JPH09147783A - Method and device for measuring configuration of sample - Google Patents

Method and device for measuring configuration of sample

Info

Publication number
JPH09147783A
JPH09147783A JP7302553A JP30255395A JPH09147783A JP H09147783 A JPH09147783 A JP H09147783A JP 7302553 A JP7302553 A JP 7302553A JP 30255395 A JP30255395 A JP 30255395A JP H09147783 A JPH09147783 A JP H09147783A
Authority
JP
Japan
Prior art keywords
sample
electron
backscattered
detector
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7302553A
Other languages
Japanese (ja)
Inventor
Minoru Sakai
稔 酒井
Giichi Jinno
義一 神野
Junichi Shimomura
順一 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7302553A priority Critical patent/JPH09147783A/en
Publication of JPH09147783A publication Critical patent/JPH09147783A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To quantitatively measure the configuration of a sample by irradiating a sample with electrons, and detecting within a predetermined solid angle backscattered electrons produced from the sample surface for quantitative measurements of the sample configuration and for analysis of its composition. SOLUTION: When a sample is irradiated with S an electron beam EB from an electron gun 10, backscattered electrons BSE, secondary electrons SE, and characteristic X rays XR, emitted from the surface of the sample S, are detected respectively by a backscattered electron detector 1, a secondary electron detector 4, and a characteristic X-ray detector 5. The detector 1 is arranged immediately above the sample S in axial symmetry with respect to the electron beam EB in order to detect the electrons BSE within a predetermined solid angle, and has its detecting part divided into numerous parts. The electrons BSE detected by the detector 1 are amplified by a backscattered electron amplifier 6, are synchronized by an observation-CRT signal synchronizing device 7 with the scanning of the electron beam EB, and displayed on an observation CRT 8 simultaneously with images of the secondary electrons SE and the characteristic X-rays XR.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、所定の立体角内で
検出される後方散乱電子により試料形状測定し、同時に
組成分析する方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring a sample shape by backscattering electrons detected within a predetermined solid angle and simultaneously analyzing the composition.

【0002】[0002]

【従来の技術】従来、電子線による試料形状測定法とし
ては、例えば特公平1−211849号公報に開示されている
ように、2次電子像を異なる角度から撮像し、解析する
方法が用いられてきた。しかしながら、この方法は2次
電子を用いているため、3次元形状を定性的に求めるこ
とは可能であるが、表面粗度のような定量的な解析はで
きない。
2. Description of the Related Art Conventionally, as a sample shape measuring method using an electron beam, as disclosed in, for example, Japanese Patent Publication No. 1-211849, a method of capturing and analyzing secondary electron images from different angles has been used. Came. However, since this method uses secondary electrons, it is possible to qualitatively obtain a three-dimensional shape, but quantitative analysis such as surface roughness cannot be performed.

【0003】それを解決する手段の一つとして、例えば
図2に示すような円環型4分割半導体式の後方散乱電子
検出器1によって検出する方法が行われていた。すなわ
ち、図示のように電子線EBを試料Sに照射し、その試料
Sの表面から放出される後方散乱電子BSE を、円環型4
分割半導体式の後方散乱電子検出器1の軸対称な位置に
配置される検出素子A,B,C,Dによって検出し、そ
の差を求めることにより、試料表面粗度に対応する凹凸
情報を得るのである。
As one of means for solving the problem, a method of detecting by a ring-type four-division semiconductor type backscattered electron detector 1 as shown in FIG. 2 has been performed. That is, as shown in the drawing, the sample S is irradiated with the electron beam EB, and the backscattered electrons BSE emitted from the surface of the sample S are transferred to the annular type 4
The unevenness information corresponding to the surface roughness of the sample is obtained by detecting with the detection elements A, B, C, D arranged at axially symmetric positions of the split semiconductor type backscattered electron detector 1. Of.

【0004】いま、対称位置にある検出素子A,Bで検
出される強度をIA ,IB とすると、試料Sの凹みの深
さZは下記(1) 式で求められる。 Z=k∫tan θdx =k∫{(IA −IB )/(IA +IB )}dx ………………(1) ここで、k;比例定数、θ;試料Sの傾き角度である。
Now, assuming that the intensities detected by the detecting elements A and B at the symmetrical positions are I A and I B , the depth Z of the recess of the sample S can be obtained by the following equation (1). Z = k∫tan θdx = k∫ {(I A −I B ) / (I A + I B )} dx ……………… (1) where k is a proportional constant, θ is the tilt angle of the sample S. Is.

【0005】なお、検出素子C,Dを用いても同様の結
果が得られる。しかしながら、上記の(1) 式の比例定数
kは試料Sの組成により変動するので、試料傾斜角度と
後方散乱電子強度との関係は試料組成により異なる。そ
の一例を図3に示す。この図において、□印はAl、△印
はFe、○印はWの場合を示す。また、試料Sのビッカー
ス圧痕深さの測定値と計算値の差の組成の影響を図4に
示す。この図から、ビッカース圧痕深さは試料Sの組成
の影響を受けることがわかる。そのため、図5に示すよ
うに、試料Sの表面に例えばPt−Pdのような標準物質を
膜状に蒸着し、後方散乱電子強度を規格化することによ
り組成の影響を打ち消していた。
Similar results can be obtained by using the detection elements C and D. However, since the proportionality constant k in the above equation (1) varies depending on the composition of the sample S, the relationship between the sample tilt angle and the backscattered electron intensity differs depending on the sample composition. An example is shown in FIG. In this figure, □ indicates Al, Δ indicates Fe, and ○ indicates W. FIG. 4 shows the influence of the composition on the difference between the measured value and the calculated value of the Vickers indentation depth of the sample S. From this figure, it can be seen that the Vickers indentation depth is affected by the composition of the sample S. Therefore, as shown in FIG. 5, a standard substance such as Pt-Pd was vapor-deposited in a film on the surface of the sample S and the backscattered electron intensity was normalized to cancel the influence of the composition.

【0006】次に、図6に試料傾斜角度と後方散乱電子
強度E{=(IA −IB )/(IA+IB )}の電子線
の加速電圧依存性を示す。この図において、□印は5k
V、△印は10kV、○印は15kVである。なお、試料の組成
はFeとした。この図からわかるように、試料傾斜角度と
後方散乱電子強度との関係は電子線の加速電圧に影響さ
れるのである。
[0006] Next, the acceleration voltage dependence of the specimen rotation angle and the backscattered electron intensity E {= (I A -I B ) / (I A + I B)} electron beam in FIG. In this figure, □ indicates 5k
V and △ are 10kV, and ○ are 15kV. The composition of the sample was Fe. As can be seen from this figure, the relationship between the sample tilt angle and the backscattered electron intensity is influenced by the acceleration voltage of the electron beam.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、試料表
面を標準物質で蒸着してしまうと試料本来の形態を損ね
てしまう可能性があり、また、試料形状測定と同時に電
子線照射によって発生する特性X線による組成分析をす
ることができないという問題があった。本発明は、上記
のような従来技術の有する課題を解決すべくなされたも
のであって、組成分析を可能とする試料形状測定方法お
よび装置を提供することを目的とする。
However, if the sample surface is vapor-deposited with a standard substance, the original form of the sample may be impaired, and the characteristic X generated by electron beam irradiation at the same time as the sample shape measurement. There is a problem that the composition analysis by the line cannot be performed. The present invention has been made to solve the above-described problems of the conventional art, and an object of the present invention is to provide a sample shape measuring method and apparatus capable of composition analysis.

【0008】[0008]

【課題を解決するための手段】本発明の第1の態様は、
試料に電子線を照射し、その際に試料面から発生する後
方散乱電子を所定の立体角内で検出し、この信号を演算
し、ついで画像処理して試料を定量的に形状測定し、同
時に組成分析することを特徴とする試料形状測定方法で
ある。
According to a first aspect of the present invention, there is provided:
The sample is irradiated with an electron beam, the backscattered electrons generated from the sample surface at that time are detected within a predetermined solid angle, this signal is calculated, and then image processing is performed to quantitatively measure the shape of the sample and at the same time. It is a sample shape measuring method characterized by composition analysis.

