JPH03246862A - X-ray analyzer for electron microscope or the like - Google Patents

X-ray analyzer for electron microscope or the like

Info

Publication number
JPH03246862A
JPH03246862A JP2042461A JP4246190A JPH03246862A JP H03246862 A JPH03246862 A JP H03246862A JP 2042461 A JP2042461 A JP 2042461A JP 4246190 A JP4246190 A JP 4246190A JP H03246862 A JPH03246862 A JP H03246862A
Authority
JP
Japan
Prior art keywords
rays
detectors
signals
sample
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2042461A
Other languages
Japanese (ja)
Inventor
Moriki Kubozoe
窪添 守起
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2042461A priority Critical patent/JPH03246862A/en
Publication of JPH03246862A publication Critical patent/JPH03246862A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To improve detection sensitivity by concurrently measuring X-rays with all detectors, and adding obtained signals for all detectors per each energy of X-rays. CONSTITUTION:An electron beam emitted from an electron gun passes a radiation lens system 2 along the optical axis and is radiated to a sample 3. The characteristic X-rays emitted from the sample 3 are detected by EDX detectors 5, 5' arranged around the optional axis, detected signals are amplified by preamplifier 6, 6' and amplifiers 7, 7' and sorted per each energy of X-rays by pulse processors 8, 8' and fed to the memory of a computer 9. The signals fed to the computer 9 from the pulse processors 8, 8' are fed at the same measurement time, and both signals are added per each energy of X-rays and displayed on a display 10. X-rays can be detected with the sensitivity twice that of a single detector. The detection sensitivity of X-rays can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子顕微鏡等(電顕と略す)の非分散形X線E
DX分析装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to non-dispersive X-ray E
Regarding a DX analyzer.

〔従来の技術〕[Conventional technology]

従来、電顕にEDX検出器を2ヶ取付ける事が行われて
いる。この目的は、検出目的に応じて、検出器を使い分
ける方式で、両者の検出器はそれぞれ違っている。第2
図は従来例で、5は検出素子の面積が50m++2のB
e膜窓のEDX検出器、5′は超薄膜窓で10YrIr
12の検出素子を持ったEDX検出器の例である。5′
は軽元素の検出が可能であるが、検出感度が足らない。
Conventionally, two EDX detectors have been attached to an electron microscope. The purpose of this method is to use different detectors depending on the purpose of detection, and both detectors are different from each other. Second
The figure shows a conventional example, and 5 is B with a detection element area of 50m++2.
EDX detector with e-film window, 5' is an ultra-thin film window with 10YrIr
This is an example of an EDX detector with 12 detection elements. 5′
Although it is possible to detect light elements, the detection sensitivity is insufficient.

5では、軽元素の検出はできないが、検出感度は良い。5 cannot detect light elements, but the detection sensitivity is good.

元素分析に於いては、必ずしも軽元素の検出は必要でな
いが、検出感度がほしい時、検出器5を使用する。どち
らの検出器を使うかは、スイッチ12により選択する。
In elemental analysis, it is not necessarily necessary to detect light elements, but when high detection sensitivity is desired, the detector 5 is used. The switch 12 selects which detector to use.

検出器、5と5′の検出した信号を同時に取込むことは
なく、従って、検出感度は、それぞれの検出器によって
決まる。
The signals detected by detectors 5 and 5' are not acquired simultaneously, and therefore the detection sensitivity is determined by each detector.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

電顕等に於いて、検鏡しようとする試料に1局部的に照
射された電子線により、試料から発生する試料構成元素
に固有の特性X線を非分散形X線(EDX)検出器を用
いて検出して、試料の構成元素を同定することができる
が、この際、試料がら発生するX線を極く一部しか検出
していないと云う本質的な感度に対する欠点がある。検
出感度向上のため、検出素子を試料にできるだけ近づけ
るとか、検出素子の面積を大きくする等の工夫が従来か
らなされてきた。検出素子の面積をあまり大きくすると
、検出分解能を劣化させる問題があり、現状では素子の
面積は、50mm2が限度である。又、素子と試料の距
離にしても限度がある。
In an electron microscope, etc., a non-dispersive X-ray (EDX) detector detects characteristic X-rays unique to the constituent elements of the sample generated by an electron beam that is locally irradiated onto the sample to be examined. Although it is possible to identify the constituent elements of a sample by detecting them using this technique, there is an inherent drawback in sensitivity in that only a small portion of the X-rays emitted from the sample are detected. In order to improve detection sensitivity, efforts have been made to bring the detection element as close as possible to the sample or to increase the area of the detection element. If the area of the detection element is made too large, there is a problem of deterioration of detection resolution, and currently the area of the element is limited to 50 mm2. Furthermore, there is a limit to the distance between the element and the sample.

