-03 Toshiba Solutions Corporation Specimen inspecting apparatus, and specimen inspecting method
JP2013044729A (en) * 2011-08-26 2013-03-04 Sumitomo Electric Ind Ltd Coating state measuring method
JP2014160013A (en) * 2013-02-20 2014-09-04 Aomori Prefectural Industrial Technology Research Center Nondestructive inspection apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039940A (en) * 2000-07-21 2002-02-06 Techno Ishii:Kk Method and apparatus for detection of turning into cavitation in specimen
JP2002162358A (en) * 2000-11-22 2002-06-07 Ishii Ind Co Ltd Method and equipment for detecting transmuted part of object for inspection
US20040151360A1 (en) * 2001-07-02 2004-08-05 Eric Pirard Method and apparatus for measuring particles by image analysis
JP2004219375A (en) * 2003-01-17 2004-08-05 Kubota Corp Apparatus for evaluating quality of fruits and vegetables
WO2008001785A1 (en) * 2006-06-26 2008-01-03 Toshiba Solutions Corporation Specimen inspecting apparatus, and specimen inspecting method
JP2013044729A (en) * 2011-08-26 2013-03-04 Sumitomo Electric Ind Ltd Coating state measuring method
JP2014160013A (en) * 2013-02-20 2014-09-04 Aomori Prefectural Industrial Technology Research Center Nondestructive inspection apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210299783A1 (en) * 2018-08-22 2021-09-30 Autoliv Development Ab Device and method for inspecting laser welding protective glass

Also Published As

Publication number Publication date
JP2021028572A (en) 2021-02-25

Similar Documents

Publication Publication Date Title
US8902428B2 (en) Process and apparatus for measuring the crystal fraction of crystalline silicon casted mono wafers
KR100710926B1 (en) Method and apparatus for detecting surface
JP3333048B2 (en) Cylindrical inspection equipment
JP6486515B2 (en) Surface feature mapping
US10345098B2 (en) Measurement method and measurement device
US6437317B1 (en) Method and apparatus for inspecting cigarette heads
US7294837B2 (en) Tablets press with integral NIR measuring device
WO2019106992A1 (en) Inspection device, inspection method, and manufacturing device
US20170131219A1 (en) Wafer inspection apparatus and wafer inspection method
JP2015014527A (en) Abnormality detection device and abnormality detection method
WO2018135232A1 (en) Foreign matter detection device, foreign matter detection method and manufacturing device
JP2003282675A (en) Wafer mapping device
EP4206661A1 (en) Tablet spectroscopic measurement method, tablet spectroscopic measurement device, tablet inspection method, and tablet inspection device
JP2020085507A (en) Inspection device, inspection method, program, record medium and powder formed product manufacturing device
US10989677B2 (en) Sample collecting device, sample collecting method, and fluorescent x-ray analysis apparatus using the same
JP5610550B2 (en) Illumination apparatus and illumination method for external quality inspection apparatus for agricultural products
CN113884524A (en) X-ray analysis apparatus
WO2019130777A1 (en) Inspection device, inspection method, manufacturing device, control program, and recording medium
JP2011153929A (en) Total light quantity measurement system, total light quantity measurement apparatus, and total light quantity measurement method
WO2018135233A1 (en) Foreign matter detection device, foreign matter detection method and manufacturing device
JP7325383B2 (en) Article inspection device
US10684228B2 (en) System and method of nephelometric determination of an analyte
JP2004184113A (en) Egg candler
EP4343315A1 (en) Optical inspection apparatus, optical inspection system, optical inspection method, and optical inspection program
JP2012160590A (en) Inspection method and apparatus for silicon film of organic el display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18882309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP