JPS6178491A - Treatment of pickling rinse waste liquid - Google Patents

Treatment of pickling rinse waste liquid

Info

Publication number
JPS6178491A
JPS6178491A JP19988984A JP19988984A JPS6178491A JP S6178491 A JPS6178491 A JP S6178491A JP 19988984 A JP19988984 A JP 19988984A JP 19988984 A JP19988984 A JP 19988984A JP S6178491 A JPS6178491 A JP S6178491A
Authority
JP
Japan
Prior art keywords
waste liquid
pickling
oxidizing agent
concentration
oxidizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19988984A
Other languages
Japanese (ja)
Inventor
Katsuyasu Horiuchi
堀内 克泰
Takashi Koyama
孝 小山
Tamotsu Mizuta
水田 有
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19988984A priority Critical patent/JPS6178491A/en
Publication of JPS6178491A publication Critical patent/JPS6178491A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To attain cost reduction, by measuring Cl<-> in a pickling rinse waste liquid and adding an oxidizing agent in an amount proportional to the concn. of a Cl<-> ion. CONSTITUTION:A pickling rinse waste liquid is introduced into an absorbing tower 2 and an oxidizing tower 3 from a raw water tank 1 by a pump and Fe<2+> is oxidized to Fe<3+> by an oxidizing agent such as sodium nitrite. The concn. of Cl<-> in the waste liquid is measured by a measuring instrument 5 and the oxidizing agent 4 corresponding to the concn. of Cl<-> is charged in the oxidizing tower 3. The oxidized waste liquid is neutralized by a neutralizing agent 8 such as calcium carbonate in a neutralization tank 7 to form hydroxide. Iron oxide is flocculated by a flocculant 9, and sedimented and removed in a thickener 10.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、酸洗リンス廃液の処理方法に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to a method for treating pickling rinse waste liquid.

〈従来技術とその問題点〉 冷間圧延工程は、他の圧延工程と異なって、酸洗および
アルカリクリーニング工程を有する0両工程より排出さ
れる廃液の量は多く、その処理工程は複雑な玉に多くの
処理費を要している。
<Prior art and its problems> The cold rolling process differs from other rolling processes in that a large amount of waste liquid is discharged from the zero process, which includes pickling and alkali cleaning processes, and the processing process is complicated. This requires a lot of processing costs.

なかでも、酸洗リンス廃液は、溶解性鉄分(ml鉄イオ
ン、第2鉄イオン)を多く含んでおり、未処理では、水
質汚濁防止法(海域pH5〜9゜河川p)l 5.8〜
B、8、Fe 10 PP@以下)の排出基準をオーバ
ーするため、何らかの処理が必要となる。
Among them, the pickling rinse waste liquid contains a large amount of soluble iron (iron ions, ferric ions), and if untreated, the water pollution control law (sea area pH 5-9°, river pH) l 5.8~
B, 8, Fe 10 PP @ or less), some kind of treatment is required.

第1鉄イオン(Fe2+)と第2鉄イオ7 (li e
 3+ )には、下表に示すように、溶解度積に大きな
差があり、沈澱p)Iが大きく異なる。
Ferrous ion (Fe2+) and ferric ion7 (li e
3+), as shown in the table below, there is a large difference in solubility product and a large difference in precipitate p)I.

鉄イオンを含む廃液から鉄イオンを中和沈澱除去する場
合、排出基準具ドにするためには pe2+ではPH8
、Fe3+ではpH4に調整する必要がある。
When removing iron ions from waste liquid containing iron ions by neutralization and precipitation, in order to meet the discharge standards, PH8 is required for PE2+.
, it is necessary to adjust the pH to 4 for Fe3+.

このため、中和剤としては、Fe2+の場合は高価な消
石灰を必要とするが、Fea+では安価な炭酸カルシウ
ムで処理ri(能となる。
For this reason, Fe2+ requires expensive slaked lime as a neutralizing agent, but Fe2+ can be treated with inexpensive calcium carbonate.