【0009】また、本発明の第2の態様は、試料に電子
線を照射する電子銃と、試料面から発生する後方散乱電
子を所定の立体角内で検出する後方散乱電子検出器と、
検出された後方散乱電子像を演算する後方散乱電子像演
算手段および組成分析する組成分析手段と、を備えたこ
とを特徴とする試料形状測定装置である。
A second aspect of the present invention is an electron gun for irradiating a sample with an electron beam, a backscattered electron detector for detecting backscattered electrons generated from the sample surface within a predetermined solid angle,
A sample shape measuring apparatus comprising: a backscattered electron image calculation means for calculating a detected backscattered electron image and a composition analysis means for composition analysis.

【0010】[0010]

【発明の実施の形態】以下に、本発明の実施例につい
て、図面を参照して詳しく説明する。図1は、本発明の
試料形状測定装置の一実施例の全体構成を示す概要図で
ある。この図において、1は後方散乱電子検出器、2は
電子銃、3は試料形状測定装置本体制御部である。4は
2次電子検出器、5は特性X線検出器、6は後方散乱電
子増幅器、7は観察用CRT用の信号同期装置、8は観
察用CRT、9は後方散乱電子像演算手段で、10は試料
形状表示用CRTである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic diagram showing the overall configuration of an embodiment of the sample shape measuring apparatus of the present invention. In this figure, 1 is a backscattered electron detector, 2 is an electron gun, and 3 is a sample shape measuring apparatus main body control unit. 4 is a secondary electron detector, 5 is a characteristic X-ray detector, 6 is a backscattered electron amplifier, 7 is a signal synchronizer for an observation CRT, 8 is an observation CRT, and 9 is a backscattered electron image calculation means. 10 is a CRT for displaying the sample shape.

【0011】そこで、電子銃2より電子線EBを試料Sに
照射すると、試料Sの表面より放出される後方散乱電子
BSE 、2次電子SEおよび特性X線XRがそれぞれ後方散乱
電子検出器1、2次電子検出器4および特性X線検出器
5で検出される。後方散乱電子検出器1は後方散乱電子
BSE を所定の立体角内で検出するために、試料S直上に
電子線EBに対して軸対称に配置され、検出部が多数に分
割されている。後方散乱電子検出器1で検出された後方
散乱電子BSE は、後方散乱電子増幅器6で増幅され、観
察用CRT用の信号同期装置7によって電子線EBの走査
と同期され、2次電子SEおよび特性X線XRの画像と同時
に観察用CRT8に表示される。
Therefore, when the sample S is irradiated with the electron beam EB from the electron gun 2, the backscattered electrons emitted from the surface of the sample S.
The BSE, the secondary electron SE and the characteristic X-ray XR are detected by the backscattered electron detector 1, the secondary electron detector 4 and the characteristic X-ray detector 5, respectively. Backscattered electron detector 1 is a backscattered electron
In order to detect BSE within a predetermined solid angle, the sample is arranged immediately above the sample S in axial symmetry with respect to the electron beam EB, and the detector is divided into a large number. The backscattered electron BSE detected by the backscattered electron detector 1 is amplified by the backscattered electron amplifier 6, and is synchronized with the scanning of the electron beam EB by the signal synchronizer 7 for the observation CRT. It is displayed on the observation CRT 8 simultaneously with the X-ray XR image.

【0012】一方、後方散乱電子増幅器6で増幅された
後方散乱電子BSE の強度Ei * は、後方散乱電子像演算
手段9において下記(2) 式によって求められる。 Ei * =Ii /ΣIi ………………(2) ここで、後方散乱電子検出器1に4個の検出素子A,
B,C,Dを備えた円環型4分割半導体方式を用いると
すると、上記iはi=A,B,C,Dである。そして、
検出素子Aの場合を例にしてその後方散乱電子強度EA
* を求めると、下記(3) 式で表される。
On the other hand, the intensity E i * of the backscattered electron BSE amplified by the backscattered electron amplifier 6 is obtained by the backscattered electron image calculation means 9 by the following equation (2). E i * = I i / ΣI i (2) Here, the four backscattered electron detectors 1 have four detection elements A,
Assuming that an annular four-divided semiconductor system including B, C and D is used, the above i is i = A, B, C and D. And
Taking the case of the detector A as an example, its backscattered electron intensity E A
When * is calculated, it is expressed by the following equation (3).