このような事から、現在のX線取込角は0 、1 st
r前後である。これを解決する方法として、検出器を数
多く取付ける事が考えられる。2ヶ取付ければ、1ケの
時の感度は2倍に、3ヶ取付ければ、3倍に向上させる
事ができる。本発明は複数個の検出器から同時に信号を
取込んで、感度よくX線分析を行う事にある。
For this reason, the current X-ray intake angle is 0, 1st
It is around r. One way to solve this problem is to install a large number of detectors. If you install two, you can double the sensitivity compared to one, and if you install three, you can triple the sensitivity. The object of the present invention is to simultaneously acquire signals from a plurality of detectors and perform X-ray analysis with high sensitivity.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、複数筒の検出器それぞれに
、信号取込みに必要なハードウェアーを持たせる。
In order to achieve the above objective, each of the plurality of detectors is provided with the necessary hardware for signal acquisition.

〔作用〕[Effect]

各検出器で同一計数時間で検出された信号を、増幅し、
パルスプロセッサーにより、X線のエネルギー別に分離
し、メモリーし、コンピュータにより、それぞれにメモ
リーされた信号をX線のエネルギー別に足し合せて、デ
イスプレーに表示又は、データアラトプットさせる。
The signals detected by each detector in the same counting time are amplified,
A pulse processor separates the X-ray energy and stores it in memory, and a computer adds the stored signals for each X-ray energy and displays or outputs data on a display.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。1は
電顕の光軸で、2は照射レンズ系、4は結像レンズ系で
ある。電子銃(図示されていない)から放射された電子
線は光軸に沿って、照射レンズ系2を通って、試料3に
照射される。試料から放射された特性X線を、光軸のま
わりに配置されたEDX検出器5,5′により検出する
。検出された信号は、プリアンプ6.6′および、アン
プ7.7′により増幅され、パルスプロセッサー8゜8
′によりX線のエネルギー別に信号を仕分けて、コンピ
ュータ9のメモリーに送り込む。8,8′から、9へ送
り込まれる信号は、同一計測時間に送り込まれるもので
ある。両者の信号をX線のエネルギー別に足し合せて、
デイスプレィ10に表示すれば、単一の検出器の場合の
2倍の感度で、X線を検出することができ、試料微小部
のX線分析で信号量が少ない場合に効果がある。11は
データのアウトプットで、プロッター、プリンター等が
使用される。本実施例では、コンピュータ9にメモリー
を含ませたが、8,8′の方にメモリーを持たせても同
じことである。
An embodiment of the present invention will be described below with reference to FIG. 1 is the optical axis of the electron microscope, 2 is an irradiation lens system, and 4 is an imaging lens system. An electron beam emitted from an electron gun (not shown) passes through an irradiation lens system 2 along the optical axis and is irradiated onto a sample 3. Characteristic X-rays emitted from the sample are detected by EDX detectors 5, 5' arranged around the optical axis. The detected signal is amplified by a preamplifier 6.6' and an amplifier 7.7', and a pulse processor 8.8'.
', the signals are sorted by X-ray energy and sent to the memory of the computer 9. The signals sent from 8 and 8' to 9 are sent at the same measurement time. Add the signals of both for each X-ray energy,
When displayed on the display 10, X-rays can be detected with twice the sensitivity of a single detector, which is effective when the amount of signal is small in X-ray analysis of a minute part of a sample. 11 is data output, and a plotter, printer, etc. are used. In this embodiment, the computer 9 includes a memory, but the same effect can be achieved even if the computer 8, 8' includes a memory.

第1図では、EDX検出器を含めた5〜8までの検出お
よび、信号処理系は、2組しか図示されていないが、空
間的に許される限り、多ければ多い程、検出感度は向上
するので、効果が期待できる。
In Figure 1, only two sets of detection and signal processing systems from 5 to 8, including the EDX detector, are shown, but as long as space allows, the more there are, the better the detection sensitivity will be. Therefore, the effect can be expected.

検出器の性能は分解能によって決まるので、5゜5′の
分解能が同程度である事が望ましい。
Since the performance of a detector is determined by its resolution, it is desirable that the resolution of 5° 5' be the same.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、X線検出感度向上に効果がある。 According to the present invention, it is effective to improve X-ray detection sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のブロック図、第2 図は従来例のブロック図である。 Fig. 1 is a block diagram of one embodiment of the present invention, Fig. 2 is a block diagram of an embodiment of the present invention; The figure is a block diagram of a conventional example.