一方、酸洗リンス廃液については、金属鉄と醜(H+)
が反応する際、水素ガスを発生するが、この水素ガスが
極めて活性で、酸洗リンス廃液中のFe3+までも還元
するため、廃液中には、 Fe2+が全溶解外鉄の80
%以上を占める。
On the other hand, regarding pickling rinse waste liquid, metallic iron and ugly (H+)
When reacting, hydrogen gas is generated, but this hydrogen gas is extremely active and reduces even Fe3+ in the pickling rinse waste solution, so Fe2+ in the waste solution accounts for 80% of the total dissolved outer iron.
% or more.

このため、酸洗リンス廃液の処理に際しては、下式に示
すように、Fe2+を亜硝酸ソーダ等の酸化剤によりF
e3+に酸化した後、中和沈澱除去している。
Therefore, when treating pickling rinse waste, Fe2+ is oxidized using an oxidizing agent such as sodium nitrite, as shown in the formula below.
After oxidizing to e3+, neutralization and precipitate are removed.

2FeC12+4)IC1+2NaNO2−42FeC
l3÷2 NaC1+2 H20+2  NOこの反応
式が示すように、酸化に必要な酸化剤の量は、Fe2+
濃度に関係あり、 Fe2+濃度に対応した量の酸化剤
を注入すればよい。
2FeC12+4)IC1+2NaNO2-42FeC
l3÷2 NaC1+2 H20+2 NOAs this reaction formula shows, the amount of oxidizing agent required for oxidation is Fe2+
It is related to the concentration, and it is sufficient to inject an amount of oxidizing agent corresponding to the Fe2+ concentration.

このため、従来はFe2+の連続分析が困難なため、 
Fe2+を定期的に測定して酸化剤注入最先決定してい
た。
For this reason, continuous analysis of Fe2+ was difficult in the past.
The first decision to inject the oxidizer was made by periodically measuring Fe2+.

酸洗リンス廃液中のFe2+濃度は大きく変動し。The Fe2+ concentration in the pickling rinse waste fluid fluctuates widely.

その−例を第1図に示す。An example of this is shown in FIG.

(1)酸洗リンス廃液のFe”13度は、第1図に示す
ように大幅に変動するため、従来方式では亜硝酸ソーダ
等の酸化剤を過剰に添加する必要があり、コスト面に問
題があった。
(1) The Fe”13 degree of the pickling rinse waste fluid fluctuates significantly as shown in Figure 1, so in the conventional method, it is necessary to add an excessive amount of oxidizing agent such as sodium nitrite, which poses a cost problem. was there.

(2)発生源側の避けられない理由で、Fe2+の高濃
度廃液が発生した場合、処理できない可能性があった。
(2) If high-concentration waste liquid of Fe2+ was generated due to unavoidable reasons on the source side, there was a possibility that it could not be treated.

(3)亜硝酸ソーダを理論必要量以上に使用することに
より、処理水(放流水)中の窒素濃度が高くなる。排水
中の窒素はリンとともに公共用・水域の富栄養化の原因
物質と考えられている。
(3) By using more sodium nitrite than the theoretically required amount, the nitrogen concentration in the treated water (effluent water) increases. Nitrogen in wastewater, along with phosphorus, is thought to be a cause of eutrophication of public water bodies.

〈発明の目的〉 本発明は上述した実情に鑑みなされたもので、その目的
とするところは、酸洗リンス廃液を、水質基準を満足す
るように安価に処理することのできる方法を提供しよう
とするにある。
<Objective of the Invention> The present invention was made in view of the above-mentioned circumstances, and its object is to provide a method that can inexpensively process pickling rinse waste liquid so as to satisfy water quality standards. There is something to do.

〈発明の構成〉 本発明は、Fe”8度が約50〜2000PPsで、p
Hが1〜3の酸洗リンス廃液の処理に関し、廃液中のC
I−濃度をイオン電極法等の測定塁により連続測定し、
Cl−濃度に比例した量の酸化剤、例えば亜硝酸ソーダ
等を加えることにより、酸化剤の使用量を適正化し、コ
ストタウンと処理の安定化を図るものである。
<Structure of the Invention> The present invention is characterized in that Fe"8 degree is about 50 to 2000 PPs and p
Regarding the treatment of pickling and rinsing waste liquid with H of 1 to 3, C in the waste liquid
Continuously measure the I-concentration using a measurement base such as an ion electrode method,
By adding an oxidizing agent, such as sodium nitrite, in an amount proportional to the Cl concentration, the amount of oxidizing agent used can be optimized to stabilize costs and processing.