【0013】 EA * =IA /(IA +IB +IC +ID ) ………………(3) その後、前出(1) 式を用いて試料形状Zを演算し、試料
形状表示用CRT10に表示する。このように、本発明に
よれば、試料表面にPt−Pdのような標準物質を膜状に蒸
着する必要がないので、試料本来の形態を損なわず、電
子線照射時に放出される特性X線XRを検出することによ
り、同時に組成分析を行うこともできる。
[0013] E A * = I A / ( I A + I B + I C + I D) .................. (3) then calculates the sample shape Z using supra (1), the sample shape display Display on CRT10 for use. As described above, according to the present invention, since it is not necessary to deposit a standard substance such as Pt-Pd in a film shape on the sample surface, the characteristic X-rays emitted during electron beam irradiation without impairing the original form of the sample. By detecting XR, composition analysis can be performed simultaneously.

【0014】また、本発明によれば、後方散乱電子強度
が組成および加速電圧に影響されないので、所定の立体
角内で検出される後方散乱電子の量が一定であることが
わかる。
Further, according to the present invention, since the backscattered electron intensity is not influenced by the composition and the acceleration voltage, it can be seen that the amount of backscattered electrons detected within a predetermined solid angle is constant.

【0015】[0015]

【実施例】試料Sの組成がAl,Fe,Wの3種類の形状に
ついて、本発明の試料形状測定装置を用いて測定した。
このとき、後方散乱電子検出器1には4個の検出素子
A,B,C,Dを備えた円環型4分割半導体方式を用
い、検出素子Aの後方散乱電子強度EA * を前出(3) 式
によって求めた。その試料傾斜角度と後方散乱電子強度
との関係を図7に示した。この図7から明らかなよう
に、いずれの試料Sの後方散乱電子強度も試料傾斜角度
と比例しており、試料Sの組成による影響がみられない
ことがわかる。
EXAMPLES Three types of shapes of the composition of the sample S, Al, Fe and W, were measured using the sample shape measuring device of the present invention.
At this time, the backscattered electron detector 1 uses an annular four-divided semiconductor system having four detection elements A, B, C, and D, and the backscattered electron intensity E A * of the detection element A is described above. It was calculated by the equation (3). The relationship between the sample tilt angle and the backscattered electron intensity is shown in FIG. As is clear from FIG. 7, the backscattered electron intensity of each sample S is proportional to the sample tilt angle, and it is clear that the composition of sample S has no effect.

【0016】また、本発明による手段によって求めた試
料傾斜角度と後方散乱電子強度との関係の加速電圧依存
性を図8に示した。このとき用いた試料Sの組成はFe
で、加速電圧は5kV,10kV, 15kVの3段階に変化させ
た。この図8と従来法の手段で求めた前出図6との比較
で明らかなように、加速電圧を増加させると後方散乱電
子強度は変動する従来法に対し、本発明ではほとんど変
動しない。
FIG. 8 shows the acceleration voltage dependence of the relationship between the sample tilt angle and the backscattered electron intensity obtained by the means of the present invention. The composition of sample S used at this time was Fe
Then, the accelerating voltage was changed in 3 steps of 5 kV, 10 kV and 15 kV. As is clear from a comparison between FIG. 8 and FIG. 6 obtained by means of the conventional method, the backscattered electron intensity fluctuates when the acceleration voltage is increased, whereas it hardly changes in the present invention.