Claims (1)

【特許請求の範囲】 1、電子顕微鏡等の試料のまわりに複数箇の非分散形X
線検出器を配置したX線分析装置において、全ての検出
器で、X線を同時に計測し、得られた信号を、X線のエ
ネルギー別に全ての検出器について足し合せるようにし
たことを特徴とする、電子顕微鏡等のX線分析装置。 2、電子顕微鏡等の試料のまわりに配設された複数箇の
非分散形X線検出器の全ての分解能が略同じであること
を特徴とする請求項1記載の電子顕微鏡等のX線分析装
置。
[Claims] 1. A plurality of non-dispersed Xs around the sample of an electron microscope, etc.
In an X-ray analyzer equipped with ray detectors, all detectors simultaneously measure X-rays, and the obtained signals are added up for all detectors according to the energy of the X-ray. X-ray analysis equipment such as electron microscopes. 2. The X-ray analysis of an electron microscope, etc. according to claim 1, wherein all the resolutions of the plurality of non-dispersive X-ray detectors arranged around the sample of the electron microscope, etc. are substantially the same. Device.
JP2042461A 1990-02-26 1990-02-26 X-ray analyzer for electron microscope or the like Pending JPH03246862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2042461A JPH03246862A (en) 1990-02-26 1990-02-26 X-ray analyzer for electron microscope or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2042461A JPH03246862A (en) 1990-02-26 1990-02-26 X-ray analyzer for electron microscope or the like

Publications (1)

Publication Number Publication Date
JPH03246862A true JPH03246862A (en) 1991-11-05

Family

ID=12636713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2042461A Pending JPH03246862A (en) 1990-02-26 1990-02-26 X-ray analyzer for electron microscope or the like

Country Status (1)

Country Link
JP (1) JPH03246862A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714538A (en) * 1993-06-25 1995-01-17 Topcon Corp Analytic electron microscope
JPH11108861A (en) * 1997-10-02 1999-04-23 Technos Kenkyusho:Kk Fluorescent x-ray analyzer and fluorescent x-ray detector
US6121623A (en) * 1997-10-03 2000-09-19 Hitachi, Ltd. Parallel radiation detector
EP2294371A2 (en) * 2008-05-08 2011-03-16 Kla-Tencor Corporation In-situ differential spectroscopy
JP2014153342A (en) * 2013-02-14 2014-08-25 Jeol Ltd Sample analysis method and sample analysis device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714538A (en) * 1993-06-25 1995-01-17 Topcon Corp Analytic electron microscope
JPH11108861A (en) * 1997-10-02 1999-04-23 Technos Kenkyusho:Kk Fluorescent x-ray analyzer and fluorescent x-ray detector
US6121623A (en) * 1997-10-03 2000-09-19 Hitachi, Ltd. Parallel radiation detector
EP2294371A2 (en) * 2008-05-08 2011-03-16 Kla-Tencor Corporation In-situ differential spectroscopy
EP2294371A4 (en) * 2008-05-08 2014-03-26 Kla Tencor Corp In-situ differential spectroscopy
JP2014153342A (en) * 2013-02-14 2014-08-25 Jeol Ltd Sample analysis method and sample analysis device

Similar Documents

Publication Publication Date Title
US7772563B2 (en) Gamma imagery device
US7579600B2 (en) Preclinical SPECT system using multi-pinhole collimation
US6958484B2 (en) Method and apparatus for 2-d spatially resolved optical emission and absorption spectroscopy
US5033073A (en) System for radiograhically inspecting a relatively stationary object and related method
US10401510B2 (en) Gamma ray detector with two-dimensional directionality
US10073048B2 (en) Apparatus and method for scanning a structure
KR950703139A (en) ONLINE TOMOGRAPHIC GAUGING OF SHEET METAL
JPH03246862A (en) X-ray analyzer for electron microscope or the like
US3612867A (en) X-ray television microscope
JPH04353791A (en) Scattering ray imaging device
US20080095304A1 (en) Energy-Resolved Computer Tomography
JPH09101371A (en) Gamma ray detection method and device
US5872830A (en) Device and method of imaging or measuring of a radiation source
US4074135A (en) Gamma camera in which only the three largest signals are used for position determination
US4045140A (en) Means for near real time C-W laser source characterization
RU2293971C2 (en) Radiography and tomography device
JPH0288952A (en) Method and device for analyzing tissue
US20090074132A1 (en) Computer tomography apparatus and method of examining an object of interest with a computer tomography apparatus
JP2920687B2 (en) X-ray mapping device
CN212341056U (en) Detecting instrument
JPH0251046A (en) Apparatus for environment measurement
Czarski et al. Charge cluster identification for multidimensional GEM detector structures
JPS62207985A (en) Measuring instrument for position of radiation source
JP2839681B2 (en) Signal monitoring device for electron microscopes
CN111175326A (en) Detector and detection method