本発明を添付図に従って詳細に説明する。The present invention will be explained in detail with reference to the accompanying drawings.

第2図に示すように、Fe”e度が約50〜2000p
p層の酸洗リンス廃液を、原木槽lからポンプにより吸
収塔2.酸化塔3に導水し。
As shown in Figure 2, the Fe”e degree is approximately 50 to 2000p.
The pickling and rinsing waste liquid of the p layer is transferred from the log tank 1 to the absorption tower 2. Water is introduced into the oxidation tower 3.

亜硝酸ソーダ等の酸化剤4でFe2+をFe3+に酸化
する。
Fe2+ is oxidized to Fe3+ with an oxidizing agent 4 such as sodium nitrite.

この際、酸化剤の注入を適当に行うのではなく、廃液中
のFe2+濃度と0文−濃度とは相関が高いため、廃液
中のcfL−e度をイオン電極計等の計測器5により測
定し、この濃度に対応(比例)した酸化剤4を酸化剤注
入制御装置6により酸化塔3に投入する。
At this time, instead of injecting the oxidizing agent appropriately, the cfL-e concentration in the waste liquid is measured using a measuring device 5 such as an ion electrode meter, since the Fe2+ concentration and the 0-mon- concentration in the waste liquid have a high correlation. Then, the oxidizing agent 4 corresponding to (proportional to) this concentration is introduced into the oxidizing tower 3 by the oxidizing agent injection control device 6.

酸化された廃水は、中和槽7において炭酸カルシウム等
の中和剤8により中和され、水酸化物が生成される。鉄
水酸化物は凝集剤9により凝集された後、シックナー1
0で沈澱除去される。シックナー10の上澄液は放流さ
れ、沈澱物はベルトフィルター等の脱水機11によりケ
ーキ化された後、再資源化あるいは埋立処分される。
The oxidized wastewater is neutralized in a neutralization tank 7 with a neutralizing agent 8 such as calcium carbonate, and hydroxide is generated. After the iron hydroxide is flocculated by flocculant 9, it is flocculated by thickener 1.
The precipitate is removed at 0. The supernatant liquid of the thickener 10 is discharged, and the precipitate is turned into a cake by a dehydrator 11 such as a belt filter, and then recycled or disposed of in a landfill.

く実 施 例〉 以下1本発明を実施例につき具体的に説明する。Practical example The present invention will be specifically explained below with reference to examples.

冷間圧延工程の酸洗リンス廃液のFe2+濃度とC1−
濃度との関係を調べた。結果を第3図に示す、相関の高
い回帰式が得られた。
Fe2+ concentration and C1− of pickling rinse waste liquid from cold rolling process
The relationship with concentration was investigated. A highly correlated regression equation, the results of which are shown in FIG. 3, was obtained.

酸洗ラインでは、酸洗液として使用されるkMe#が金
属鉄を溶解するが、化学1d、論的にJ1!酸緘が増加
すれば、溶解する鉄分も増えるため、このように相関の
高い回帰式が(すられたと思われる。
In the pickling line, kMe# used as pickling liquid dissolves metal iron, but chemically 1d, theoretically J1! As the amount of acidic acid increases, the amount of iron that dissolves also increases, so the regression equation with this high correlation seems to have been ignored.

このような関係を有する酸洗リンス廃液(pH2,1、
Fe2+イオンC度200rsg/ l )について、
酸止剤としてNaNO2を用い、これを240層g1文
添加してFe2+をFe3+に酸化し、中和剤としてG
aCO3を用い、これを55hg/JL添加したところ
、Fe濃度はlag/2以下となった。酸化剤の添加量
は、測定器(イオン電極計)を用いてC又−濃度を測定
して決定した。
Pickling and rinsing waste liquid (pH 2, 1,
Regarding Fe2+ ion C degree 200rsg/l),
Using NaNO2 as an acid inhibitor, add 240 layers of NaNO2 to oxidize Fe2+ to Fe3+, and use G as a neutralizing agent.
When aCO3 was used and 55 hg/JL was added, the Fe concentration became lag/2 or less. The amount of oxidizing agent added was determined by measuring the carbon concentration using a measuring device (ion electrode meter).