【0017】[0017]

【発明の効果】以上説明したように、本発明によれば、
電子線に軸対称な分割された後方散乱電子検出器を用
い、1つの検出部の強度を全ての検出部で検出された強
度の和で除算するようにしたので、試料表面を標準物質
で蒸着することなく試料形状を定量的に測定することが
できる。その結果、試料本来の形態を反映する形状測定
ができ、また、同時に特性X線による組成分析をするこ
とができる。さらに、試料表面に標準物質を蒸着する必
要がないので作業の効率化にも寄与することができる。
As described above, according to the present invention,
Since the divided backscattered electron detectors that are axisymmetric to the electron beam are used and the intensity of one detector is divided by the sum of the intensities detected by all detectors, the sample surface is evaporated with a standard substance. The sample shape can be quantitatively measured without doing so. As a result, the shape measurement that reflects the original shape of the sample can be performed, and at the same time, the composition analysis by the characteristic X-ray can be performed. Furthermore, since it is not necessary to deposit the standard substance on the sample surface, it is possible to contribute to work efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る実施例の構成を示す概略図であ
る。
FIG. 1 is a schematic diagram showing the configuration of an embodiment according to the present invention.

【図2】従来例を示す斜視図である。FIG. 2 is a perspective view showing a conventional example.

【図3】従来例による試料傾斜角度と後方散乱電子強度
との関係を示す特性図である。
FIG. 3 is a characteristic diagram showing a relationship between a sample tilt angle and backscattered electron intensity according to a conventional example.

【図4】従来例によるビッカース圧痕深さの測定値と計
算値との差を示す特性図である。
FIG. 4 is a characteristic diagram showing a difference between a measured value and a calculated value of Vickers indentation depth according to a conventional example.

【図5】ビッカース圧痕の説明図である。FIG. 5 is an explanatory diagram of Vickers indentation.

【図6】従来法での加速電圧を変化させた場合の試料傾
斜角度と後方散乱電子強度との関係を示す特性図であ
る。
FIG. 6 is a characteristic diagram showing the relationship between the sample tilt angle and the backscattered electron intensity when the acceleration voltage is changed in the conventional method.

【図7】本発明に係る試料傾斜角度と後方散乱電子強度
との関係の一例を示す特性図である。
FIG. 7 is a characteristic diagram showing an example of the relationship between the sample tilt angle and the backscattered electron intensity according to the present invention.

【図8】本発明法での加速電圧を変化させた場合の試料
傾斜角度と後方散乱電子強度との関係を示す特性図であ
る。
FIG. 8 is a characteristic diagram showing the relationship between the sample tilt angle and the backscattered electron intensity when the acceleration voltage is changed in the method of the present invention.

【符号の説明】[Explanation of symbols]

1 後方散乱電子検出器 2 電子銃 3 試料形状測定装置本体制御部 4 2次電子検出器 5 特性X線検出器 6 後方散乱電子増幅器 7 信号同期装置 8 観察用CRT 9 後方散乱電子像演算手段 10 試料形状表示用CRT EB 電子線 BSE 後方散乱電子 SE 2次電子 XR 特性X線 S 試料 DESCRIPTION OF SYMBOLS 1 Backscattered electron detector 2 Electron gun 3 Sample shape measuring device main body control unit 4 Secondary electron detector 5 Characteristic X-ray detector 6 Backscattered electron amplifier 7 Signal synchronizer 8 Observation CRT 9 Backscattered electron image calculation means 10 Sample shape display CRT EB Electron beam BSE Backscattered electron SE Secondary electron XR Characteristic X-ray S sample

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 試料に電子線を照射し、その際に試料面
から発生する後方散乱電子を所定の立体角内で検出し、
この信号を演算し、ついで画像処理して試料を定量的に
形状測定し、同時に組成分析することを特徴とする試料
形状測定方法。
1. A sample is irradiated with an electron beam, and backscattered electrons generated from the sample surface at that time are detected within a predetermined solid angle,
A method for measuring the shape of a sample, characterized in that the signal is calculated, and then image processing is performed to quantitatively measure the shape of the sample, and at the same time, the composition is analyzed.
【請求項2】 試料に電子線を照射する電子銃と、試料
面から発生する後方散乱電子を所定の立体角内で検出す
る後方散乱電子検出器と、検出された後方散乱電子像を
演算する後方散乱電子像演算手段および組成分析する組
成分析手段と、を備えたことを特徴とする試料形状測定
装置。
2. An electron gun for irradiating a sample with an electron beam, a backscattered electron detector for detecting backscattered electrons generated from the sample surface within a predetermined solid angle, and a detected backscattered electron image is calculated. A sample shape measuring apparatus comprising: a backscattered electron image calculation means and a composition analysis means for composition analysis.
JP7302553A 1995-11-21 1995-11-21 Method and device for measuring configuration of sample Pending JPH09147783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7302553A JPH09147783A (en) 1995-11-21 1995-11-21 Method and device for measuring configuration of sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7302553A JPH09147783A (en) 1995-11-21 1995-11-21 Method and device for measuring configuration of sample

Publications (1)

Publication Number Publication Date
JPH09147783A true JPH09147783A (en) 1997-06-06

Family

ID=17910366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7302553A Pending JPH09147783A (en) 1995-11-21 1995-11-21 Method and device for measuring configuration of sample

Country Status (1)

Country Link
JP (1) JPH09147783A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217898A (en) * 2012-03-16 2013-10-24 Hitachi High-Tech Science Corp Sample preparation device and sample preparation method
WO2019087229A1 (en) * 2017-10-30 2019-05-09 株式会社日立ハイテクノロジーズ Semiconductor substrate for evaluation and method for using same to evaluate defect detection sensitivity of inspection device
JP2020139829A (en) * 2019-02-28 2020-09-03 株式会社堀場製作所 Three-dimensional image generation device and coefficient calculation method for three-dimensional image generation device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217898A (en) * 2012-03-16 2013-10-24 Hitachi High-Tech Science Corp Sample preparation device and sample preparation method
WO2019087229A1 (en) * 2017-10-30 2019-05-09 株式会社日立ハイテクノロジーズ Semiconductor substrate for evaluation and method for using same to evaluate defect detection sensitivity of inspection device
JPWO2019087229A1 (en) * 2017-10-30 2020-11-26 株式会社日立ハイテク Defect detection sensitivity evaluation method for evaluation semiconductor substrates and inspection equipment using them
US11193895B2 (en) 2017-10-30 2021-12-07 Hitachi High-Tech Corporation Semiconductor substrate for evaluation and method using same to evaluate defect detection sensitivity of inspection device
JP2020139829A (en) * 2019-02-28 2020-09-03 株式会社堀場製作所 Three-dimensional image generation device and coefficient calculation method for three-dimensional image generation device

Similar Documents

Publication Publication Date Title
JP3287858B2 (en) Electron microscope device and electron microscope method
JP3081002B2 (en) Test object inspection device by gamma or X-ray
KR960012331B1 (en) Method and apparatus for background correction in analysis of a specimen surface
JPH09147783A (en) Method and device for measuring configuration of sample
JP3235681B2 (en) Ion beam analyzer
JP2716997B2 (en) Cross-sectional shape measurement method, cross-sectional shape comparison inspection method and their devices
US4331872A (en) Method for measurement of distribution of inclusions in a slab by electron beam irradiation
JP3950619B2 (en) Surface analysis data display method in surface analyzer using electron beam
JP2000077019A (en) Electron microscope
JP3950642B2 (en) X-ray analyzer with electronic excitation
JP2002139464A (en) Inspection method and device of semiconductor device
JPH09510773A (en) Radiation source imaging or measuring device and method
JPS6298208A (en) Surface roughness measuring instrument using electron beam
JPH03246862A (en) X-ray analyzer for electron microscope or the like
JPH03160391A (en) Method and device for measuring incident angle of energy beam, and those for measuring characteristic of charged particle lens
JP3288972B2 (en) Three-dimensional atomic array observation method and apparatus
JP2000275197A (en) X-ray analyzer and measuring method using the same
JPS62285048A (en) Element density distribution measurement
JPH06138196A (en) Electromagnetic field distribution measuring device using convergence electron rays
JPH0749943B2 (en) Film thickness measurement method
JPH07229796A (en) Surface temperature measuring method and device for molten substance
JPS63168545A (en) Measurement of detect using x-ray ct apparatus
JPS631911A (en) Electron beam apparatus
JP3950599B2 (en) Sample observation and measurement equipment
JPS6182150A (en) X-ray spectrochemical analysis device