このような方法により、酸化剤の使用量が従来に比して
30%節約された。また、 Fe2+イオンはほぼ全量
Fe3′+イオンに酸化されているため、中和剤として
安価な炭酸カルシウムを使用でき、酸化剤、中和剤とも
に節約でき、コストダウンを図ることができた。
With this method, the amount of oxidizing agent used was reduced by 30% compared to the conventional method. Furthermore, since nearly all of the Fe2+ ions are oxidized to Fe3'+ ions, inexpensive calcium carbonate can be used as a neutralizing agent, saving both the oxidizing agent and the neutralizing agent, resulting in cost reduction.

〈発明の効果〉 (1)亜硝酸ソーダ等の酸化剤の使用量が適正化され、
コストダウンが図れる。
<Effects of the invention> (1) The amount of oxidizing agents such as sodium nitrite is optimized,
Cost reduction can be achieved.

(2)発生源側の避けられない理由で、FeZ+の高濃
度廃液が発生した場合にも十分酸化処理でき、処理の安
定化が図れる。
(2) Even if high-concentration waste liquid of FeZ+ is generated due to unavoidable reasons at the source, it can be sufficiently oxidized and the treatment can be stabilized.

(3)亜硝酸ソーダのようなNを含む酸化剤を使用した
場合、N分が放流水中に移行するが、亜硝酸ソーダ等の
使用量を適正化することにより、N分移行量を最小限に
押えることができる。
(3) When using an oxidizing agent containing N such as sodium nitrite, N content will migrate into the effluent water, but by optimizing the amount of sodium nitrite used, the amount of N content transferred can be minimized. It can be held down to

(4)中和段階において、FeZ+の濃度が高い場合に
は中和剤として高価な消石灰が必要であるが。
(4) In the neutralization stage, if the concentration of FeZ+ is high, expensive slaked lime is required as a neutralizing agent.

本発明のように、常時100%近< Fe2+がFe3
′+に酸化されていれば、安価な炭酸カルシウムのみで
中和できる。また、中和剤として炭酸カルシウムを使用
した場合には、消石灰に比べて沈澱物の圧密性が高いた
め、ケーキ発生量が減少し、埋立処分費が減少する。
As in the present invention, Fe2+ is always close to 100% < Fe3
If it is oxidized to '+', it can be neutralized using only inexpensive calcium carbonate. Further, when calcium carbonate is used as a neutralizing agent, the compactability of the precipitate is higher than that of slaked lime, so the amount of cake generated is reduced and the cost of landfill disposal is reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酸洗リンス廃液中のFe2+濃度の経時変化を
示すグラフである。 第2図は本発明の酸洗リンス廃液の処理方法を説明する
ための1!図である。 第3図は酸洗リンス廃液中のFe2+濃度と Cl−濃
度との相関を示すグラフである。 符号の説明 ■・・・原水槽、2・・・吸収塔、3・・・酸化塔、4
・・・酸化剤、5・・・C1−イオン計測器、6・・・
酸化剤注入制御装置、7・・・中和槽、8・・・中和剤
、9・・・凝集剤。 10・・・シックナー、11・・・脱水機FIG、1 日      数 FIG、2 FIG、3 Cじ 濃 3 (mq/l)
FIG. 1 is a graph showing the change over time in the Fe2+ concentration in the pickling rinse waste liquid. Figure 2 is 1! for explaining the method for treating pickling and rinsing waste liquid of the present invention. It is a diagram. FIG. 3 is a graph showing the correlation between the Fe2+ concentration and the Cl- concentration in the pickling rinse waste liquid. Explanation of symbols■... Raw water tank, 2... Absorption tower, 3... Oxidation tower, 4
... Oxidizing agent, 5... C1-ion measuring device, 6...
Oxidizing agent injection control device, 7... Neutralization tank, 8... Neutralizing agent, 9... Coagulant. 10... Thickener, 11... Dehydrator FIG, 1 Days FIG, 2 FIG, 3 Cji Concentration 3 (mq/l)

Claims (1)

【特許請求の範囲】[Claims] 酸洗リンス廃液を処理するに際し、酸洗リンス廃液中の
Cl^−イオンを連続測定し、Cl^−イオン濃度に比
例した量の酸化剤を加えることを特徴とした酸洗リンス
廃液の処理方法。
A method for treating pickling and rinsing waste, characterized by continuously measuring Cl^- ions in the pickling and rinsing waste, and adding an oxidizing agent in an amount proportional to the Cl^- ion concentration. .
JP19988984A 1984-09-25 1984-09-25 Treatment of pickling rinse waste liquid Pending JPS6178491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19988984A JPS6178491A (en) 1984-09-25 1984-09-25 Treatment of pickling rinse waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19988984A JPS6178491A (en) 1984-09-25 1984-09-25 Treatment of pickling rinse waste liquid

Publications (1)

Publication Number Publication Date
JPS6178491A true JPS6178491A (en) 1986-04-22

Family

ID=16415291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19988984A Pending JPS6178491A (en) 1984-09-25 1984-09-25 Treatment of pickling rinse waste liquid

Country Status (1)

Country Link
JP (1) JPS6178491A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104392A (en) * 1987-10-16 1989-04-21 Miyoshi Oil & Fat Co Ltd Treatment of waste water
JP2003019484A (en) * 2001-07-06 2003-01-21 Tsukishima Kikai Co Ltd Waste water treatment method for reducing chlorine content in treated sludge
CN100441527C (en) * 2006-03-31 2008-12-10 王涛 Treatment of acid wastewater in cold rolling neutralizing station
CN104071914A (en) * 2013-03-30 2014-10-01 宝山钢铁股份有限公司 Stainless steel leveling waste liquid recycling treatment method and system device thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104392A (en) * 1987-10-16 1989-04-21 Miyoshi Oil & Fat Co Ltd Treatment of waste water
JP2003019484A (en) * 2001-07-06 2003-01-21 Tsukishima Kikai Co Ltd Waste water treatment method for reducing chlorine content in treated sludge
CN100441527C (en) * 2006-03-31 2008-12-10 王涛 Treatment of acid wastewater in cold rolling neutralizing station
CN104071914A (en) * 2013-03-30 2014-10-01 宝山钢铁股份有限公司 Stainless steel leveling waste liquid recycling treatment method and system device thereof

Similar Documents

Publication Publication Date Title
JP2011072940A (en) Treatment method of reducing selenium-containing waste water
CN112158941A (en) Fenton optimization oxidation treatment method for wastewater
Ferguson et al. A model for aluminum phosphate precipitation
CN109110981B (en) Method for removing thallium from waste water containing high-halogen waste acid
JPS6178491A (en) Treatment of pickling rinse waste liquid
JP4095490B2 (en) Purification method for contamination by chemical substances
JP3171912B2 (en) Detoxification method for waste liquid containing hexavalent chromium
JP2575886B2 (en) Chemical cleaning waste liquid treatment method
JPS61212384A (en) Treatment of pickling waste liquid
KR101420656B1 (en) Method for treatment of wastewater containing cyanide
JP2721740B2 (en) Chemical cleaning waste liquid treatment method
CN111646598A (en) Method for co-processing chromium-containing electroplating waste liquid and electroplating cleaning water
JPH0699181A (en) Method for treating waste liquid containing decomposition-resistant organic substance
KR100495765B1 (en) Method of preparing iron oxide catalysts for fenton oxidation and use of iron oxide catalysts prepared thereby
KR100495764B1 (en) Method of preparing iron catalysts for fenton oxidation and use of iron catalysts prepared thereby
JP3674062B2 (en) Treatment method of iron-containing metal wastewater
KR100467266B1 (en) A treatment method of high concentrated phenolsulfonic acid containing tin-plated wastewaters
JP2906521B2 (en) Chromium-containing wastewater treatment method
WO2020217761A1 (en) Wastewater treatment method and wastewater treatment system
JPH0714514B2 (en) Chemical cleaning waste liquid treatment method
JPS63264194A (en) Treatment of chemical cleaning waste solution
KR940007738B1 (en) Method of removal of nitrous acid ion in waste water
KR100434392B1 (en) The treatment method of industrial wastewaters utilizing perchloric acid salt
Cole et al. Peroxide oxidation of iron in coal mine drainage
RU1813734C (en) Method of decontaminating waste water of chrome